Diffraction, Reflection, Or Scattering Analysis Patents (Class 378/70)
  • Patent number: 10962489
    Abstract: Provided are an operation guide system, an operation guide method, and an operation guide program, which are capable of allowing a user to easily understand measurement of an X-ray optical system to be selected. A quantitative phase analysis device includes qualitative phase analysis result acquisition means for acquiring information on a plurality of crystalline phases contained in a sample, and weight ratio calculation means for calculating a weight ratio of the plurality of crystalline phases based on a sum of diffracted intensities corrected with respect to a Lorentz-polarization factor, a chemical formula weight, and a sum of squares of numbers of electrons belonging to each of atoms contained in a chemical formula unit, in the plurality of crystalline phases.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: March 30, 2021
    Assignee: RIGAKU CORPORATION
    Inventors: Hideo Toraya, Akihiro Himeda
  • Patent number: 10948436
    Abstract: A wavelength dispersive X-ray fluorescence spectrometer includes a single one-dimensional detector (10) having detection elements (7) arranged linearly, and includes a detector position change mechanism (11) for setting a position of the one-dimensional detector (10) to either a parallel position at which an arrangement direction of the detection elements (7) is parallel to a spectral angle direction of a spectroscopic device (6) or an intersection position at which the arrangement direction intersects the spectral angle direction. At the parallel position, a receiving surface of the one-dimensional detector (10) is located at a focal point of focused secondary X-rays (42). At the intersection position, a receiving slit (9) is disposed at the focal point of the focused secondary X-rays (42), and the receiving surface is located at a traveling direction side of the focused secondary X-rays (42) farther from the spectroscopic device (6) than the receiving slit (9).
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 16, 2021
    Assignee: Rigaku Corporation
    Inventors: Shuichi Kato, Takashi Yamada, Yoshiyuki Kataoka
  • Patent number: 10919041
    Abstract: In a method of analyzing solid form properties of a substance, which including the step of solidifying the substance, the solidified substance is obtained in one of a plurality of wells of a multi-well plate. In the multi-well plate the at least one of the plurality of wells has a bottom made of a thermoplastic polyimide. The method further includes analyzing the solidified substance in the well of the multi-well plate by X-ray diffraction. Thereby, the analysis includes providing X-ray through the solidified substance and a bottom of the well and evaluating the X-ray which passed the solidified substance and the bottom of the well. Such method and multi-well plate provide a durable and cost efficient system allowing a high quality analysis of solid form properties of the substance and an efficient and safe processing of the substance.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: February 16, 2021
    Assignee: HOFFMANN-LA ROCHE INC.
    Inventors: Urs Schwitter, Frédéric Ran, André Alker, Tom Kissling, Thomas Zumstein
  • Patent number: 10914692
    Abstract: A method that measures stress of a test subject including a metal includes: detecting, using a two-dimensional detector, a diffraction ring of diffracted X-rays which is formed by causing X-rays from an irradiation unit to be incident on the test subject and to be diffracted by the test subject; and calculating the stress of the test subject based on detection results during the detection step. Therein, the detection step involves causing X-rays from the irradiation unit to be incident on each of a plurality of sites on the test subject with the irradiation unit angled relative to the test subject in a manner such that the angle of incidence on the test subject is within the range of 5-20°, inclusive, and detecting, using a two-dimensional detector, the diffraction ring formed by the diffraction of the X-rays by the test subject.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: February 9, 2021
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroyuki Takamatsu, Toshihide Fukui, Mariko Matsuda, Tatsuhiko Kabutomori
  • Patent number: 10876978
    Abstract: In an X-ray inspection device according to the present invention, an X-ray irradiation unit 40 includes a first X-ray optical element 42 for focusing characteristic X-rays in a vertical direction, and a second X-ray optical element 43 for focusing the characteristic X-rays in a horizontal direction. The first X-ray optical element 42 is constituted by a crystal material having high crystallinity. The second X-ray optical element includes a multilayer mirror.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 29, 2020
    Assignee: RIGAKU CORPORATION
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Sei Yoshihara, Yoshiyasu Ito, Hiroshi Motono, Hideaki Takahashi, Takao Kinefuchi, Akifusa Higuchi, Shiro Umegaki, Shigematsu Asano, Ryotaro Yamaguchi, Katsutaka Horada, Makoto Kambe, Licai Jiang, Boris Verman
  • Patent number: 10859519
    Abstract: Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS) are disclosed. For example, a method of measuring a sample by X-ray reflectance scatterometry involves impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles. The method also involves collecting at least a portion of the scattered X-ray beam.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: December 8, 2020
    Assignee: NOVA MEASURING INSTRUMENTS, INC.
    Inventors: Heath A. Pois, David A. Reed, Bruno W. Schueler, Rodney Smedt, Jeffrey T. Fanton
  • Patent number: 10837923
    Abstract: To provide an X-ray analysis device and a method for optical axis alignment thereof by which measurement time is shortened and measurement cost may be reduced without optical axis alignment at each measurement using an analyzer. The X-ray analysis device includes a sample stage for supporting a sample, an N-dimensional detector, and an analyzer including analyzer crystals. A detection surface of the N-dimensional detector has first and second detection areas, a plurality of optical paths includes a first optical path that directly reaches the first detection area and a second optical path that reaches via the analyzer crystals, and the N-dimensional detector performs a measurement of the first optical path by X-ray detection of the first detection area, and performs a measurement of the second optical path by X-ray detection of the second detection area.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: November 17, 2020
    Assignee: RIGAKU CORPORATION
    Inventors: Shintaro Kobayashi, Katsuhiko Inaba, Toru Mitsunaga
  • Patent number: 10816486
    Abstract: Multilayer targets enabling fast and accurate, absolute calibration and alignment of X-ray based measurement systems are described herein. The multilayer calibration targets have very high diffraction efficiency and are manufactured using fast, low cost production techniques. Each target includes a multilayer structure built up with pairs of X-ray transparent and X-ray absorbing materials. The layers of the multilayer target structure is oriented parallel to an incident X-ray beam. Measured diffraction patterns indicate misalignment in position and orientation between the incident X-Ray beam and the multilayer target. In another aspect, a composite multilayer target includes at least two multilayer structures arranged adjacent one another along a direction aligned with the incident X-ray beam, adjacent one another along a direction perpendicular to the incident X-ray beam, or a combination thereof. In some embodiments, the multilayer structures are spatially separated from one another by a gap distance.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: October 27, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Nikolay Artemiev, Antonio Gellineau, Alexander Bykanov, Alexander Kuznetsov
  • Patent number: 10794844
    Abstract: A mounting system and a sample holder for an X-ray diffraction (XRD) apparatus are provided. The mounting system includes a mounting bracket, an attachment module and a biasing assembly. The mounting bracket is mountable to the XRD apparatus and is rotatable about a rotation axis. The mounting bracket includes an abutment structure defining a reference position. The attachment module is mountable onto the mounting bracket at an adjustable attaching position with respect to the reference position. The attachment module comprises an attaching element that is engageable with the abutment structure for abutting the mounting bracket proximate the reference position. The biasing assembly is mounted onto one of the mounting bracket or the attachment module for interlocking the mounting bracket with the attachment module, such that the mounting bracket is blocked in a plane substantially parallel to the rotation axis, thereby allowing the attaching position to be aligned with the rotation axis.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: October 6, 2020
    Assignee: PROTO MANUFACTURING, LTD.
    Inventors: Vedran Nicholas Vukotic, William Boyer, Mohammed Belassel, Alec Iskra
  • Patent number: 10765383
    Abstract: The invention relates to an X-ray imaging apparatus (2), comprising: a source (4) for generating X-ray radiation, an object receiving space (6) for arranging an object of interest for X-ray imaging, an X-ray collimator arrangement (8) arranged between the source (4) and the collimator arrangement (8), and an X-ray mirror arrangement (10). The mirror arrangement (10) comprises for example two tapered mirrors (22) facing each other and adapted for guiding X-ray radiation of the source (4) to the collimator arrangement (8). Consequently, the X-ray intensity at the object receiving space (6) is increased. In order to limit the X-ray radiation to an area, where the X-ray radiation can be utilized form imaging, an angle of spread ?m between the mirrors (22) and a length LM of each mirror (22) is adapted, such that a number of total reflections of X-ray radiation, provided by the source (4), at the mirrors (22) is limited.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: September 8, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gerhard Martens, Ewald Roessl
  • Patent number: 10656049
    Abstract: Methods and mechanisms for correcting a wavefront error in an optical element are disclosed. A wavefront error that is downstream of an optical element in an optical path is determined. A refractive index prescription that reduces the wavefront error is determined. A beam of energy is directed at a surface of the optical element in accordance with the refractive index prescription to alter the surface to change an index of refraction at multiple locations on the surface.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: May 19, 2020
    Assignee: Lockheed Martin Corporation
    Inventors: Gene D. Tener, Clara R. Baleine
  • Patent number: 10598616
    Abstract: The X-ray reflectometer of the present invention includes: an irradiation angle variable unit (10) configured to vary an irradiation angle of a focused X-ray beam (6) with a sample surface (8a); a position sensitive detector (14) which is fixed; and a reflection intensity calculation unit (15) configured to, per reflection angle of reflected X-rays (13) constituting a reflected X-ray beam (12), integrate a detected intensity by a corresponding detection element (11), for only the detection elements (11) positioned within a divergence angle width of the reflected X-ray beam (12) in the position sensitive detector (14), in synchronization of variation in the irradiation angle (?) of the focused X-ray beam (6) by the irradiation angle variable unit (10).
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: March 24, 2020
    Assignee: Rigaku Corporation
    Inventors: Satoshi Murakami, Kazuhiko Omote, Shinya Kikuta, Akihiro Ikeshita
  • Patent number: 10539414
    Abstract: A method for monitoring tubing wall thickness includes conveying a tool through a tubular string in a borehole, the tool including a photon source that directs a photon beam along a radial path toward a wall of the borehole, the tool further including an array of collimated detectors that measure Compton backscattering rates at respective distance bins along the radial path. The method further includes calculating a sequence of ratios between measurements from neighboring detectors. The method further includes identifying one or more local extrema in the sequence, each extremum representing a boundary between different materials. The method further includes determining a wall thickness of the tubular string from absolute or relative positions of the one or more extrema. The method further includes displaying a representation of the wall thickness.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: January 21, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dongwon Lee, Weijun Guo
  • Patent number: 10458929
    Abstract: A system for the x-ray topography analysis of a sample, comprising in combination, a goniometer having a base, a tube arm rotatably associated with the base, a detector arm rotatably associated with the base, and a sample stage operatively associated with the base. The system also includes an x-ray source operatively coupled with the tube arm and is capable of emitting a non-collimated beam of x-rays. A collimator is operatively associated with the x-ray source and converts the non-collimated beam of x-rays into a collimated beam of x-rays having a quasi-rectangular shape with a divergence less than three degrees in all directions. A detector operatively coupled to the detector arm.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: October 29, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Iuliana Cernatescu, Vasisht Venkatesh, David Ulrich Furrer
  • Patent number: 10444168
    Abstract: At least two values of an X-ray irradiation width are set for a single specimen. A rocking curve is measured for each of the X-ray irradiation widths. A rocking curve width value is determined for each of the rocking curves. The values of the X-ray irradiation width and the values of the rocking curve width are plotted on a planar coordinate system having a vertical axis representing the rocking curve width value and a horizontal axis representing the X-ray irradiation width value, and a rocking curve width shift line is determined based on the plotted points. A gradient of the rocking curve width shift line is determined. A curvature radius of the specimen is determined based on the gradient. The amount of bowing of a single-crystal substrate under measurement can be measured without a need to move the single-crystal substrate for reliable measurement with a small amount of error.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: October 15, 2019
    Assignee: RIGAKU CORPORATION
    Inventors: Katsuhiko Inaba, Shintaro Kobayashi, Toru Mitsunaga
  • Patent number: 10429746
    Abstract: Methods and apparatus for estimating an unknown value of at least one of a plurality of sets of data, each set of data including a plurality of values indicative of radiation diffracted and/or reflected and/or scattered by one or more features fabricated in or on a substrate, wherein the plurality of sets of data include at least one known value, and wherein at least one of the plurality of sets of data includes an unknown value, the apparatus including a processor to estimate the unknown value of the at least one set of data based on: the known values of the plurality of sets of data, a first condition between two or more values within a set of data of the plurality of sets of data, and a second condition between two or more values being part of different sets of data of the plurality of the sets of data.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: October 1, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Alexandru Onose, Seyed Iman Mossavat, Thomas Theeuwes
  • Patent number: 10416101
    Abstract: A method of measuring properties of a thin film stack by GIXR divides the stack into sub-layers and represents the composition of each sub-layer by an number P. The numbers P represent the composition of each layer. For example, integers may represent pure material and fractional values represent mixtures of the adjacent pure materials. This representation is then used to fit to measured data and the best fit gives an indication of the material composition of each of the sub-layers and hence as a function of depth.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 17, 2019
    Assignee: Malvern Panalytical B.V.
    Inventors: Igor Alexandrovich Makhotkin, Sergey Yakunin
  • Patent number: 10408615
    Abstract: The method of inspecting a degraded area of a metal structure covered by a composite repair generally comprises operating a Compton scattering inspection device onto the degraded area, including emitting a beam of radiation particles directed towards and across the composite repair, detecting at least some backscattered photons scattered back from the metal structure, and acquiring Compton scattering data from the detected backscattered photons, the Compton scattering data being indicative of remaining wall thickness of the degraded area.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: September 10, 2019
    Assignee: INVERSA SYSTEMS LTD.
    Inventor: John T. Bowles
  • Patent number: 10295484
    Abstract: A method and apparatus for performing an X-ray diffraction measurement with a diffractometer having an X-ray beam directed at a sample and a two-dimensional X-ray detector includes the performance of a physical scan during which the detector is moved through a scanning range in an angular direction about the sample position. To provide a uniform exposure time, the detector, when located at an extreme of the scanning range, is controlled to progressively change the portion of the detected X-ray energy that is used at a rate that maintains a uniform exposure time for each angular position in the scanning range. Alternatively, when located at an extreme of the range, the detector is kept stationary until a desired minimum exposure time is obtained for each angular position, after which the collected diffraction data is normalized relative to exposure time.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: May 21, 2019
    Inventor: Bob Baoping He
  • Patent number: 10161887
    Abstract: A system for the x-ray topography analysis of a sample, comprising in combination, a goniometer having a base, a tube arm rotatably associated with the base, a detector arm rotatably associated with the base, and a sample stage operatively associated with the base. The system also includes an x-ray source operatively coupled with the tube arm and is capable of emitting a non-collimated beam of x-rays. A collimator is operatively associated with the x-ray source and converts the non-collimated beam of x-rays into a collimated beam of x-rays having a quasi-rectangular shape with a divergence less than three degrees in all directions. A detector operatively coupled to the detector arm.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: December 25, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Iuliana Cernatescu, Vasisht Venkatesh, David Ulrich Furrer
  • Patent number: 10161888
    Abstract: A crystalline phase contained in a sample is identified, from X-ray diffraction data of the sample which contain data of a plurality of ring-shaped diffraction patterns, using a database in which are registered data related to peak positions and peak intensity ratios of X-ray diffraction patterns for a plurality of crystalline phases. Peak positions and peak intensities for a plurality of the diffraction patterns are detected from the X-ray diffraction data (step 102), and the circumferential angle versus intensity data of the diffraction patterns is created (step 103). The diffraction patterns are grouped into a plurality of clusters on the basis of the circumferential angle versus intensity data (step 105). Crystalline phase candidates contained in the sample are searched from the database on the basis of sets of ratios of peak positions and peak intensities of the diffraction patterns grouped into the same cluster (step 106).
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: December 25, 2018
    Assignee: RIGAKU CORPORATION
    Inventors: Yukiko Ikeda, Keigo Nagao, Akihiro Himeda
  • Patent number: 10151713
    Abstract: This application relates to an apparatus and methods for enhancing the performance of X-ray reflectometry (XRR) when used in characterizing thin films and nanostructures supported on a flat substrate. In particular, this application is targeted for addressing the difficulties encountered when XRR is applied to samples with very limited sampling volume, i.e. a combination of small sampling area and miniscule sample thickness or structure height. Point focused X-ray with long wavelength, greater than that from a copper anode or 0.154 nm, is preferably used with appropriately controlled collimations on both incident and detection arms to enable the XRR measurements of samples with limited volumes.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: December 11, 2018
    Assignees: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Li Wu, Yun-San Chien, Wei-En Fu, Shyh-Shin Ferng, Yi-Hung Lin
  • Patent number: 10119925
    Abstract: Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS) are disclosed. For example, a method of measuring a sample by X-ray reflectance scatterometry involves impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles. The method also involves collecting at least a portion of the scattered X-ray beam.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: November 6, 2018
    Assignee: Nova Measuring Instruments Inc.
    Inventors: Heath A. Pois, David A. Reed, Bruno W. Schueler, Rodney Smedt, Jeffrey T. Fanton
  • Patent number: 10040270
    Abstract: A galvannealed steel sheet includes a plating layer containing 7.2-10.6 mass % of Fe, 0.2-0.4 mass % of Al, and 0.1 mass % or more of at least one of Ni, Co, Cu, and In, and the balance of Zn and impurities. In a vertical cross-section of the plating layer, an average thickness of a ? phase is 0.2 ?m or less, and an average thickness of a ? phase is 0.5 ?m or less. In the ? phase, at least one of Ni, Co, Cu, and In are contained at a ratio in the ? phase of 0.5 mass % or more. A phase existing in contact with the ? phase is a mixed phase of ?1 phase and ? phase, and a ? phase percentage defined by “(? phase/? phase contact interface length)/(? phase/? phase contact interface length+?1 phase/? phase contact interface length)×100” is 10% or more.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: August 7, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masao Kurosaki, Jun Maki, Shintaro Yamanaka, Hiroyuki Tanaka
  • Patent number: 10013518
    Abstract: Structural parameters of a specimen are determined by fitting models of the response of the specimen to measurements collected by different measurement techniques in a combined analysis. Models of the response of the specimen to at least two different measurement technologies share at least one common geometric parameter. In some embodiments, a model building and analysis engine performs x-ray and optical analyses wherein at least one common parameter is coupled during the analysis. The fitting of the response models to measured data can be done sequentially, in parallel, or by a combination of sequential and parallel analyses. In a further aspect, the structure of the response models is altered based on the quality of the fit between the models and the corresponding measurement data. For example, a geometric model of the specimen is restructured based on the fit between the response models and corresponding measurement data.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: July 3, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Michael S. Bakeman, Andrei V. Shchegrov, Qiang Zhao, Zhengquan Tan
  • Patent number: 9945795
    Abstract: A system for reflecting and recording x-ray radiation from an x-ray emitting event to characterize the event. A crystal is aligned to receive radiation along a first path from an x-ray emitting event. Upon striking the crystal, the x-ray reflects from the crystal along a second path due to a reflection plane of the crystal defined by one of the following Miller indices: (9,7,3) or (11,3,3). Exemplary crystalline material is germanium. The x-rays are reflected to a detector aligned to receive reflected x-rays that are reflected from the crystal along the second path and the detector generates a detector signal in response to x-rays impacting the detector. The detector may include a CCD electronic detector, film plates, or any other detector type. A processor receives and processes the detector signal to generate reflection data representing the x-rays emitted from the x-ray emitting event.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: April 17, 2018
    Assignee: National Security Technologies, Inc.
    Inventors: Jeffrey A. Koch, Michael J. Haugh
  • Patent number: 9875821
    Abstract: Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 23, 2018
    Assignee: Brookhaven Science Associates, LLC
    Inventors: John Jay Sinsheimer, Raymond P. Conley, Nathalie C. D. Bouet, Eric Dooryhee, Sanjit Ghose
  • Patent number: 9784698
    Abstract: In an X-ray detector operating in a rolling shutter read out mode, by precisely synchronizing sample rotation with the detector readout, the effects of timing skew on the image intensities and angular positions caused by the rolling shutter read out can be compensated by interpolation or calculation, thus allowing the data to be accurately integrated with conventional software. In one embodiment, the reflection intensities are interpolated with respect to time to recreate data that is synchronized to a predetermined time. This interpolated data can then be processed by any conventional integration routine to generate a 3D model of the sample. In another embodiment a 3D integration routine is specially adapted to allow the time-skewed data to be processed directly and generate a 3D model of the sample.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: October 10, 2017
    Inventors: Roger D. Durst, Joerg Kaercher, Gregory A. Wachter
  • Patent number: 9711680
    Abstract: An integrated hybrid crystal Light Emitting Diode (“LED”) display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: July 18, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang Hyouk Choi
  • Patent number: 9606073
    Abstract: Apparatus, including a sample-support that retains a sample in a plane having an axis, the plane defining first and second regions separated by the plane. A source-mount in the first region rotates about the axis, and an X-ray source on the source-mount directs first and second incident beams of X-rays to impinge on the sample at first and second angles along beam axes that are orthogonal to the axis. A detector-mount in the second region moves in a plane orthogonal to the axis and an X-ray detector on the detector-mount receives first and second diffracted beams of X-rays transmitted through the sample in response to the first and second incident beams, and outputs first and second signals, respectively, in response to the received first and second diffracted beams. A processor analyzes the first and the second signals so as to determine a profile of a surface of the sample.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: March 28, 2017
    Assignee: BRUKER JV ISRAEL LTD.
    Inventors: Isaac Mazor, Alex Krokhmal, Alex Dikopoltsev, Matthew Wormington
  • Patent number: 9588066
    Abstract: Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS) are disclosed. For example, a method of measuring a sample by X-ray reflectance scatterometry involves impinging an incident X-ray beam on a sample having a periodic structure to generate a scattered X-ray beam, the incident X-ray beam simultaneously providing a plurality of incident angles and a plurality of azimuthal angles. The method also involves collecting at least a portion of the scattered X-ray beam.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 7, 2017
    Assignee: ReVera, Incorporated
    Inventors: Heath A. Pois, David A. Reed, Bruno W. Schueler, Rodney Smedt, Jeffrey T. Fanton
  • Patent number: 9562865
    Abstract: A method and a device examine a sample with radiation emitted from a radiation source, which is directed to the sample carried by a sample holder via a beamforming unit and detected by a detector and evaluated in an evaluating unit. Prior to the examination of the sample, at least one of the following components, including the radiation source, beamforming unit, sample holder, detector, and a primary beam stop, are spatially oriented and/or positioned in relation to at least one of the other components and/or in relation to a predefined fixed point and/or in relation to the optical path with a control unit via actuating drives. The radiation intensity measured by the detector, in a predefined detector range, and/or a value derived therefrom is used for establishing a control variable conferred from the control unit to the actuating drives assigned to the components.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: February 7, 2017
    Assignee: Anton Paar GmbH
    Inventors: Heimo Schnablegger, Josef Gautsch, Wolfgang Gigerl
  • Patent number: 9492132
    Abstract: The X-ray imaging device includes an X-ray generator to generate an X-ray and radiate the X-ray to an object, an X-ray detector to detect the X-ray passing through the object and acquire an image signal of the object, and a controller to analyze the image signal of the object, evaluate a characteristic of the object and generate at least one of a single energy X-ray image and a multiple energy X-ray image according to the evaluated characteristic.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: November 15, 2016
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG LIFE PUBLIC WELFARE FOUNDATION.
    Inventors: Hyun Hwa Oh, Young Hun Sung, Kang Eui Lee, Myung Jin Chung
  • Patent number: 9455374
    Abstract: An integrated hybrid crystal Light Emitting Diode (“LED”) display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: September 27, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang Hyouk Choi
  • Patent number: 9417341
    Abstract: The present invention relates to a method and device for determining the energetic composition of electromagnetic waves. It is the object of the present invention to provide a method and device for X-ray spectroscopy that allows simultaneous detection of the individual energies at a comparatively higher resolution and/or across a comparatively wider energy range. According to the invention, at least one reflective zone plate (12) is used that comprises a multitude of predefined wavelength-selective regions (14) arranged next to one another, wherein the wavelength-selective regions (14) each include a multitude of reflecting arched portions (20), which extend exclusively and continuously across the respective wavelength-selective region (14).
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: August 16, 2016
    Assignees: IfG—Institute for Scientific Instruments GmbH, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH
    Inventors: Alexei Erko, Norbert Langhoff, Aniuar Bjeoumikhov
  • Patent number: 9377541
    Abstract: A scintillator panel includes a scintillator layer that includes a phosphor including columnar crystals in which an X-ray rocking curve of a specific plane index measured by applying an X-ray to a columnar crystal growth ending surface after cutting to have a thickness of 5 ?m from a columnar crystal growth starting surface has a half-width (a) of equal to or less than 15 degrees, an X-ray rocking curve of the specific plane index measured by applying an X-ray to the columnar crystal growth ending surface without cutting has a half-width (b) of equal to or less than 15 degrees, and a ratio (a/b) is within a range of from 0.5 to 2.0. The scintillator panel can provide radiation images having higher sharpness.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: June 28, 2016
    Assignee: KONICA MINOLTA, INC.
    Inventors: Atsushi Hasegawa, Keiko Maeda
  • Patent number: 9312039
    Abstract: A monochromator is adapted to select at least one band of wavelengths from diverging incident radiation. The apparatus includes a first crystal and a second crystal. A band of emitted wavelengths of the first crystal is adapted to the at least one band of wavelengths. A surface curvature of the first crystal is adapted to focus emitted radiation in a first plane. A band of emitted wavelengths of the second crystal also is adapted to the at least one band of wavelengths. Parallel faces of a lattice structure of the second crystal are oriented at a first predetermined angle from a surface of the second crystal. In another embodiment, an apparatus is adapted to select at least one band of wavelengths from diverging incident synchrotron radiation in a given range of wavelengths with an energy resolution finer than about five parts in 10000 and optical efficiency greater than about 50 percent.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: April 12, 2016
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: Joseph P Lidestri
  • Patent number: 9297771
    Abstract: Methods and systems for fabricating platelets of a monochromator for X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a method of fabricating a platelet of a monochromator for X-ray photoelectron spectroscopy involves placing a crystal on a stage of an X-ray measuring apparatus, the crystal having a top surface. The method also involves measuring, by X-ray reflection, an orientation of a crystal plane of the crystal, the crystal plane beneath the top surface of the crystal and having a primary axis. The method also involves measuring a surface angle of the top surface of the crystal by measuring a light beam reflected from the top surface of the crystal.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: March 29, 2016
    Assignee: ReVera, Incorporated
    Inventors: Jeffrey T. Fanton, Rodney Smedt, Bruno W. Schueler, David A. Reed
  • Patent number: 9281249
    Abstract: Measurement of thickness of layers of a circuit structure is obtained, where the thickness of the layers is measured using an optical critical dimension (OCD) measurement technique, and the layers includes a high-k layer and an interfacial layer. Measurement of thickness of the high-k layer is separately obtained, where the thickness of the high-k layer is measured using a separate measurement technique from the OCD measurement technique. The separate measurement technique provides greater decoupling, as compared to the OCD measurement technique, of a signal for thickness of the high-k layer from a signal for thickness of the interfacial layer of the layers. Characteristics of the circuit structure, such as a thickness of the interfacial layer, are ascertained using, in part, the separately obtained thickness measurement of the high-k layer.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 8, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Alok Vaid, Abner Bello, Sipeng Gu, Lokesh Subramany, Xiang Hu, Akshey Sehgal
  • Patent number: 9260200
    Abstract: The disclosure is directed to metal fatigue analytics and alert systems.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: February 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Andrew M. Garratt, Andrew D. Humphreys, Martin G. Keen, John J. P. McNamara
  • Patent number: 9255898
    Abstract: The present invention relates to a method and a device for measuring scattering of X-rays wherein the compound to be analyzed is installed in a receptacle comprising an X-ray-permeable flat bottom, wherein the X-ray diffraction analysis is undertaken by sending an X-ray stream upwards toward said X-ray-permeable bottom and by measuring the stream of scattered X-rays reflected downwards, and wherein a fluid thermostatically controlled to the same temperature as that of the compound to be analyzed in the receptacle is projected toward the X-ray permeable flat bottom, from outside the receptacle.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: February 9, 2016
    Assignee: UNIVERSITE DE ROUEN
    Inventors: Gerard Coquerel, Morgane Sanselme, Anais Lafontaine
  • Patent number: 9240254
    Abstract: Systems and methods for characterizing films by X-ray photoelectron spectroscopy (XPS) are disclosed. For example, a system for characterizing a film may include an X-ray source for generating an X-ray beam having an energy below the k-edge of silicon. A sample holder may be included for positioning a sample in a pathway of the X-ray beam. A first detector may be included for collecting an XPS signal generated by bombarding the sample with the X-ray beam. A second detector may be included for collecting an X-ray fluorescence (XRF) signal generated by bombarding the sample with the X-ray beam. Monitoring/estimation of the primary X-ray flux at the analysis site may be provided by X-ray flux detectors near and at the analysis site. Both XRF and XPS signals may be normalized to the (estimated) primary X-ray flux to enable film thickness or dose measurement without the need to employ signal intensity ratios.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: January 19, 2016
    Assignee: ReVera, Incorporated
    Inventors: Bruno W. Schueler, David A. Reed, Jeffrey Thomas Fanton, Rodney Smedt
  • Patent number: 9204848
    Abstract: An x-ray source emits a cone beam to a rotating, x-ray-opaque disc with radial slots. The slots break the cone beam into fan beams that are emitted to an x-ray-opaque plate that produces a scanning x-ray pencil beam as each fan beam moves across a slit in the plate. A backscatter detector is adjacent to the plate. A collimator is adjacent. The pencil beam enters the object space through slits in the detector and collimator. The pencil beam moves rapidly in the y direction in the object space, producing backscatter x-rays from the object. The collimator only passes backscattered x-rays at a selected distance from the detector. Simultaneously, the assemblage of x-ray source, disc, plate, detector, and collimator moves slowly in the x and z directions. The backscattered x-rays passed by the collimator are processed to form planar images at various depths in the object space.
    Type: Grant
    Filed: June 27, 2015
    Date of Patent: December 8, 2015
    Assignee: Martin Annis Patent Trust—2009
    Inventor: Martin Annis
  • Patent number: 9188551
    Abstract: An x-ray diffraction imaging (XDI) system having a system axis includes at least one x-ray source configured to generate x-rays directed toward an object that includes at least one substance. The at least one x-ray source is further configured to irradiate at least one voxel defined within the object with x-rays arriving from a plurality of directions, each direction defined by an angle of incidence with respect to the system axis. The system also includes at least one detector configured to detect scattered x-rays after the x-rays have passed through the object. The system further includes at least one processor coupled to the at least one detector. The processor is programmed to generate a plurality of XDI profiles of the object voxel. Each XDI profile is a function of an associated angle of incidence.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: November 17, 2015
    Assignee: MORPHO DETCTION, LLC
    Inventors: Geoffrey Harding, Helmut Rudolf Otto Strecker
  • Patent number: 9121812
    Abstract: The invention relates to a device for the delivery of a beam of X-rays for analysis of a sample (50), comprising: a source block (100) comprising X-ray emission means; an optical block (200) placed downstream of the source block (100), said optical block (200) comprising an optical monochromator component (210) having a reflecting surface (212) provided for conditioning X-rays emitted by the source block (100) according to unidimensional or bidimensional optical effect; and definition means (300) of X-rays comprising: an anti-diffusing member (310) for spatially delimiting X-rays conditioned by the optical monochromator component (210), placed downstream of the optical monochromator component (210) and comprising one or more plates (311) having portions (313) arranged to form a delimiting orifice (312), said portions (313) being coated with a monocrystalline material limiting the scattering of X-rays; a cut-off member (320) of X-rays emitted by the source block (100), comprising X-ray absorption means arr
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: September 1, 2015
    Assignee: XENOCS
    Inventors: Pierre Panine, Peter Hoghoj
  • Patent number: 9113808
    Abstract: Embodiments of devices and methods for evaluating tissue are disclosed. In one embodiment, a method for measuring a characteristic of a tissue may include passing a current through the tissue, measuring a signal corresponding to the voltage resulting from passing the current through the tissue, analyzing current passed through the tissue and resulting voltage to determine the electrical characteristics of the tissue; and analyzing the electrical characteristics of the tissue to determine a status of the tissue. Disposable sensors are disclosed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 25, 2015
    Assignee: Skulpt, Inc.
    Inventors: Jose L. Bohorquez, Michael Rinehart, Ken Li, Haydn Taylor, Elmer C. Lupton
  • Patent number: 9022651
    Abstract: A method for correcting erroneous intensity measurements caused by defective pixels of the detector for a single-crystal X-ray diffraction system uses collected diffraction images and a defective pixel list to modify three-dimensional reflection profiles by replacing profile elements affected by the defective pixels with corresponding profile elements from a model profile. Reflection positions on the detector are predicted using an orientation matrix for the crystal and a three-dimensional observed profile is constructed for each reflection. A model profile is constructed using normalized profile data from multiple reflection profiles. The observed profiles are compared with the defective pixel list to determine which profile elements are affected by defective pixels, and those elements are replaced by corresponding elements from the model profile.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: May 5, 2015
    Inventors: Joerg Kaercher, John L. Chambers
  • Patent number: 9020098
    Abstract: A radiation imaging apparatus according to the present invention includes a radiation source, a reflective structure where at least three reflective substrates are arranged with an interval and radiations being incident into a plurality of passages whose both sides are put between the reflective substrate are reflected and parallelized by the reflective substrate at both sides of the passage to be emitted from the passage, a radiation detector, and an image construction unit that constructs an image of an object based on an intensity of the radiation which is emitted from each of the passages, transmits the object and is detected by the radiation detector. When one edge of the reflective structure is an inlet of the radiation and the other edge is an outlet of the radiation, a pitch of the reflective substrates at the outlet is larger than a pitch at the inlet.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 28, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takeo Tsukamoto, Ichiro Nomura, Mitsuaki Amemiya, Akira Miyake, Osamu Tsujii
  • Patent number: 9001969
    Abstract: An X-ray imaging system is provided with an X-ray source (11), first and second absorption gratings (31, 32), and a flat panel detector (FPD) (30), and obtains a phase contrast image of an object H by performing imaging while moving the second absorption grating (32) in x direction relative to the first absorption grating (31). The following mathematical expression is satisfied where p1? denotes a period of a first pattern image at a position of the second absorption grating (32), and p2? denotes a substantial grating pitch of the second absorption grating (32), and DX denotes a dimension, in the x-direction, of an X-ray imaging area of each pixel of the FPD (30). Here, “n” denotes a positive integer.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: April 7, 2015
    Assignee: Fujifilm Corporation
    Inventors: Dai Murakoshi, Takuji Tada, Toshitaka Agano, Kenji Takahashi
  • Patent number: 8971492
    Abstract: Peak positions and integrated intensities of diffraction X-ray are determined on the basis of X-ray diffraction measurement data output from an X-ray diffractometer, the number of determined peaks of the diffraction X-ray is counted, and analysis processing is started when the counted number of peaks reaches a preset peak number. The analysis processing is repetitively executed on the basis of X-ray diffraction measurement data. The peak positions and the integrated intensities of the diffraction X-ray are determined from the X-ray diffraction measurement data obtained from the start of the measurement till the analysis processing concerned, and qualitative analysis of collating the determined peak positions and integrated intensities with standard peak card data whose data base is made in advance and searching materials contained in a measurement sample, and quantitative analysis of determining the quantities of the materials contained in the measurement sample are executed.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: March 3, 2015
    Assignee: Rigaku Corporation
    Inventors: Akito Sasaki, Keiichi Morikawa, Akihiro Himeda, Hiroki Yoshida