Particular Active Media Patents (Class 372/39)
  • Patent number: 7158546
    Abstract: As a composite laser rod capable of satisfying the positional stability and output stability of a laser beam, a laser rod in which a laser active element is doped is intimately inserted into a hollow portion of a non-doped ceramic pipe that has a crystal structure the same as the laser rod followed by baking so as to remove a gap and strain at an interface between the laser rod and the ceramic pipe after the baking further followed by polishing a surface of the ceramic pipe to form a ceramic skin layer, and thereby a composite laser rod is formed. In the composite laser rod, an influence due to fluctuation in the cooling capacity of cooling water or a heat sink is averaged by a non-doped skin layer, temperature fluctuation of the laser rod is suppressed, and an influence of vibration from the cooling water or a cooling fan can be suppressed.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: January 2, 2007
    Assignees: NEC Corporation, Konoshima Chemical Co., Ltd.
    Inventors: Hikaru Kouta, Yoshikazu Suzuki, Shuetsu Kudo, Masaki Tsunekane, Katsuji Mukaihara, Takagimi Yanagitani, Hideki Yagi
  • Patent number: 7136407
    Abstract: Provided are a semiconductor laser diode and a method of manufacturing the same. The semiconductor laser diode includes an n-type compound semiconductor layer; a resonant layer stacked on a predetermined region of the n-type compound semiconductor layer; a p-type compound semiconductor layer formed on the resonant layer; electrodes respectively formed on each of the p-type and n-type compound semiconductor layers; a bonding metal film stacked on the electrodes; and a high reflection film stacked on the other surface of the resonant layer facing a surface through which a laser generated from the resonant layer is emitted, wherein the thickness of the bonding metal film is greater than that of the high reflection film.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: November 14, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kwang-ki Choi
  • Patent number: 7113533
    Abstract: The present invention relates to an amplifying medium for solid-state dye lasers and to a solid-state dye laser provided with an amplifying medium of this type. The amplifying medium according to the invention comprises an essentially solid active medium which contains at least one type of activatable particle which can be excited to emit laser light in a certain wavelength range, and optical feedback means which define a resonator for the laser light, where the feedback means comprise an essentially solid feedback medium which has a periodic structure. The feedback medium in the amplifying medium is a polymeric dispersion film having a crystalline structure which comprises, in particular, core/shell particles which can be formed into a film.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: September 26, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Reinhold J. Leyrer, Christoph Hamers, Holger Schoepke
  • Patent number: 7113529
    Abstract: An electro-optical switch includes an optical assembly arranged to transmit laser-radiation. The optical assembly comprises an active optical crystal. On one of two opposite surfaces of the crystal is an optical window formed from a material having a refractive index lower than the material of the crystal. Heat deposited, as a result of transmission of the laser-radiation, at the surface of the crystal in contact with the widow is transferred to the window, thereby reducing the potential for optical damage to the crystal surface. The window is sufficiently thick that it has an odd integer multiple of quarter-wavelengths optical thickness at a wavelength about equal to a wavelength of the laser-radiation, thereby behaving as an antireflection device for the crystal at that wavelength. In one embodiment of the optical assembly, the active optical crystal is a cadmium telluride crystal and the window is formed from cesium bromide.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: September 26, 2006
    Assignee: Coherent, Inc.
    Inventors: Vernon Seguin, Leon Newman, R. Russel Austin, Anthony DeMaria
  • Patent number: 7106776
    Abstract: A novel practicable type of gaseous optical gain medium for efficiently generating intense, highly monochromatic, continuous-wave (CW) or pulsed, coherent light beams is disclosed. Gain results from nonlinear optical pumping of a gas of ?-type “three-level” atoms, coherently phased (“dressed”) via application to the medium of two monochromatic laser beams tuned to the resonance frequencies ?0 and ??0. Nonlinear optical pumping of the “dressed-atom” gas is accomplished through the combined action of two separate physical processes: (1) A low pressure gaseous discharge, occurring continuously within the vessel containing the gain medium, produces intense narrow-band fluorescence at ?0 and ??0 through the process of electron impact excitation (EE).
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: September 12, 2006
    Inventors: Peter P. Sorokin, James Glownia, Rodney T. Hodgson
  • Patent number: 7095762
    Abstract: An object of the present invention is obtaining a semiconductor film with uniform characteristics by improving irradiation variations of the semiconductor film. The irradiation variations are generated due to scanning while irradiating with a linear laser beam of the pulse emission. At a laser crystallization step of irradiating a semiconductor film with a laser light, a continuous light emission excimer laser emission device is used as a laser light source. For example, in a method of fabricating an active matrix type liquid crystal display device, a continuous light emission excimer laser beam is irradiated to a semiconductor film, which is processed to be a linear shape, while scanning in a vertical direction to the linear direction. Therefore, more uniform crystallization can be performed because irradiation marks can be avoided by a conventional pulse laser.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: August 22, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka
  • Patent number: 7075964
    Abstract: A diode-pumped solid-state laser oscillator optically pumps a laser medium. The oscillator has at least one pumping light source that emits light in a predetermined wavelength band, and a laser medium that absorbs light in the wavelength band. In the wavelength band, the optical absorption index of the laser medium increases with an increase in wavelength, and the optical radiation energy of the light source decreases with an increase in wavelength. Thus, with respect to wavelength changes, an increase in the optical absorption index is cancelled out by a decrease in the radiation energy, making the stability of the laser output less dependent on the temperature of the optical pumping medium or laser medium.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: July 11, 2006
    Assignee: National Institute of Information and Communications Technology
    Inventor: Mitsuo Ishizu
  • Patent number: 7065115
    Abstract: A thin-film organic laser, that includes: a substrate; a bottom mirror provided on the substrate; at least one active region deposited on the bottom mirror, wherein the at least one active region includes organic gain material; an external mirror provided at a predetermined distance from the at least one active region such that the bottom mirror combined with the external mirror forms a laser resonator; and an optical pumping means for exciting the organic gain material to produce a laser beam with a wavelength ? and at least one lateral laser mode in the laser resonator and an output of laser light.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: June 20, 2006
    Assignee: Eastman Kodak Company
    Inventors: Brian E. Kruschwitz, Francisco J. Duarte, Andrew F. Kurtz, John P. Spoonhower
  • Patent number: 7058245
    Abstract: An optoelectronic device having a flexible substrate and an optical interconnect (i.e. waveguide) comprising a sol-gel based material formed on the substrate. The sol-gel based waveguide is capable of being integrated into an all-optical system and provides for greater interconnect distance and lower signal loss. Other sol-gel based optical devices, such as filters, optical source, detectors, sensors, switches and the like, will be implemented in conjunction with the sol-gel based waveguides to provide for an integrated optical system. Methods of formulating the sol-gel based material and methods for fabricating the sol-gel based devices are also provided.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: June 6, 2006
    Assignee: Waveguide Solutions, Inc.
    Inventor: Faramarz Farahi
  • Patent number: 7058102
    Abstract: A device for producing laser radiation, the device comprising: an elongate sample of a quasi-three-level laser material; a source of pumping radiation; and a concentrator configured such that at least some of the pumping radiation emitted by the source of pumping radiation is concentrated by the concentrator and subsequently enters the sample through a side surface thereof.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: June 6, 2006
    Assignee: DSO National Laboratories
    Inventors: Poh Boon Phua, Kin Seng Lai, Rui Fen Wu, Yuan Liang Lim, Wei Pin Ernest Lau
  • Patent number: 7050470
    Abstract: The invention is directed to optical devices comprising a solid-state structured glass substrate having at least one waveguide incorporated therein, particularly waveguides and lasers incorporating such structure. The invention is also directed to methods for modifying such devices and their properties. The waveguides and lasers of the invention provide advantageous high power and increased slope efficiency and find use, for example, in telecommunications applications.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: May 23, 2006
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Joseph S. Hayden, David L. Veasey, Norman A. Sanford, David S. Funk
  • Patent number: 7046710
    Abstract: A solid-state eye-safe laser and method with gain boost by dual-wavelength, synchronized pumplights. The laser includes a medium doped with ions that emit light at a laser wavelength as a result of the transition of electron energy from an upper energy level manifold to a lower energy level manifold. A first pumplight couples energy into the medium at a first wavelength that excites a first portion of the ions into said upper energy level manifold. A second pumplight couples energy into said medium at a second wavelength that excites a second portion of the ions to a third energy level manifold. A fraction of the ions relax to the upper energy level manifold and thereby increase the gain of the laser (2). The laser may be an erbium crystal laser, using yttrium-aluminum-garnet operating near 1640 nanometers.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: May 16, 2006
    Assignee: Raytheon Company
    Inventors: Kalin Spariosu, Milton Birnbaum
  • Patent number: 7045825
    Abstract: A display apparatus for producing colored pixelated light includes a backlight unit for producing pump-beam light and a vertical cavity laser array device including a structure for modulating the properties of the device at spaced locations so as to provide an array of spaced laser pixels which have higher net gain than the interpixel regions, and an active region which produces blue light in response to the pump-beam light. The apparatus also includes a light shutter and a color conversion layer including different portions, where selected different portions in response to blue light produce a different colored light and being adapted to increase the angular cone of view of the selected colored light.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: May 16, 2006
    Assignee: Eastman Kodak Company
    Inventors: Keith B. Kahen, Erica N. Montbach
  • Patent number: 7012942
    Abstract: A vertical cavity laser array device including a substrate, top and bottom dielectric stacks, and an active region for producing laser light. The active region includes one or more periodic gain region(s) and spacer layers disposed on either side of the periodic gain region(s) and arranged so that the periodic gain region(s) is aligned with the antinodes of the device's standing wave electromagnetic field. A structure is provided for modulating the properties of the periodic gain region(s) at spaced locations so as to provide an array of spaced laser pixels which have higher net gain than the interpixel regions; and the spaced laser pixels having the same or different sizes and the spacings between pixels having the same or different lengths to cause the output of the vertical cavity laser array device to produce single or multimode laser output.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: March 14, 2006
    Assignee: Eastman Kodak Company
    Inventors: Keith B. Kahen, John A. Lebens, Lingadahalli G. Shantharama
  • Patent number: 6999485
    Abstract: A kink-free semiconductor optical device stabilizing laser oscillation and producing a high optical performance. The semiconductor optical device includes a beam waveguide extending in a longitudinal direction between a pair of end surfaces. The beam waveguide includes an active layer having a quantum well structure with at least one well layer and two barrier layers, and a pair of cladding layers sandwiching the active layer. The active layer has first and second regions in the longitudinal direction, the photon density in the first region being larger than in the second region. The first region has a differential gain greater than the second region so that variation of refractive index across the beam waveguide is reduced.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: February 14, 2006
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Kazuhisa Takagi
  • Patent number: 6996146
    Abstract: A method of making an organic vertical cavity laser array device includes providing a substrate and a bottom dielectric stack reflective to light over a predetermined range of wavelengths and being disposed over the substrate; forming an etched region in the top surface of the bottom dielectric stack to define an array of spaced laser pixels which have higher reflectance than the interpixel regions so that the array emits laser light; and forming a planarization layer over the etched bottom dielectric stack. The method also includes forming an active region over the planarization layer for producing laser light; and forming a top dielectric stack spaced from the bottom dielectric stack and reflective to light over a predetermined range of wavelengths.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: February 7, 2006
    Assignee: Eastman Kodak Company
    Inventors: Keith B. Kahen, Michael J. DeBar, Lingadahalli G. Shantharama
  • Patent number: 6978070
    Abstract: A programmable dopant fiber includes a plurality of quantum structures formed on a fiber-shaped substrate, wherein the substrate includes one or more energy-carrying control paths (34), possibly surrounded by an insulator (35), which pass energy to quantum structures. Quantum structures may include quantum dot particles (37) on the surface of the fiber or electrodes (30) on top of barrier layers (31) and transport layer (32) which form quantum dot devices (QD). The energy passing through the control paths (34) drives charge carriers into the quantum dots (QD), leading to the formation of “artificial atoms” with real-time tunable properties. These artificial atoms then serve as programmable dopants, which alter the behavior of surrounding materials. The fiber can be used as a programmable dopant inside bulk materials, as a building block for new materials with unique properties, or as a substitute for quantum dots or quantum wires in certain applications.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: December 20, 2005
    Assignee: The Programmable Matter Corporation
    Inventors: Wil McCarthy, Gary E. Snyder
  • Patent number: 6970488
    Abstract: A system for mechanically tuning optical wavelengths emitted from an organic laser cavity device, that includes: a multi-layered film structure, wherein the multi-layered film structure is pumped by an incoherent source of photons; and a micro-electromechanical mirror assembly proximate to the multi-layered film structure, wherein the micro-electromechanical mirror assembly varies the cavity length of the organic laser cavity device.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: November 29, 2005
    Assignee: Eastman Kodak Company
    Inventors: John P. Spoonhower, John A. Agostinelli, Brian E. Kruschwitz, Keith B. Kahen, John A. Lebens
  • Patent number: 6970490
    Abstract: When the density of excitons in an organic single crystal (including the linear acenes, polyacenes, and thiophenes) approaches the density of molecular sites, an electron-hole plasma may form in the material altering the overall excitonic character of the system. The formation of the electron-hole plasma arises as a result of the screening of Coulomb interactions within individual excitons by injected free carriers. The large exciton densities required to accomplish this screening process can only be realized when excitons collect near dislocations, defects, traps, or are confined in heterostructures. Such confinement and subsequently large exciton densities allows for the observation of physical phenomena not generally accessible in an organic material. Specifically, the formation of an electron-hole plasma in an organic single crystal can allow for the observation of field-effect transistor action and electrically-pumped lasing.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: November 29, 2005
    Assignee: The Trustees of Princeton University
    Inventors: Russell James Delmar Holmes, Marc A. Baldo, Stephen R. Forrest
  • Patent number: 6963594
    Abstract: An organic laser cavity device, that includes: a first dielectric stack for receiving and transmitting pumped beam light and being reflective to laser light over a predetermined range of wavelengths and having a substantially low threshold for optical excitation; an organic active region for receiving the transmitted pumped beam light and laser light from the first dielectric stack, and emits the laser light; a second dielectric stack for reflecting the transmitted pumped beam light and the laser light from the organic active region back into the organic active region, wherein a combination of the first and second dielectric stacks and the organic active region outputs the laser light; and an external self-contained photon source of the pumped beam light cooperating with the organic laser cavity for optical excitation at the substantially low threshold.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: November 8, 2005
    Assignee: Eastman Kodak Company
    Inventors: Joseph A. Manico, John P. Spoonhower, David L. Patton, Edward Covannon
  • Patent number: 6952436
    Abstract: A method for preparing transparent mesostructured inorganic/block-copolymer composites or inorganic porous solids containing optically responsive species with selective optical, optoelectronic, and sensing properties resulting therefrom. Mesoscopically organized inorganic/block copolymer composites doped with dyes or complexes are prepared for use as optical hosts, chemical/physical/biological sensors, photochromic materials, optical waveguides, tunable solid-state lasers, or optoelectronic devices. The materials can be processed into a variety of different shapes, such as films, fibers, monoliths, for novel optical and sensing applications.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: October 4, 2005
    Assignee: Regents of the University of California
    Inventors: Gernot Wirnsberger, Brian J. Scott, Howard C. Huang, Nicholas A. Melosh, Peidong Yang, Bradley F. Chmelka, Galen D. Stucky
  • Patent number: 6950454
    Abstract: An electronic imaging system for providing a viewable color image from an image data stream, including: a plurality of different colored laser light sources arranged in an at least one array with each such colored laser light source including a vertical cavity design; at least one area light valve for receiving the laser light and producing the viewable color image from the image data stream; and a projection lens for projecting the viewable color image onto a target plane.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: September 27, 2005
    Assignee: Eastman Kodak Company
    Inventors: Brian E. Kruschwitz, Keith B. Kahen, Andrew F. Kurtz, John P. Spoonhower
  • Patent number: 6947459
    Abstract: An organic vertical cavity laser light producing device (10) comprises a substrate (20). A plurality of laser emitters (200) emits laser light in a direction orthogonal to the substrate. Each laser emitter within the plurality of laser emitters has a first lateral mode structure in a first axis orthogonal to the laser light direction and has a second lateral mode structure in a second axis orthogonal to both the laser light direction and the first axis. Each laser emitter comprises a first mirror provided on a top surface of the substrate (20) and is reflective to light over a predetermined range of wavelengths. An organic active region (40) produces laser light (350). A second mirror is provided above the organic active region and is reflective to light over a predetermined range of wavelengths. A pumping means excites the plurality of laser emitters.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: September 20, 2005
    Assignee: Eastman Kodak Company
    Inventors: Andrew F. Kurtz, Marek W. Kowarz, Brian E. Kruschwitz, Keith B. Kahen
  • Patent number: 6944197
    Abstract: An optical gain medium, and a method for forming the same, is provided that exhibits lower wavelength crosstalk when configured as an optical amplifier than prior art optical gain media. The optical gain medium of the present invention includes a buried heterostructure waveguide fabricated in a multiple quantum well (MQW) region. The MQW region in which the buried heterostructure waveguide is located exhibits a continuously changing bandgap as a function of position along the waveguide direction, preferably such that the gain provided by the optical gain medium changes exponentially as a function of position along the waveguide direction. In a preferred embodiment, the MQW region in which the buried heterostructure waveguide is buried is grown using a selective-area-growth (SAG) technique, and is made up of at least two quantum wells, with at least one of the quantum wells having a size and composition that vary as a function of position along the waveguide direction.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: September 13, 2005
    Assignee: University of Maryland, Baltimore County
    Inventor: Fow-Sen Choa
  • Patent number: 6944195
    Abstract: An object of the present invention is obtaining a semiconductor film with uniform characteristics by improving irradiation variations of the semiconductor film. The irradiation variations are generated due to scanning while irradiating with a linear laser beam of the pulse emission. At a laser crystallization step of irradiating a semiconductor film with a laser light, a continuous light emission excimer laser emission device is used as a laser light source. For example, in a method of fabricating an active matrix type liquid crystal display device, a continuous light emission excimer laser beam is irradiated to a semiconductor film, which is processed to be a linear shape, while scanning in a vertical direction to the linear direction. Therefore, more uniform crystallization can be performed because irradiation marks can be avoided by a conventional pulse laser.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: September 13, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka
  • Patent number: 6939012
    Abstract: A laser image projector includes a substrate; and a two dimensional array of individually addressable laser pixels formed on the substrate for emitting an imagewise beam of laser light perpendicular to the substrate, each of the laser pixels including an addressable organic light emitting diode (OLED) and an organic vertical cavity laser that is arranged to be pumped by the OLED.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: September 6, 2005
    Assignee: Eastman Kodak Company
    Inventors: Ronald S. Cok, John P. Spoonhower, Joseph A. Manico, Edward Covannon, David L. Patton
  • Patent number: 6937630
    Abstract: To provide a laser oscillation method and a laser device, which use a laser medium such as an Nd:GdVO4 crystal to which neodymium is doped in high concentration exceeding 1% in atomicity ratio, the laser medium comprised of the gadolinium-vanadate crystal to which neodymium as laser active ion is doped by a floating zone method such that concentration becomes exceeding 1% in atomicity ratio.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: August 30, 2005
    Assignees: Riken, NEC Tokin Corporation, Megaopto Co., Ltd.
    Inventors: Satoshi Wada, Takayo Ogawa, Hideo Tashiro, Hiroshi Machida, Mikio Higuchi, Kohei Kodaira, Tomohiro Shonai
  • Patent number: 6937629
    Abstract: A laser device which may be used as an oscillator or amplifier comprising a chamber having a volume formed therein and a gain medium within the volume. The gain medium comprises solid-state elements containing active laser ion distributed within the volume. A cooling fluid flows about the solid-state elements and a semiconductor laser diode provides optical pump radiation into the volume of the laser chamber such that laser emission from the device passes through the gain medium and the fluid. The laser device provides the advantages of a solid-state gain medium laser (e.g., diode-pumping, high power density, etc), but enables operation at higher average power and beam quality than would be achievable from a pure solid-state medium.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: August 30, 2005
    Assignee: General Atomics
    Inventors: Michael D. Perry, Paul S. Banks, Jason Zweiback, Robert W. Schleicher, Jr.
  • Patent number: 6937632
    Abstract: A buried heterojunction laser optically coupled with a buried waveguide electro-absorption (EA) optical modulator via an active layer is fabricated on a substrate carrying a number of deposited semiconductor layers. The laser component includes a laser current conduction region and an adjacent laser current confinement region. The waveguide component includes a waveguide current confinement region comprising first and second current blocking structures formed from different grown semiconductor layers. An extension of the first current blocking structure is interposed between the second current blocking structure and the waveguide current conduction region. Because each of the components is flanked by current confinement regions of differing structures, the resistive and capacitative properties of the current confinement regions can be selected to optimise the performance of that component for a particular use.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 30, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Graham Michael Berry, Wilfred Booij, Mark Silver
  • Patent number: 6934313
    Abstract: A method of making permanent adjustments to the resonant cavity of a laser device in order to match its free spectral range to a specified frequency interval involves monitoring the optical output produced during laser operation or cavity illumination with diagnostic light, determining the free spectral range from the monitored output, and then permanently modifying the effective refractive index of an intracavity waveguide segment of the laser device according to the determined free spectral range obtained from the monitoring step until the desired match is achieved. The permanent index changes can be done in several ways, including illumination of the intracavity segment with an energetic beam (e.g. UV light) to induce a chemical alteration in the waveguide material, such as polymer cross-linking in the waveguide cladding. Evaporative deposition or ablative removal of intracavity waveguide material would also produce the desired permanent modifications.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: August 23, 2005
    Assignee: Intel Corporation
    Inventor: David A. G. Deacon
  • Patent number: 6931033
    Abstract: This invention relates to the field of lasers and in particular to the pump sources used in lasers. Many existing lasers use linear flashlamps in order to create population inversion in the gain medium of the laser. Such pump sources suffer from a number of drawbacks particularly when pumping dye lasers including explosive damage, long optical pulse length and inappropriate spectral emission. This invention provides a pump source for a laser which exploits the surface discharge phenomenon. A dielectric material (1) which is in contract with a gas (9) has electrical energy discharged across its surface in order to provide an electromagnetic emission which is then used to pump the gain medium. By varying the dielectric material or the cover gas used (amongst other variables) the surface emission can be used to pump the laser gain medium.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: August 16, 2005
    Assignee: Qinetiq Limited
    Inventors: David James Fulker, Mark Ralph Venner, Andrew James Finlayson, Anthony David Case
  • Patent number: 6931041
    Abstract: An integrated buried heterojunction laser optically coupled to a ridge waveguide electro-absorption (EA) optical modulator having a raised ridge structure is manufactured on a single semiconductor substrate on which a plurality of semiconductor layers are grown, including at least one active layer through which optical radiation is coupled from the laser to the waveguide. Semiconductor layers above the active layer form a laser current conduction region and semiconductor layers adjacent the active layer form a laser current confinement region. The ridge structure is formed from one or more layers also used to form the laser current conduction region. The layers used to form the laser current confinement region do not extend adjacent the ridge structure.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 16, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Wilfred Booij, Mark Silver, Graham Michael Berry
  • Patent number: 6931037
    Abstract: A diode pumped, multi axial mode, intracavity doubled, intracavity tripled laser, includes at least two resonator mirrors defining a resonator cavity. A laser crystal and a doubling crystal are positioned in the resonator cavity. A tripling crystal is also positioned in the resonator cavity. A diode pump source supplies a pump beam to the laser crystal and produces a laser crystal beam with a plurality of axial modes that are incident on the doubling crystal. This produces a frequency doubled output beam. Further, a diode pumped, multi axial mode, intracavity nonlinearly-converted laser is provided and includes at least two resonator mirrors defining a resonator cavity, a laser crystal and a nonlinear conversion apparatus positioned in the resonator cavity. A nonlinear conversion apparatus is also positioned in the resonator cavity.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: August 16, 2005
    Assignee: Spectra Physics Lasers, Inc.
    Inventors: William L. Nighan, Jr., John Cole
  • Patent number: 6912236
    Abstract: A semiconductor laser device includes a QW active layer structure including a GaxIn1?xAs1?ySby layer wherein 0.3?1?x and 0.003?y?0.008, or a QW active layer structure including a GaxIn1?xAs1?y1?y2Ny1Sby2 layer wherein 0.3?1?x, 0<y1<0.03 and 0.002?y2?0.06. The semiconductor laser device suppresses the three-dimensional epitaxial growth, and has superior optical characteristics including a low threshold current.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: June 28, 2005
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hitoshi Shimizu, Koji Kumada
  • Patent number: 6904069
    Abstract: A laser gain medium having a layered coating on at least certain surfaces of the laser gain medium. The layered coating having a reflective inner material and an absorptive scattering outside material.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: June 7, 2005
    Assignee: The Regents of the University of California
    Inventors: Eric C. Honea, Raymond J. Beach
  • Patent number: 6898231
    Abstract: A laser includes an Nd:YVO4 crystal end-pumped with diode-laser light having a wavelength at which the absorption coefficient for Nd:YVO4 is less than about 0.35 (35%) of the absorption coefficient at 808 nm.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: May 24, 2005
    Assignee: Coherent, Inc.
    Inventor: Stuart David Butterworth
  • Patent number: 6891877
    Abstract: The inventive module of a light-pumped laser comprises light pump sources, a solid-state active element which is embodied in the form of a plate and provided with a couple of first opposite side faces, the distance therebetween defining the width of the active element for passing a pump radiation therethrough from the pump sources to the active element; a couple of second opposite side faces. The distance therebetween defining the thickness of the active element. which faces are embodied in the plane-parallel manner in order to direct a beam of formed laser radiation in such a way that it enables said beam to pass along the length of the active element in a zigzag manner, undergoing a total internal reflection from the couple of second side faces; a couple of end faces, the distance therebetween defining the length of the active element, and also heal-spreading devices which have a thermal contact with each second face in order So remove beat from the active element.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: May 10, 2005
    Assignee: Jenoptik Laser, Optik, System GmbH
    Inventors: Ulf Krause, Artur Afanaslovich Mak, Boris Grigorievich Malinin, Valeriy Mikhaylovich Mitkin, Vladimir Georgievich Pankov, Victor Anatollevich Serebryakov, Vladimir Ivanovich Ustyugov, Bernd Braun
  • Patent number: 6888862
    Abstract: A gain medium for producing a light emission in a laser. The gain medium comprises a dye-doped polymer nanoparticle matrix having an absolute value of dn/dT less than an absolute value of dn/dT of its dye-doped polymer matrix.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: May 3, 2005
    Assignee: Eastman Kodak Company
    Inventors: Francisco J. Duarte, Robert O. James
  • Patent number: 6879604
    Abstract: A continuous wave laser device (40) comprises a convoluted path or fiber (43) of Raman laser material that has been micromachined on to a substrate, the laser material fiber being covered by protective cladding (30). A 1 cm diameter substrate can have tens of meters of fiber fabricated on it and with a suitable choice for the laser material, e.g. Diamond, can output tens of hundreds of Watts of laser power. One possible use envisaged is as multicolor laser diodes, for example for projection television systems.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: April 12, 2005
    Assignee: Qinetiq Limited
    Inventor: Gary Cook
  • Patent number: 6879618
    Abstract: A laser emitting apparatus includes a substrate having on one side an incoherent light-emitting device having a light-emitting layer wherein an electric field is applied across the light-emitting layer to produce light which is transmitted out of the incoherent light-emitting device through an optically transparent layer into a vertical laser cavity structure disposed to receive light transmitted from the incoherent light-emitting device and produce laser light.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: April 12, 2005
    Assignee: Eastman Kodak Company
    Inventors: Ronald S. Cok, Keith B. Kahen, John A. Lebens, John P. Spoonhower
  • Patent number: 6876684
    Abstract: An organic vertical cavity laser light producing device includes a bottom dielectric stack reflective to light over a predetermined range of wavelengths; an organic active region for producing laser light, and having an organic active region including emissive material; and a top dielectric stack spaced from the bottom dielectric stack and reflective to light over a predetermined range of wavelengths. Pump-beam light is transmitted and introduced into the organic active region through at least one of the dielectric stacks. The organic active region includes one or more periodic gain region(s) and organic spacer layers disposed on either side of the periodic gain region(s) and arranged so that the periodic gain region(s) is aligned with the antinodes of the device's standing wave electromagnetic field, and wherein the spacer layers are substantially transparent to the laser light.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: April 5, 2005
    Assignee: Eastman Kodak Company
    Inventors: Keith B. Kahen, J. Ramon Vargas, Denis Y. Kondakov, Christopher T. Brown, Lelia Cosimbescu, Viktor Jarikov
  • Patent number: 6873633
    Abstract: A solid-state laser having an active medium for generating a laser beam is described. The laser includes a resonator, and a plurality of crystal wafers disposed in the resonator and are optically coupled to one another and form a common beam path for the laser beam. A pumping light source is provided for generating a pumping light beam whose optical axis is collinear with respect to an optical axis of the laser beam. The pumping light source is disposed upstream of the resonator. At least one lens functioning as an imaging element is provided for focusing the pumping light beam emerging from one of the crystal wafers onto another one of the crystal wafers disposed downstream.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: March 29, 2005
    Assignee: Rofin-Sinar Laser GmbH
    Inventors: Klaus Ludewigt, Frank-Peter Grundmann
  • Patent number: 6870868
    Abstract: An organic vertical cavity laser device includes a substrate; a bottom dielectric stack reflective to light over a predetermined range of wavelengths and being disposed over the substrate, and an organic active region for producing laser light. The device also includes a top dielectric stack spaced from the bottom dielectric stack and reflective to light over a predetermined range of wavelengths, and a thermally conductive transparent layer disposed between the bottom dielectric stack and the organic active region or between the top dielectric stack and the organic active region or both.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: March 22, 2005
    Assignee: Eastman Kodak Company
    Inventors: Keith B. Kahen, John A. Lebens
  • Patent number: 6859467
    Abstract: An electro-optic device for use with a laser beam. A crystal has a first face and a second face. Means are provided for applying a voltage across the crystal to obtain a net phase retardation on the polarization of the laser beam when the laser beam is passed through the crystal. In one embodiment the crystal is composed of a compound having the chemical formula ReAe40(BO3)3 where: RE consists of one or more of the following elements La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and two other elements Y and Sc; and where Ae is from the list of Ca, Sr, or Ba.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: February 22, 2005
    Assignee: The Regents of the University of California
    Inventors: John J. Adams, Chris A. Ebbers
  • Patent number: 6856634
    Abstract: The present invention provides a laser machining apparatus in a simple structure which can properly carry out laser machining by irradiating a laser beam easily at a predetermined energy density to a machining-target site in a predetermined range, and in addition, which can be downsized and can be kept with easy maintenance and has enhanced durability. The apparatus includes: a semiconductor stack 1 comprising a plurality of semiconductor laser elements; and a controller for controlling emission of the laser beam emitted from each of the semiconductor laser elements. The semiconductor stack 1 is divided into a plurality of blocks B11, B12, B13, B14 in correspondence with the machining-target site of a work piece. The controller controls the irradiation of the laser beam from each of the blocks B11, B12, B13, B14 to be changeable in terms of time.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: February 15, 2005
    Assignee: Toyota Jidoshi Kabushiki Kaisha
    Inventor: Kazuhisa Mikame
  • Patent number: 6853662
    Abstract: The invention includes an electrically pumped polycrystalline ZnO laser and it's fabrication procedure. A film of ZnO is grown on a suitably adapted polycrystalline underlayer in which the grains are surrounded by electrically insulating boundaries.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: February 8, 2005
    Inventor: David J. Rogers
  • Patent number: 6853660
    Abstract: An organic laser cavity structure is described, comprising a plurality of organic laser cavity devices, each organic laser cavity device characterized by: i) a first dielectric stack for receiving and transmitting pump beam light and being reflective to laser light over a predetermined range of wavelengths; ii) an organic active region for receiving transmitted pump beam light from the first dielectric stack and for emitting light; iii) a second dielectric stack for reflecting transmitted pump beam light and laser light from the organic active region back into the organic active region, wherein a combination of the first and second dielectric stacks and the organic active region produces the laser light; and a predetermined arrangement of the plurality of organic laser cavity devices, such that a desired laser output is obtained.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: February 8, 2005
    Assignee: Eastman Kodak Company
    Inventors: John P. Spoonhower, Joseph A. Manico, Edward Covannon, David L. Patton
  • Patent number: 6853659
    Abstract: A laser uses a rare-earth doped phosphate laser glass characterized by a particularly high rare-earth content to generate the highest possible output power/energy pulses. The laser glass is composed primarily of P2O5, Al2O3, and alkaline earth and alkali earth oxides, and possesses other properties such as physical and thermal properties that are compatible with melting and manufacturing methods. The laser glass can be used in high power and high energy laser systems where laser action is achieved in rod or slab shaped components as well as in waveguide or thin film structures prepared by structuring technologies such as sputtering, ion exchange, and/or direct writing with a femtosecond laser.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: February 8, 2005
    Assignee: Schott Glass Technologies, Inc.
    Inventors: Joseph Hayden, Sally Pucilowski, Bianca Schreder, Ulrich Peuchert, Ruediger Sprengard, Martin Letz
  • Patent number: 6845114
    Abstract: A vertical cavity organic laser device, that includes: an organic laser cavity including: a bottom dielectric stack for receiving and transmitting pump beam light and being reflective to laser light over a predetermined range of wavelengths; an organic active region for receiving transmitted pump beam light from the bottom dielectric stack and for emitting the laser light; a top dielectric stack for reflecting transmitted pump beam light and laser light from the organic active region back into the organic active region, wherein a combination of the bottom and the top dielectric stacks and the organic active region produces the laser light; the device further including an external pump beam light source for optically pumping light to the organic laser cavity; and a positioner for locating the organic laser cavity in a spaced relationship to the external pump beam light source.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: January 18, 2005
    Assignee: Eastman Kodak Company
    Inventors: David L. Patton, Joseph A. Manico, Edward Covannon, John P. Spoonhower
  • Patent number: 6839368
    Abstract: High-efficiency laser-like emission at low thresholds in dipolar organic materials upon pulsed optical excitation, without using any external mirrors. Unusually high conversion efficiencies and low thresholds in laser-like emission have been observed in the solutions of organic molecular salts having large dipole moments and specific dye molecules having high photoluminescence efficiencies. Pumped with frequency-doubled pulses from a Nd:YAG laser, conversion efficiencies in the range of 15-40% were achieved without incorporation of external mirrors. The threshold pump energies for such emission have been observed to be low (<8 ?J). The spectrally narrowed output beam was found to have low divergence, high degree of polarization, and pulse-width less than that of the excitation pulses (50 picoseconds).
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: January 4, 2005
    Inventor: Mrinal Thakur