By Thermally Emitted Radiation Patents (Class 374/121)
  • Patent number: 8931950
    Abstract: In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: January 13, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: William P. King, Jungchul Lee
  • Patent number: 8931952
    Abstract: A temperature monitoring device that can automatically collect temperature data and wirelessly interface with a workflow management system. The device is provided in a portable housing and incorporates one or more temperature sensors, such as a physical probe, infrared sensor, or RFID transceiver, along with an interface for wirelessly communicating with a host personal device that has been programmed with temperature management tasks. The device may be used to automatically collect temperatures and provide wirelessly provide the data to the host for monitoring and tracking as part of a comprehensive workflow management system that includes food safety monitoring and compliance programs.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: January 13, 2015
    Assignee: Par Technology Corporation
    Inventors: Scott Langdoc, Scott Leapman, Facundo Formica, Russell Megonigal
  • Patent number: 8920024
    Abstract: The present invention provides a steel plate quality assurance system and facilities thereof, wherein the steel plate quality assurance system measures, with a steel plate manufacturing line including a finishing mill of a steel plate manufacturing line, and accelerated cooling equipment disposed on the downstream side of the finishing mill in the advancing direction of the steel plate manufacturing line, temperature of at least the whole area of the upper surface of a steel plate, or the whole area of the lower surface of a steel plate to perform quality assurance, and includes temperature measurement means; temperature analysis means; and mechanical property determining means.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: December 30, 2014
    Assignee: JFE Steel Corporation
    Inventors: Koji Narihara, Toshikazu Akita, Yukihiro Okada, Yutaka Wada, Kouhei Obara, Toru Takahashi
  • Patent number: 8921791
    Abstract: Provided is an infrared ray sensor that can conduct a plurality of different types of detection such as temperature detection and gas detection in a simple structure and that is small size and low cost. The infrared ray sensor (1) includes, on one base (10), a first infrared ray detection unit (31) including at least one infrared ray detection element (20) including an infrared ray detection material (22) with physical properties changing depending on properties of incident infrared rays and receives and detects ambient infrared rays, and a second infrared ray detection unit (32) including at least one infrared ray detection element (20) having an identical element structure to the infrared ray detection element of the first infrared ray detection unit (31), is irradiated with infrared rays X for measurement having specific physical properties, and detects a change in the physical properties of the infrared rays X for measurement.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: December 30, 2014
    Assignee: NEC Corporation
    Inventors: Junichiro Mataga, Mizuki Iwanami, Hiroshi Sakai, Masatake Takahashi, Yasuhiro Sasaki
  • Publication number: 20140376588
    Abstract: A system for on-line optical monitoring of a gas turbine engine includes a viewport into a combustor of the gas turbine engine and an optical filter optically coupled to the viewport. The optical filter is configured to receive broad wavelength band thermal radiation from an interior surface of the combustor while the gas turbine engine is in operation, to substantially block wavelengths of the broad wavelength band thermal radiation emitted and/or absorbed by a flame and/or by exhaust gas within the combustor, and to output narrow wavelength band thermal radiation from the interior surface of the combustor. The system also includes a detector array in optical communication with the optical filter. The detector array is configured to receive the narrow wavelength band thermal radiation and to output signals indicative of a two-dimensional intensity map of the narrow wavelength band thermal radiation.
    Type: Application
    Filed: June 24, 2013
    Publication date: December 25, 2014
    Inventors: Guanghua Wang, Wontae Hwang, Jeremy Vanderover
  • Publication number: 20140374403
    Abstract: An electric heater (10) includes at least one heater element (12) which is adapted to emit electromagnetic radiation (30) having a first wavelength. A reflector (16) adjacent the heater element reflects radiation from the element, the reflected radiation (32) also having the first wavelength. A portion of the emitted and reflected radiation intersects a heater cover (26), which re-emits that radiation such that the re-emitted radiation (36) has a second wavelength different to the first wavelength. The cover has a plurality of apertures (28) which allow passage of another portion of the incident electromagnetic radiation through the cover, that portion having the first wavelength.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 25, 2014
    Applicant: Bromic Healing Pty Ltd.
    Inventor: Scott Smith
  • Publication number: 20140369382
    Abstract: A thermal detector includes a substrate, a thermal detector element, a support member, a support post and an auxiliary support post. The support member supports the thermal detector element. The support post is disposed between the substrate and the support member so that a cavity is disposed between the substrate and the support member. The auxiliary support post is disposed between the substrate and the support member. A gap is disposed between the auxiliary support post and the support member.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Inventor: Takafumi NODA
  • Patent number: 8911147
    Abstract: A graphical user interface for analyzing thermal images is provided. The interface can be used to identify the temperatures at multiple areas of interest defined on an image. The areas can be denoted by configurable markers of different predetermined shapes. In some embodiments, the interface simultaneously displays temperature statistics relating to the user-identified areas of interest.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: December 16, 2014
    Assignee: Fluke Corporation
    Inventors: Stefan H. Warnke, Thomas Heinke
  • Patent number: 8911144
    Abstract: A product critical temperature during freeze drying is determined. The product is imaged using optical coherence tomography (“OCT”). The product is freeze dried while the temperature of the product is measured. The product critical temperature is the temperature at which a product structure event occurs during freeze drying.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: December 16, 2014
    Assignee: Physical Sciences, Inc.
    Inventors: Mircea Mujat, William J. Kessler
  • Patent number: 8905633
    Abstract: A combination fire detection and fire suppression system may include a fire detection system configured to detect an undesirably high temperature associated with an area. The fire detection system may include a temperature sensor including a temperature sensor array and a fire alerting system associated with the temperature sensor. The fire alerting system may be configured to receive information from the temperature sensor and generate a warning signal based on an undesirably high temperature associated with the area. The fire detection system may include a fire control panel configured to receive the warning signal. The system may also include a fire suppression system including a fire suppressant delivery system configured to provide at least one fire suppressant agent to the area associated with the undesirably high temperature.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: December 9, 2014
    Assignee: Federal Express Corporation
    Inventors: James B. Popp, Arthur J. Benjamin
  • Patent number: 8890023
    Abstract: This disclosure relates to verifying a seam quality during a laser welding process. In certain aspects, a method includes detecting, in a spatially resolved manner, a first amount of radiation emerging from a workpiece in a first wavelength range, determining a first geometric parameter of a seam characteristic based on the first amount of radiation detected in the first wavelength range, detecting, in a spatially resolved manner, a second amount of radiation emerging from the workpiece in a second wavelength range, the second wavelength range being different than the first wavelength range, determining a second geometric parameter of the seam characteristic based on the second amount of radiation detected in the second wavelength range, comparing the first and second geometric parameters to respective reference values or to respective tolerance intervals to provide respective comparison results, and logically combining the respective comparison results to verify the seam quality.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: November 18, 2014
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Friedhelm Dorsch, Holger Braun, Dieter Pfitzner
  • Patent number: 8891948
    Abstract: A photodiode excellent in responsivity receives flashes of light emitted from flash lamps in the process of heating a semiconductor wafer by irradiation with flashes of light, and the waveform of the intensity of the flashes of light versus time is acquired using voltage data obtained from an output from the photodiode. Then, a temperature calculating part performs a heat conduction simulation using the acquired data to calculate the temperature of the semiconductor wafer irradiated with the flashes of light from the flash lamps. The temperature of the semiconductor wafer is computed using data corresponding to the intensity of the flashes of light obtained from the output from the photodiode. This allows the determination of the surface temperature of the semiconductor wafer irradiated with the flashes of light, irrespective of the waveform of the emission intensity of the flash lamps.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: November 18, 2014
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Tatsufumi Kusuda, Kazuyuki Hashimoto
  • Patent number: 8888363
    Abstract: A temperature measuring device, which is used in a continuous casting machine, measures the surface temperature of a part or all of a cast slab in a width direction of the cast slab, which is drawn from a mold and conveyed by rollers, in a secondary cooling zone of the continuous casting machine. The temperature measuring device includes a support member that is installed on the side of roller support parts by which the rollers are rotatably supported; an arm member of which a proximal portion is rotatably mounted on the support member; and a radiation thermometer which is provided at a distal end portion of the arm member and of which a light receiving opening is disposed at a position corresponding to a height in the range of 1.0 to 4.5 m from the surface of the cast slab.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 18, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kazunori Ueda, Takeshi Okawa, Shinichi Fukunaga
  • Patent number: 8876373
    Abstract: A protective cover for an insertion probe of a medical instrument. The cover contains a flexible tubular body that compliments the probe geometry and a radially disposed flange that surrounds the proximal end of the body. A series of snap-on fasteners removably connect the cover to the instrument. A camming surface is located on the outer face of the flange which coacts with a cam follower that is movably mounted upon the instrument to flex the cover sufficiently to open the fastener and release the cover from the instrument and move the cover axially toward the distal end of the tip.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: November 4, 2014
    Assignee: Welch Allyn, Inc.
    Inventors: John A. Lane, David E. Quinn, Ray D. Stone, Scott A. Martin, John R. Strom, Matthew David Mullin, Richard Thrush, Richard G. McDuffie
  • Publication number: 20140321501
    Abstract: The present disclosure is directed to a system and method for identifying a hot bearing. A processor may be configured for receiving a plurality of infrared (IR) signals emitted by a bearing as the bearing passes through a view window being monitored by one or more IR sensing elements positioned to receive IR radiation emitted from a target area of the bearing. The processor may extract IR data from IR signals emitted from an area within the target area of the bearing defined by a narrow window extending along a longitudinal axis for a length corresponding to substantially an entire length of the bearing. The processor may also establish a characteristic thermal profile from the extracted IR data, the characteristic thermal profile exhibiting identifiable boundaries of an area of interest on the bearing. The processor may compare temperatures of the bearing within the area of interest to a threshold, and produce an alarm signal if temperatures of the bearing within the area of interest exceed the threshold.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 30, 2014
    Applicant: Progress Rail Services Corporation
    Inventors: MARK J. BARTONEK, Donald J. ARNDT, Steven C. HAMERLE, Roland O'CONNELL
  • Publication number: 20140314120
    Abstract: A hand-held device having a housing and a processor disposed within the housing, includes a camera and a temperature sensing element having an adjustable field of view. The camera is configured to generate an image of an object and to permit the user to frame the image at a portion of the object to determine the temperature of the framed portion. The temperature sensing element includes a plurality of temperature sensors and the processor is configured to select ones of the plurality of sensors to produce a field of view (FOV) of the temperature sensing element that is less than or equal to the frame in the image. The selected sensors are activated to generate signals corresponding to the temperature of the object in the FOV and the processor is configured to determine a sensed temperature based on the sensor signals.
    Type: Application
    Filed: March 6, 2014
    Publication date: October 23, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Ando Feyh, Gary O'Brien, Gary Yama
  • Patent number: 8858069
    Abstract: There is provided an optical fiber temperature distribution measuring device which measures a temperature distribution along an optical fiber (3) using backward Raman scattering light generated in the optical fiber. The device includes: a reference temperature thermometer (11) disposed in the vicinity of the optical fiber so as to measure a reference temperature (T1, T2) of the optical fiber; an arithmetic controller (7) that calculates a temperature (T) of the optical fiber based on the backward Raman scattering light; and a temperature corrector (12) that corrects the calculated temperature (T) based on a correction formula containing the reference temperature as a parameter.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Yokogawa Electric Corporation
    Inventor: Hisao Agawa
  • Patent number: 8851748
    Abstract: The thermal detector includes a substrate, a thermal detector element including a light absorbing film, a support member supporting the thermal detector element and supported on the substrate so that a cavity is present between the member and the substrate, and at least one auxiliary support post of convex shape protruding from either the substrate or the support member towards the other. The height of the at least one auxiliary support post is shorter than the maximum height from the substrate to the support member.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 7, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Takafumi Noda
  • Patent number: 8849379
    Abstract: Support structures for positioning sensors on a physiologic tunnel for measuring physical, chemical and biological parameters of the body and to produce an action according to the measured value of the parameters. The support structure includes a sensor fitted on the support structures using a special geometry for acquiring continuous and undisturbed data on the physiology of the body. Signals are transmitted to a remote station by wireless transmission such as by electromagnetic waves, radio waves, infrared, sound and the like or by being reported locally by audio or visual transmission. The physical and chemical parameters include brain function, metabolic function, hydrodynamic function, hydration status, levels of chemical compounds in the blood, and the like. The support structure includes patches, clips, eyeglasses, head mounted gear and the like, containing passive or active sensors positioned at the end of the tunnel with sensing systems positioned on and accessing a physiologic tunnel.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: September 30, 2014
    Assignee: Geelux Holdings, Ltd.
    Inventor: Marcio Marc Abreu
  • Publication number: 20140284483
    Abstract: There is provided a high responsivity device for thermal sensing in a Terahertz (THz) radiation detector. A load impedance connected to an antenna heats up due to the incident THz radiation received by the antenna. The heat generated by the load impedance is sensed by a thermal sensor such as a transistor. To increase the responsivity of the sense device without increasing the thermal mass, the device is located underneath a straight portion of an antenna arm. The transistor runs substantially the entire length of the antenna arm alleviating the problem caused by placing large devices on the side of the antenna and the resulting large additional thermal mass that must be heated. This boosts the responsivity of the pixel while retaining an acceptable level of noise and demanding a dramatically smaller increase in the thermal time constant.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 25, 2014
    Applicant: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad, Noam Kaminski, Bernhard Klein, Lukas Kull, Thomas Morf
  • Publication number: 20140284316
    Abstract: Disclosed are an apparatus and method of detecting a temperature through a pyrometer in a non-contact manner, and an apparatus for processing a substrate using the apparatus, and more particularly, an apparatus and method of detecting a temperature, which precisely measures a temperature without any effect by humidity, and an apparatus for processing a substrate using the same.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 25, 2014
    Applicant: AP SYSTEMS INC.
    Inventor: Sang Hyun JI
  • Publication number: 20140269826
    Abstract: Disclosed are method and apparatus for treating a substrate. The apparatus is a dual-function process chamber that may perform both a material process and a thermal process on a substrate. The chamber has an annular radiant source disposed between a processing location and a transportation location of the chamber. Lift pins have length sufficient to maintain the substrate at the processing location while the substrate support is lowered below the radiant source plane to afford radiant heating of the substrate. One or more lift pins has a light pipe disposed therein to collect radiation emitted or transmitted by the substrate when the lift pin contacts the substrate surface.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 18, 2014
    Inventors: Hanbing WU, Anantha K. SUBRAMANI, Wei W. WANG, Aaron Muir HUNTER
  • Patent number: 8834020
    Abstract: Support structures for positioning sensors on a physiologic tunnel for measuring physical, chemical and biological parameters of the body and to produce an action according to the measured value of the parameters. The support structure includes a sensor fitted on the support structures using a special geometry for acquiring continuous and undisturbed data on the physiology of the body. Signals are transmitted to a remote station by wireless transmission such as by electromagnetic waves, radio waves, infrared, sound and the like or by being reported locally by audio or visual transmission. The physical and chemical parameters include brain function, metabolic function, hydrodynamic function, hydration status, levels of chemical compounds in the blood, and the like. The support structure includes patches, clips, eyeglasses, head mounted gear and the like, containing passive or active sensors positioned at the end of the tunnel with sensing systems positioned on and accessing a physiologic tunnel.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 16, 2014
    Assignee: Geelux Holdings, Ltd.
    Inventor: Marcio Marc Abreu
  • Patent number: 8834019
    Abstract: A non-contact infrared (IR) thermometer for measuring temperature from the surface of an object includes an IR radiation sensor attached to a heating element and a thermal shield having an interior surface positioned within the sensor's field of view that has a high emissivity. An electronic circuit controlling the heating element maintains the temperatures of the sensor and shield substantially close to an anticipated surface temperature of the object. The IR radiation sensor is further thermally coupled to a reference temperature sensor. An optical system positioned in front of the shield focuses thermal radiation from the object on the surface of the sensor, while the shield prevents stray radiation from reaching the sensor. Signals from the IR and reference sensors are used to calculate the object's surface temperature.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: September 16, 2014
    Assignee: Helen of Troy Limited
    Inventor: Jacob Fraden
  • Publication number: 20140254627
    Abstract: The present invention concerns a method and an apparatus (12) for measuring the temperature of a fluid stream (11), said apparatus comprising a movable frame (13, 14) having first end facing towards the fluid stream to be measured and an oppositely directed second end; a beam splitter (9) which is movably arranged in the frame for advancement into said fluid stream to open the fluid stream; an optical temperature measurement device (8) for determining the temperature of the fluid stream by measuring the thermal radiation from the fluid stream; and control means for controlling the movement of the frame and the beam splitter and controlling the performance of the optical temperature measurement device.
    Type: Application
    Filed: September 21, 2012
    Publication date: September 11, 2014
    Applicant: ROCKWOOL INTERNATIONAL A/S
    Inventors: Haosheng Zhou, Jeroen Petrus Wilhelmus Sap, Lars Bøllund, Per Steenbjerg
  • Publication number: 20140254626
    Abstract: Infrared (IR) temperature measurement and stabilization systems, and methods related thereto are provided. One or more embodiments passively stabilizes temperatures of objects in proximity and within the path between an infrared (IR) sensor and target object. A protective housing may encase an IR sensor, which may include a sensing element or IR element, a circuit or signal processor, and a housing seal plug. The IR element may be thermally bonded with a frame or conductive top hat.
    Type: Application
    Filed: May 19, 2014
    Publication date: September 11, 2014
    Applicant: CVG MANAGEMENT CORPORATION
    Inventor: Robert A. Maston
  • Publication number: 20140248720
    Abstract: An apparatus for determining the temperature of a substrate, in particular of a semiconductor wafer during a heating thereof by means of a first radiation source is described. Furthermore, an apparatus and a method for thermally treating substrates are described, in which the substrate is heated by means of at least one first radiation source. The apparatus comprises a first grating structure having grating lines, which are opaque with respect to a substantial portion of the radiation of the first radiation source, wherein the grating structure is arranged between the first radiation source and the substrate, and a drive unit for moving the first grating structure.
    Type: Application
    Filed: October 17, 2012
    Publication date: September 4, 2014
    Applicant: CENTROTHERM THERMAL SOLUTIONS GMBH &CO. KG
    Inventors: Denise Reichel, Wilfried Lerch, Jeff Gelpey, Wolfgang Skorupa, Thomas Schumann
  • Patent number: 8821010
    Abstract: A temperature measuring method comprises a step of detecting, by an infrared thermometer, the intensity of an infrared radiation coming from a region of interest of a patient for determining the patient's temperature, and a step of pointing a target area that is coincident with the region of interest and is the even and smooth surface of a body having a homogeneous underlying vascularization, and being preferably devoid of hair or chitinous or keratinous skin formations.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: September 2, 2014
    Assignee: Tecnimed S.R.L.
    Inventor: Francesco Bellifemine
  • Patent number: 8814426
    Abstract: An infrared sensor comprises: an electrical insulating film sheet; first and second temperature sensor devices which are provided on one side of the electrical insulating film sheet, and are located at a distance from each other; a pair of contact electrodes, with which the first and second temperature sensor devices are attached respectively, formed on one side of the electrical insulating film sheet; an infrared absorbing film provided on the other side of the electrical insulating film sheet opposite the first temperature sensor device; and an infrared reflector film provided on the same side as the infrared absorbing film opposite the second temperature sensor device. The first and second temperature sensor devices respectively comprise: a thermistor element; and a pair of electrode layers, in which one of them is in contact with the contact electrode, formed both on the upper and lower surfaces of the thermistor element.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: August 26, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kenzo Nakamura, Sei Kitaguchi, Mototaka Ishikawa
  • Patent number: 8810447
    Abstract: A calibration device, capable of calibrating a gain of a radiometer, includes an actuator and a micro-electromechanical-system (MEMS) unit. The actuator receives a calibration signal outputted from a control unit. The MEMS unit is coupled to the actuator, in which the actuator enables the MEMS unit to shield an antenna of the radiometer according to the calibration signal, such that the radiometer generates an environmental signal according to an equivalent radiant temperature received from the MEMS unit, and the control unit calibrates the gain of the radiometer according to the environmental signal.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: August 19, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Yen Huang, Chin-Chung Nien, Li-Yuan Chang, Chen-Ming Li, Ya-Chung Yu
  • Patent number: 8809980
    Abstract: An infrared sensor according to the present invention includes a semiconductor substrate, a thin-film pyroelectric element made of lead titanate zirconate and disposed on the semiconductor substrate, a coating film coating the pyroelectric element and having a topmost surface that forms a light receiving surface for infrared rays, and a cavity formed to a shape dug in from a top surface of the semiconductor substrate at a portion opposite to the pyroelectric element and thermally isolates the pyroelectric element from the semiconductor substrate.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: August 19, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Goro Nakatani
  • Patent number: 8801274
    Abstract: A transducer for transducing time-related temperature variations into a difference in potentials includes an upper conductive electrode designed to be exposed to a time-related temperature variation to be measured, a lower conductive electrode, and at least one layer of pyroelectric material based on a III-V nitride directly interposed between the upper and lower conductive electrodes to generate, between the upper and lower conductive electrodes, a difference in potentials corresponding to the temperature variation even in the absence of external mechanical stress.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: August 12, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Jean-Francois Mainguet, Alain Chambron, Bruno Charrat, Emmanuel Defay, Guy-Michel Parat
  • Publication number: 20140219312
    Abstract: In an embodiment, a temperature measurement device is provided with: light collection means; extraction means; optical intensity calculation means; and temperature measurement means. The light collection means collects the emission spectrum of a measurement subject. The extraction means extracts beams having the wavelength of the atomic spectral lines and a beam having a wavelength in a wavelength region where there are no atomic spectral lines, from the emission spectrum collected by the aforementioned light collection means. The optical intensity calculation means calculates the optical intensities of the beams extracted by the aforementioned extraction means. The temperature measurement means calculates the temperature of the aforementioned measurement subject, based on the intensities of the beams calculated by the aforementioned optical intensity calculation means.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 7, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toshiyuki UCHII, Tadashi Mori
  • Patent number: 8785856
    Abstract: Infrared (IR) temperature measurement and stabilization systems, and methods related thereto are provided. The innovation actively stabilizes temperatures of objects in proximity and within the path between an infrared (IR) sensor and target object. A temperature monitor and controller are employed to regulate power to resistive temperature devices (RTDs) thereby regulating current (and power) to the RTDs. As a result, temperatures of IR visible objects can be actively stabilized for changes, for example, changes in ambient temperatures, resulting in efficient and accurate temperature readings.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: July 22, 2014
    Assignee: CVG Management Corporation
    Inventor: Robert A. Maston
  • Patent number: 8777482
    Abstract: A method for detecting defect in a weld seam during laser welding. The method includes performing a two-dimensionally locally resolved detection of radiation that is emitted by a solidified molten mass that is adjacent to a liquid melting bath. The method also includes determining at least one characteristic value for heat dissipation in the solidified molten mass by evaluating the detected radiation along at least one profile-section of the solidified molten mass, and detecting a defect in the weld seam by comparing the at least one characteristic value with at least one reference value.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: July 15, 2014
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Dieter Pfitzner, Tim Hesse, Winfried Magg
  • Patent number: 8764285
    Abstract: This invention provides an apparatus for nondestructive residential inspection and various methods for using a thermal imaging apparatus coupled to inspect exterior residential components, interior residential component, for mold. More specifically, this invention provided a computerized method to facilitate inspecting a residential building.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 1, 2014
    Assignee: Homesafe Inspection, Inc.
    Inventors: Peng Lee, Kevin J. Seddon
  • Patent number: 8764287
    Abstract: A thermal detector includes a thermal detecting element and a support member supporting the thermal detecting element and a wiring layer. The support member has an arm member connected to a mounting member with the first arm member having an arm base end section extending outwardly from the mounting member toward a first direction, the arm base section having a first width measured along a direction perpendicular to the first direction, and an arm body section having a proximal end portion extending from the arm base end section generally along an outer contour of the mounting member with the proximal end portion being spaced apart from an edge of the mounting member in the first direction. The proximal end portion of the arm body section has a second width measured along a direction perpendicular to a lengthwise direction of the arm body section that is narrower than the first width.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: July 1, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Taketomi Kamikawa
  • Patent number: 8759770
    Abstract: A system for qualifying usability risk associated with subsurface defects in a multilayer coating includes a component having a multilayer coating, an infrared detection device for capturing infrared images of the multilayered coating and a processing unit that is in electronic communication with the infrared detection device where the processing unit generates a subsurface defect map of the multilayer coating based on the infrared images. The system further includes a risk map of the component.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: June 24, 2014
    Assignee: General Electric Company
    Inventors: Steven Charles Woods, James Carroll Baummer
  • Patent number: 8757872
    Abstract: Exemplary embodiments relates to an optical measurement that determines the temperature in a flame and determines the particle size of the fuel present in the flame. The optical measurement device includes a color camera that measures light information in the flame and outputs measurement results and an evaluation unit that evaluates the measurement results. Further, a coal burning power plant is provided with a multitude of burners that burn milled coal each in a flame and a multitude of optical measurement devices described.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: June 24, 2014
    Assignee: ABB Research Ltd
    Inventors: Julio Danin Lobo, Mehmet Mercangoez, Ken Yves Haffner
  • Publication number: 20140153610
    Abstract: A multi-mode temperature measuring device includes a first case, a second case, an IR sensing element and a wave-collection element. The first case has a measuring portion and a bottom portion, which are located at opposite sides of the first case. The measuring portion has a first through hole. The second case is connected with the first case and is rotatable from a first position to a second position. The IR sensing element is disposed at the measuring portion and corresponding to the first through hole. The wave-collection element is disposed in the second case and has a second through hole. When the second case is located at the first position, the second through hole is disposed opposite to the first through hole. When the second case is located at the second position, the second case is fixed at the bottom portion of the first case.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: AVITA CORPORATION
    Inventors: Hsuan-Hao SHIH, Jui-Teng WANG, Ta-Chieh YANG
  • Patent number: 8734008
    Abstract: An active sensor apparatus includes an array of sensor elements arranged in a plurality of columns and rows of sensor elements. The sensor apparatus includes a plurality of column and row thin film transistor switches for selectively activating the sensor elements, and a plurality of column and row thin film diodes for selectively accessing the sensor elements to obtain information from the sensor elements. The thin film transistor switches and thin film diodes are formed on a common substrate.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: May 27, 2014
    Assignee: Next Biometrics AS
    Inventor: Matias N. Troccoli
  • Patent number: 8734009
    Abstract: A system, method and device determine the state of a beverage and communicate information regarding the beverage. A communication device runs an application that determines the start temperature of the beverage to be cooled and sets a desired end temperature. Thermochromatic inks are used on the container label or packaging of the container to convey temperature information. A camera of the communication device senses temperature information of an image of the container. The application then determines an amount of time for cooling the beverage also taking into consideration the type and size of container. The beverage is placed in a cooling device, a timer is initiated by the user, and the application later generates a message indicating the beverage has reached the desired end temperature. The user may link information generated from the application to social networking sites for purposes such as generating invitations to friends within the social network.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 27, 2014
    Assignee: Millercoors, LLC
    Inventors: Jason Morgan Kelly, Ray Alan Toms, Charles Ho Fung
  • Patent number: 8734010
    Abstract: A thermal detector includes a substrate, a support member, a heat-detecting element, a thermal transfer member, a first light-absorbing layer and a second light-absorbing layer. The support member is supported on the substrate so that a cavity is formed between the substrate and the support member. The heat-detecting element is supported on the support member. The thermal transfer member includes a connecting portion connected to the heat-detecting element and a thermal collecting portion formed over the heat-detecting element and having a surface area larger than a surface area of the connecting portion as seen in plan view. The first light-absorbing layer contacts the thermal transfer member and disposed between the thermal transfer member and the support member. The second light-absorbing layer contacts the thermal transfer member and disposed on the thermal transfer member.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: May 27, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Yasushi Tsuchiya
  • Publication number: 20140140369
    Abstract: A battery system including a plurality of battery cells and at least one electronic unit having a circuit board and a temperature measuring device with at least two infrared temperature sensors arranged on and operatively connected to the circuit board and configured to measure a temperature of a predetermined measurement region on a surface of the battery cells.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 22, 2014
    Applicant: MAGNA STEYR Battery Systems GmbH & Co OG
    Inventor: Michael ERHART
  • Publication number: 20140140368
    Abstract: A non-contact medical thermometer is disclosed that includes an IR sensor assembly having an IR sensor for sensing IR radiation from a target, a distance sensor configured to determine a distance of the thermometer from the target, and a memory component operatively coupled at least to the IR sensor assembly and the distance sensor. The memory component contains predetermined compensation information that relates to predetermined temperatures of targets and to predetermined distances from at least one predetermined target. A microprocessor is operatively coupled to the memory component. The microprocessor is configured to perform temperature calculations based on the IR radiation from the target, the distance of the thermometer from the target, and the predetermined compensation information.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 22, 2014
    Applicant: Kaz USA, Inc.
    Inventors: Aleksan Yildizyan, Jiawei Hu, Charles Squires, James Christopher Gorsich
  • Patent number: 8727610
    Abstract: The object is to provide a laser processing apparatus, a laser processing temperature measuring apparatus, a laser processing method, and a laser processing temperature measuring method which can highly accurately detect the processing temperature when carrying out processing such as welding with laser light. A laser processing apparatus 1A for processing members DR, UR to be processed by irradiating the members with laser light LB comprises a laser (semiconductor laser unit 20A) for generating the laser light LB; optical means for converging the laser light LB generated by the laser onto processing areas DA, UA; and a filter 30, disposed between the members DR, UR to be processed and the optical means, for blocking a wavelength of fluorescence generated by the optical means upon pumping with the laser light LB; wherein light having the wavelength blocked by the filter 30 is used for measuring a temperature of the processing areas DA, UA.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: May 20, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Satoshi Matsumoto, Tsuyoshi Kosugi
  • Patent number: 8727611
    Abstract: Provided according to one or more embodiments is a thermostat having a housing, the housing including a forward-facing surface, the thermostat comprising a passive infrared (PIR) motion sensor disposed inside the housing for sensing occupancy in the vicinity of the thermostat. The PIR motion sensor has a radiation receiving surface and is able to detect the lateral movement of an occupant in front of the forward-facing surface of the housing. The thermostat further comprises a grille member having one or more openings and included along the forward-facing surface of the housing, the grille member being placed over the radiation receiving surface of the PIR motion sensor. The grille member is configured and dimensioned to visually conceal and protect the PIR motion sensor disposed inside the housing, the visual concealment promoting a visually pleasing quality of the thermostat, while at the same time permitting the PIR motion sensor to effectively detect the lateral movement of the occupant.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 20, 2014
    Assignee: Nest Labs, Inc.
    Inventors: Brian Huppi, John Benjamin Filson, Fred Bould, David Sloo, Matthew Lee Rogers, Anthony Michael Fadell
  • Patent number: 8727612
    Abstract: An imaging thermographic measuring system to measure the thermal output (Qout) at a target object, such as a building wall, building facade, or the like, comprising a measuring station provided for the arrangement distant from the object with an electric imaging device to record a thermographic thermal image, with a temperature distribution to be allocated thereto, and with a temperature sensor distant from the object to measure a temperature (Tref) distant from the object; at least one thermal transition sensor provided to be arrange close to the object, a transmission arrangement to transmit values between at least one thermal transition sensor and the measuring station, with the thermal transition sensor being embodied to predetermine the test values to determine a thermal transition coefficient (h).
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: May 20, 2014
    Assignee: Hilti Aktiengesellschaft
    Inventor: Torsten Gogolla
  • Publication number: 20140117237
    Abstract: There is provided a novel and useful a high responsivity device for thermal sensing in a Terahertz (THz) radiation detector. A load impedance connected to an antenna heats up due to the incident THz radiation received by the antenna. The heat generated by the load impedance is sensed by a thermal sensor such as a transistor. To increase the responsivity of the sense device without increasing the thermal mass, the device is located underneath a straight portion of an antenna arm. The transistor runs substantially the entire length of the antenna arm alleviating the problem caused by placing large devices on the side of the antenna and the resulting large additional thermal mass that must be heated. This boosts the responsivity of the pixel while retaining an acceptable level of noise and demanding a dramatically smaller increase in the thermal time constant.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad, Noam Kaminski, Bernhard Klein, Lukas Kull, Thomas Morf
  • Patent number: 8708555
    Abstract: Methods and systems are disclosed for determining an amount of bond between a structure and sensor. A method may include performing a process associated with a sensor bonded to a structure and generating measured data in response to the process. The method may further include comparing the measured data to known reference data to determine integrity of a bond between the sensor and the structure. A system may include a sensor system including at least one sensor bonded to a structure. The system may further include a sensing system configured to initiate an application of one or more stimuli to the at least one sensor and monitor a property associated with the at least one sensor. The sensing system may further be configured to determine an amount of bond between the at least one sensor and the structure based on the monitored property.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 29, 2014
    Assignee: Alliant Techsystems Inc.
    Inventors: John L. Shipley, Jerry W. Jenson, Mark R. Eggett, Sorin V. Teles, Don W. Wallentine