Including Solid, Extended Surface, Fluid Contact Reaction Means; E.g., Inert Raschig Rings, Particulate Absorbent, Particulate Or Monolithic Catalyst, Etc. Patents (Class 422/211)
  • Patent number: 8721983
    Abstract: A sterilizer is connectable to an external chamber. A sterilization gas generator is configured to generate sterilization gas. A gas supply system including a first gas supply system which is configured to supply the sterilization gas from the sterilization gas generator to a sterilization chamber; and a second gas supply system which is different from the first gas supply system and configured to supply the sterilization gas from the sterilization gas generator to the external chamber.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 13, 2014
    Assignee: Panasonic Healthcare Co., Ltd.
    Inventors: Yasuhiko Yokoi, Hiroshi Yamamoto, Atsushi Nakao, Jiro Ohnishi, Shinji Fukui, Akifumi Iwama, Masaki Harada, Yoshiaki Sugimura, Katsuya Hirai
  • Publication number: 20140128484
    Abstract: Herein disclosed is a catalyst composition for producing organic compounds comprising (a) a catalyst that promotes the oxidative coupling of methane (OCM) and a methane steam reforming (MSR) catalyst, wherein the catalyst composition causes oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (b) a catalyst that promotes syngas generation (SG) and a Fischer-Tropsch (FT) catalyst wherein the catalyst composition causes non-oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (c) a SG catalyst, a MSR catalyst, and a FT catalyst wherein the catalyst composition causes non-oxidative dehydrogenation to form reactive species and oligomerization of the reactive species to produce the organic compounds; or (d) a FT catalyst and a MSR catalyst wherein the catalyst composition causes reforming reactions and chain growing reactions to produce the organic compounds.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 8, 2014
    Applicant: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Rayford G. Anthony, Gregory G. Borsinger
  • Publication number: 20140127108
    Abstract: The invention relates to a method for cleaning the process gas in soldering installation and solder suction systems, in particular for reducing the abietic acid in the process gas, wherein the process gas to be cleaned is conducted through a cleaning system which contains one or more of the following compounds (cleaning compounds): a) carboxylic acids with reducing properties, namely oxalic acid, formic acid, citric acid and/or ascorbic acid: b) metal compounds of higher oxidation states, namely manganates, permanganates, chromates and/or dichromates; c) alcohols which can be convened into the carboxylic acids mentioned in a) by means of oxidation; d) basic lime compounds.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicant: ERSA GMBH
    Inventor: Viktoria Rawinski
  • Publication number: 20140121433
    Abstract: Catalytic forms and formulations are provided. The catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: May 23, 2013
    Publication date: May 1, 2014
    Inventors: Joel M. Cizeron, Fabio R. Zurcher, Jarod McCormick, Joel Gamoras, Roger Vogel, Joel David Vincent, Greg Nyce, Wayne P. Schammel, Erik C. Scher, Daniel Rosenberg, Erik-Jan Ras, Erik Freer
  • Patent number: 8703076
    Abstract: A catalyst unit suitable for loading into a tube in a reactor includes a plurality of catalyst particles incorporated within a removable solid matrix, said unit in the form of an elongate body in which the particles are packed together such that the volume shrinkage upon removal of the removable matrix is ?20%. The catalyst particles preferably comprise one or more metals selected from the group consisting of Fe and Co in oxidic or reduced form. The units are particularly suitable for loading catalyst into tubes in a Fischer-Tropsch reactor.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 22, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Mark McKenna, Alejandro Martin Antonini
  • Patent number: 8695374
    Abstract: A chemical heat pump includes a reactor part (1) that contains an active substance and an evaporator/condenser part (3) that contains that portion of volatile liquid that exists in a condensed state and can be absorbed by the active substance. A channel (4) interconnects the reactor part and the evaporator/condenser part, In at least the reactor part a matrix (13) is provided for the active substance so that the active substance both in its solid state and its liquid state or its solution phase is held or carried by or bonded to the matrix. The matrix is advantageously an inert material such as aluminum oxide and has pores, which are permeable for the volatile liquid and in which the active substance is located. In particular, a material can be used that has a surface or surfaces, at which the active substance can be bonded in the liquid state thereof. For example, the matrix can be a material comprising separate particles such as a powder or a compressed fiber material.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: April 15, 2014
    Assignee: Climatewell AB (Publ)
    Inventors: Ray Olsson, Göran Bolin
  • Publication number: 20140100379
    Abstract: The carrier of the present invention includes at least 85 wt percent alpha alumina, at least 0.06 wt percent SiO2 and no more than 0.04 wt percent Na2O. The carrier has a water absorption no greater than 0.35 g/g and a ratio of water absorption (g/g) to surface area (m2/g) no greater than 0.50 g/m2. Another aspect of the invention is a catalyst for the epoxidation of olefins which comprises the above described carrier and silver dispersed thereon, where the carrier has a monomodal, bimodal or multimodal pore distribution and where the quantity of silver is between 5 and 50 wt %, relative to the weight of the catalyst. A reactor to system for the epoxidation of olefins is also disclosed.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 10, 2014
    Inventors: Michael A. Richard, John R. Lockemeyer
  • Publication number: 20140094626
    Abstract: The invention provides a method for coating fluidic channels, particularly millifluidic channels, with a catalyst coating having controlled dimensions and morphology, and methods for preparing such channels, and devices that can be used in combination with the channels. The invention further provides portable, hand-held millifluidic devices applicable for a wide variety of uses including molecular reduction reactions, in situ material characterization, in situ reaction catalysis characterization, in situ reaction mechanism characterization, nanomaterial synthesis, nanostructured metal and metal oxide growth and coating of channels, continuous flow cell culturing, enzymatic catalysis, biomolecular catalysis, combinatorial chemistry, reactions involving homogeneous catalysts bound to channel walls, peptide synthesis, nucleic acid synthesis, synthesis of pharmaceutical intermediates, biofunctionalization of nanomaterials or a combination thereof.
    Type: Application
    Filed: September 19, 2013
    Publication date: April 3, 2014
    Inventor: Siva Sai Ramana Kumar CHALLA
  • Patent number: 8685348
    Abstract: The invention concerns a nanowire structural element which is suited for implementation in, for example, a microreactor system or microcatalyzer system. For the production of the nanowire structural element, a template based process is used wherein the electrochemical deposition of the nanowires in nanopores is ideally carried out at least until caps are formed and said caps ideally are at least partially merged together. After reinforcing the two cover layers the structured hollow chamber between the two cover layers is cleared by dissolving the template foil and removing the dissolved template material, wherein the two cover layers remain intact. In this manner, a stable sandwich-like nanostructure is constructed with a two-dimensional hollow chamber-like structure in the plane parallel to the cover layers contained on both sides by the cover layers and permeated in a column-like manner with nanowires.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: April 1, 2014
    Assignee: GSI Helmholtzzentrum fur Schwerionenforschung GmbH
    Inventors: Thomas Cornelius, Wolfgang Ensinger, Reinhard Neumann, Markus Rauber
  • Patent number: 8679418
    Abstract: Systems and methods for fabricating bodies (e.g., porous bodies) are described. Various aspects provide for reactors and the fabrication of reactors. Some reactors include surfaces that provide for heterogeneous reactions involving a fluid (and/or components thereof). A fluid may be a gas and/or a liquid. A contaminant in the fluid (e.g., a dissolved or suspended substance) may react in a reaction. A contaminant may be filtered from a fluid. Some reactors provide for independent control of heat transfer (between the fluid, the reactor, and the environment) with respect to mass transfer (e.g., fluid flow through the reactor).
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: March 25, 2014
    Assignee: Errcive, Inc.
    Inventors: Charles E. Ramberg, Stephen A. Dynan
  • Patent number: 8679417
    Abstract: A headless suspended mass transfer and reaction tower system used for the scrubbing, stripping or chemical reaction between gases and liquids. The system comprises an elongated shell having a closed top end and a suspension member configured to suspend the tower from an external suspension support. Various embodiments of the system can be adapted for the purposes of chemical vent scrubbing, absorption, odor abatement, gas-liquid chemical reactions, or similar processes. The tower can be operated in the classical counter current or concurrent flow modes, under pressure, or in a partial vacuum.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 25, 2014
    Inventor: Carlos Alvarado
  • Patent number: 8673233
    Abstract: A solid reactant sheet, a solid reactant stack, and a fuel cartridge are provided. The solid reactant sheet comprises an adhesive film and a plurality of solid reaction particles. The adhesive film has a first surface, a second surface opposite to the first surface, and a plurality of through holes connected between the first surface and the second surface. The plurality of solid reaction particles are adhered to the first surface, and the solid reaction particles react with a reactant for generating a gas. Furthermore, a solid reactant stack and a fuel cartridge are also provided.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: March 18, 2014
    Assignee: Young Green Energy Co.
    Inventors: Hsuan-Yi Lu, Chih-Lin Ho
  • Publication number: 20140070143
    Abstract: For producing synthesis gas by autothermal reformation of gaseous, liquid and/or solid fuels, the fuel is reacted with an oxidizing agent in a reaction space at a pressure of 10 to 120 bar and a reaction space temperature of 800 to 2,000° C. to obtain synthesis gas, wherein the oxidizing agent is introduced centrally in the upper region of the reaction space and wherein a flame is formed in the reaction space. The oxidizing agent is introduced into the reaction space separate from the fuel.
    Type: Application
    Filed: May 7, 2012
    Publication date: March 13, 2014
    Applicant: Lurgi GmbH
    Inventors: Matthias Mueller-Hagedorn, Katja Bartels, Frederic Judas
  • Patent number: 8670475
    Abstract: Singlet oxygen metastables can be formed. A catalytic coating is formed on an interior surface of a flow reactor, and an oxygen containing species is flowed into the flow reactor to produce singlet oxygen metastables by a chemical reaction in the presence of the catalytic coating.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: March 11, 2014
    Assignee: Physical Sciences, Inc.
    Inventors: W. Terry Rawlins, Seonkyung Lee, Steven J. Davis
  • Patent number: 8663596
    Abstract: Disclosed is a reactor, a structured packing, and a method for increasing the rate of decomposition of polysulfides and oxidation of polysulfides and hydrogen sulfide in liquid sulfur. The reactor, the structured packing, and the method involve a structured packing for contacting a first stream and a second stream in a reactor including a catalyst. The catalyst increases the rate of decomposition of polysulfides and oxidation of polysulfides and hydrogen sulfide in the liquid sulfur of the first stream with the second stream. The first stream includes liquid sulfur containing polysulfides and dissolved hydrogen sulfide. The second stream includes an oxygen-containing gas.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: March 4, 2014
    Assignee: Fluor Enterprises, Inc.
    Inventors: Diwakar Garg, Xianming Jimmy Li, Uday Navin Parekh, Jung Soo Choe, Elmo Nasato
  • Publication number: 20140046093
    Abstract: A process for charging a longitudinal section of a catalyst tube with a homogeneous fixed catalyst bed section whose active composition is at least one multielement oxide or comprises elemental silver on an oxidic support body and whose geometric shaped catalyst bodies and shaped inert bodies have a specific inhomogeneity of their longest dimensions.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 13, 2014
    Applicant: BASF SE
    Inventors: Martin DIETERLE, Klaus Joachim MUELLER-ENGEL
  • Patent number: 8648006
    Abstract: Novel methods of electroless plating are described. Catalyst coatings can be applied within microchannel apparatus. Various reactions, including combustion and steam reforming, can be conducted over electroless catalyst coatings.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: February 11, 2014
    Assignee: Velocys, Inc.
    Inventors: Francis P. Daly, Richard Long, Junko Ida, Rachid Taha, Terry Mazanec, Barry L. Yang
  • Publication number: 20140034554
    Abstract: Methods and apparatuses for upgrading a pyrolysis oil stream and a hydrocarbon stream are provided. In an embodiment, a method for upgrading a pyrolysis oil stream and a hydrocarbon stream includes providing the pyrolysis oil stream and providing the hydrocarbon stream separate from the pyrolysis oil stream. The pyrolysis oil stream and the hydrocarbon stream are introduced into a reaction zone. Deposits form adjacent to a pyrolysis oil outlet of the pyrolysis oil stream. The pyrolysis oil stream and the hydrocarbon stream are catalytically cracked in the presence of a particulate cracking catalyst in the reaction zone. During catalytic cracking, the pyrolysis oil deposits adjacent the pyrolysis oil outlet of the pyrolysis oil stream are removed, such as with a cleaning head.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: UOP LLC
    Inventors: Sathit Kulprathipanja, Paolo Palmas, Lance Awender Baird
  • Patent number: 8642006
    Abstract: The present invention provides a process for making regular shaped particles of solid foam. A first mixture, comprising water, an acid, a surfactant and a hydrophobic material, is combined with a hydrolysable silicon species to form a second mixture. The second mixture is maintained under conditions and for a sufficient time to form regular shaped precursor particles. The second mixture is then aged at a temperature and for a time effective to produce the regular shaped particles of solid foam.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: February 4, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Jackie Y. Ying, Su Seong Lee, Yu Han, Sukandar Hidinoto
  • Patent number: 8636828
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, fuel processing and fuel cell systems that include hydrogen purification devices, and methods for operating the same. In some embodiments, operation of the fuel processing system is initiated by heating at least the reforming region of the fuel processing system to at least a selected hydrogen-producing operating temperature. In some embodiments, an electric heater is utilized to perform this initial heating. In some embodiments, use of the electric heater is discontinued after startup, and a burner or other combustion-based heating assembly combusts a fuel to heat at least the hydrogen producing region, such as due to the reforming region utilizing an endothermic catalytic reaction to produce hydrogen gas.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 28, 2014
    Assignee: DCNS SA
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Patent number: 8632729
    Abstract: The present invention provides a fixed bed reactor for carrying out a mixed gas/liquid phase reaction, wherein the reactor has a piping structure composed of microchannels, the cross-sectional area of the fixed bed is 0.0001 cm2 to 0.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: January 21, 2014
    Assignees: National Institute of Advanced Industrial Scienec and Technology, Mitsubishi Gas Chemical Company, Inc.
    Inventors: Tomoya Inoue, Tomio Kato, Kenji Kato
  • Publication number: 20140017544
    Abstract: A recombinator for a flow battery including at least one input configured to provide a halogen containing flow stream and hydrogen gas to a reaction chamber and a substrate located in the reaction chamber. The substrate is configured to be directly heated and the substrate contains a catalyst. The recombinator is configured to react the hydrogen gas and the halogen using the catalyst to form a hydrogen-halogen compound.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Applicant: Primus Power Corporation
    Inventors: Lauren W. Hart, Daniel MacKellar, Andrew Bollman, Paul Kreiner, Jonathan Hall, Victor Martino, Kyle Haynes
  • Patent number: 8623121
    Abstract: The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 7, 2014
    Assignee: Colorado School of Mines
    Inventors: J. Douglas Way, Colin A. Wolden
  • Patent number: 8623287
    Abstract: Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 7, 2014
    Assignee: Errcive, Inc.
    Inventors: Charles E. Ramberg, Stephen A. Dynan, Jack A. Shindle
  • Patent number: 8623288
    Abstract: Methods and apparatus for high density nanowire growth are presented. Methods of making a nanowire growth cartridge assembly are also provided, as are nanowire growth cartridge assemblies.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: January 7, 2014
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Carlos Casillas
  • Publication number: 20140004021
    Abstract: Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.
    Type: Application
    Filed: December 25, 2012
    Publication date: January 2, 2014
    Inventors: Charles E. Ramberg, Stephen A. Dynan, Jack A. Shindle
  • Patent number: 8608836
    Abstract: A gas purifier assembly for providing first (50) and second (38) purified gas streams having an integral heater (54). The assembly can have two separate chambers for gaseous fluid flow for the purpose of purifying a gas stream of hydrogen (34), for example, and a separate distinct stream of gas such as compressed air (46). A centrally located heater heats the first chamber to effect purification of the first gas. Waste heat from the first chamber is transferred to the second chamber via conduction to effect purification of the second gas stream.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: December 17, 2013
    Assignee: Parker-Hannifin Corporation
    Inventors: Karen Girard, John J. Ronan, George Zugravu
  • Patent number: 8609034
    Abstract: This invention provides a microreactor comprising a microchamber provided with a raw material introduction port and a product discharge port; wherein solid catalysts are aligned in a line in the longitudinal direction of the microchamber to fill the microchamber.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: December 17, 2013
    Assignees: Nippon Soda Co., Ltd., Osaka Prefecture University Public Corporation
    Inventors: Ilhyong Ryu, Masaaki Sato, Takahiro Sagae, Kenichi Hayashi
  • Publication number: 20130330233
    Abstract: A catalyst is provided in the form of a fibrous wooly structure. The fibers of the wooly structure have a central non-catalytic core and an outer catalytic layer. An intermediate layer is sandwiched between the core and catalyst layer. Electrochemical or electroless deposition can be employed to fabricate such structures. In one experiment, Rhodium was deposited onto a steel wool substrate using Nickel as the intermediate layer.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Inventor: Gregor Hsiao
  • Patent number: 8603405
    Abstract: A distributed energy system includes a gas-loaded heat generator capable of producing a thermal energy. The system includes a gas source to provide one or more isotopes of hydrogen, a plurality of metallic micro-structures, a gas loading chamber containing the plurality of metallic micro-structures. The gas loading chamber is structured to receive the one or more isotopes of hydrogen from the gas source. The system also includes a gas loading system capable of providing a gas loading pressure to the gas loading chamber containing the plurality of metallic micro-structures with an amount of one or more isotopes of hydrogen to form hydrogen clusters. In one form, the system further includes a thermal transducer capable of converting a first portion of the thermal energy. In still another form, the system additionally includes a waste heat recovery device capable of applying a second portion of the thermal energy.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: December 10, 2013
    Assignee: NPL Associates, Inc.
    Inventors: George H. Miley, Xiaoling Yang
  • Patent number: 8603406
    Abstract: An apparatus and process are presented for drying a catalyst in a reactor-regenerator system. The process includes a continuous operating system with catalyst circulating between a reactor and regenerator, and the catalyst is dried before returning the catalyst to the reactor. The process uses air that is split between the drying stage and the combustion stage without adding equipment outside of the regenerator, minimizing energy, capital cost, and space requirements.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: December 10, 2013
    Assignee: UOP LLC
    Inventors: David N. Myers, Daniel N. Myers, Paolo Palmas, Laura E. Leonard, Wolfgang A. Spieker
  • Patent number: 8603407
    Abstract: A novel catalytic reactor is provided for controlling the contact of a limiting reactant with a catalyst surface. A first flow vessel defines an interior surface and an exterior surface, and the interior surface has a catalyst deposited on at least a portion thereof. A second flow vessel is positioned within the first flow vessel and the second flow vessel defines a porous surface designed to deliver a fluid uniformly to at least a portion of the interior surface of the first flow vessel.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: December 10, 2013
    Assignee: Precision Combustion, Inc.
    Inventors: William C. Pfefferle, Shahrokh Etemad
  • Patent number: 8597524
    Abstract: The current application is directed to an enclosed rotor-based cavitational and catalytic flow-through reaction chamber (“ERCCFRC”) that can be employed in a variety of thermal, chemical, and fluid-mechanical processes. The ERCCFRC features a reaction chamber that incorporates a spinning rotor, generating fluid-mechanical forces and cavitation in a fluid within the ERCCFRC. The reaction chamber further incorporates one or more heterogeneous catalysts that promote specific chemical reactions.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: December 3, 2013
    Assignee: Donnelly Labs LLC
    Inventor: Joseph L. Donnelly
  • Patent number: 8598062
    Abstract: Zero valent metal composite, manufacturing thereof, using thereof, and system including thereof, for (in-situ or ex-situ) catalytically treating contaminated water, such as sub-surface water, surface water, above-surface water, water vapor, or/and gaseous water. Composite includes powdered diatomite matrix incorporated with nanometer (1-1000 nm) sized particles of a zero valent (transition) metal (iron, cobalt, nickel, copper, zinc, palladium, platinum, or/and gold) and at least one electron transfer mediator (catalyst) from porphyrinogenic organometallic complexes (e.g., metalloporphyrins (chlorophylls, hemes, cytochromes) or metallocorrins (e.g., vitamin B12), and optionally, includes vermiculite. System includes composite and in-situ or/and ex-situ unit containing the composite, enabling exposure of contaminated water thereto. Applicable to in-situ sub-surface permeable reactive barriers (PRBs).
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: December 3, 2013
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Brian Berkowitz, Andrea Cortis, Ishai Dror
  • Patent number: 8597586
    Abstract: A shell-and-tube reactor is disclosed. Contact tubes are disposed within a cylindrical housing and are secured to tube plates. Gas and liquid phases are received via a feed opening in a lower end cap and discharged via an upper end cap in the housing. A distributor device for a gas phase/liquid phase mixture is disposed below the lowermost tube plate. The distributor device includes a distributor plate and a predistributor. The distributor plate is arranged horizontally within the housing and includes an active area having through-openings and a downward-extending margin, but does not extend over the entire cross section of the housing. The predistributor includes a second distributor plate disposed between the feed opening and the first distributor plate, wherein the second distributor plate includes a second active area with second through-openings and a second downward-extending margin.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: December 3, 2013
    Assignee: BASF SE
    Inventors: Wolfgang Gerlinger, Torsten Mattke, Oliver Bey
  • Patent number: 8597599
    Abstract: Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: December 3, 2013
    Assignee: Energia Technologies, Inc.
    Inventors: Krishniah Parimi, Thien Duyen Thi Nguyen
  • Patent number: 8585976
    Abstract: A device for selectively removing contaminants from a crude product mixture which includes a production reactor for producing a crude oil product mixture, the production reactor includes a lipid reservoir and an alcohol reservoir and a first organic acid removal reactor in fluid communication with the production reactor. The first organic acid removal reactor includes a first housing defining an interior volume the housing configured to receive the crude oil products and disposed within the interior volume of the removal reactor housing is metal oxide media selected from the group consisting of zirconia, alumina, hafnia and titania for removing organic acidic contaminants from the crude oil product to product a purified biodiesel fuel.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: November 19, 2013
    Assignee: McNeff Research Consultants, Inc.
    Inventors: Clayton V. McNeff, Larry C. McNeff, Bingwen Yan
  • Patent number: 8580208
    Abstract: The present invention describes a reactor (1) for continuously preparing hydrogen sulfide H2S from hydrogen and sulfur, comprising a distributor device (15) for distributing gaseous hydrogen in a sulfur melt (9) present at least in a lower part of the reactor. The distributor device (15) is arranged in the sulfur melt (9) and comprises a distributor plate (16) which is arranged in the reactor (1) and has an edge (17) extending downward and, if appropriate, has passage orifices (19). The hydrogen from a hydrogen bubble which forms below the distributor plate (16) is (for example through the passage orifices (19)) distributed in the sulfur melt (9) via the distributor plate (16).
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: November 12, 2013
    Assignee: BASF SE
    Inventors: Andreas Woelfert, Herald Jachow, Heinz Driess
  • Publication number: 20130296610
    Abstract: In a chemical reactor for heterogeneously catalysed reaction of a fluid, comprising a holding device for catalyst particles and/or inert particles (80, 100) through which the fluid flows, the side of the holding device lying upstream when viewed in the direction of flow of the fluid comprises knitted wire mesh fabric (50), and the average clear mesh width of the knitted wire fabric (50) is smaller than the average particle size x50.3 of the particles (80, 100). The invention furthermore relates to a process for reaction of a fluid, wherein the reaction is carried out in a reactor according to the invention in the presence of heterogeneous catalyst particles (80) and the catalyst particles (80) are arranged in the holding device for catalyst particles (80). The invention also provides the use of knitted wire mesh fabric (50) as a holding device for catalyst particles and/or inert particles (80, 100) in chemical reactors.
    Type: Application
    Filed: November 15, 2011
    Publication date: November 7, 2013
    Applicant: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Michael Merkel, Karl-Heinz Wilke, Thomas Knauf
  • Patent number: 8574501
    Abstract: A method and apparatus for converting natural gas from a source, such as a wellhead, pipeline, or a storage facility, into hydrocarbon liquid stable at room temperature, comprising a skid or trailer mounted portable gas to liquids reactor. The reactor includes a preprocessor which desulfurizes and dehydrates the natural gas, a first stage reactor which transforms the preprocessed natural gas into synthesis gas, and a liquid production unit using a Fischer-Tropsch or similar polymerization process. The hydrocarbon liquid may be stored in a portable tank for later transportation or further processed on site.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: November 5, 2013
    Assignee: Greenway Innovative Energy, Inc.
    Inventor: F. Conrad Greer
  • Patent number: 8574419
    Abstract: The invention relates to a chemical reactor with a nanometric superstructure, comprising at least one member wherein at least one reaction chamber is arranged, and said reaction chamber being filled at least partially with a high specific surface area material having a specific surface area greater than 5 m2/g, and characterized in that said high specific surface area material is selected from nanotubes or nanofibers. These nanotubes or nanofibers are preferably selected in the group consisting of carbon nanofibers or nanotubes, ?-SiC nanofibers or nanotubes, TiO2 nanofibers or nanotubes. They may be deposited on an intermediate structure selected in the group consisting of glass fibers, carbon fibers, SiC foams, carbon foams, alveolar ?-SiC foams, said intermediate structure filling the reaction chamber of said reactor at least partially.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: November 5, 2013
    Assignees: Centre National de la Recherche Scientifique, Universite de Strasbourg
    Inventors: Cuong Phamhuu, Nicolas Keller, Jacques M. Ledoux, Izabella Janowska, David Edouard, Valérie Keller-Spitzer, Thierry Romero, Liu Yu
  • Patent number: 8574500
    Abstract: The invention relates to a component comprising a plurality of plates stacked on each other, at least one of said plates being made of a ceramic material and in which a channel area is formed of fluid flow guide channels by means of webs, said channels having a flow connection to inlet and outlet openings, wherein the stack of plates is connected by force fit by means of a clamping device, and wherein a flat seal is disposed between each of the individual plates of the stack, wherein the flat seal is made of an elastic and/or compressible material and covers both the channel area and the areas encompassing the inlet and outlet openings, and at least partially covers the top sides of the webs forming the channels. The components according to the invention are pressure-tight, resistant to thermal shock, and can be dismantled.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: November 5, 2013
    Assignee: ESK Ceramics GmbH & Co. KG
    Inventors: Frank Meschke, Andreas Lemke, Stefanie Wildhack, Paul Salansky
  • Publication number: 20130287644
    Abstract: Provided herein are catalytic converters that have improved characteristics. According to various embodiments, the converters include high surface area catalyst supports conformally coated with nanoparticulate thin films of a catalyst (e.g., Pt, Pd and Rh). The films are continuous, preventing absorption of species within the converter on the catalyst support. The converters provide higher oxidation efficiency than conventional catalytic converters, in certain embodiments approaching the stoichiometric ratio for the reaction. The converters also provide minimal loss of chemical species within the converter. Also provided are novel methods of fabricating catalytic converters that involve atomic layer deposition of Pt or other catalyst on the support, as well as methods and devices for sensing NO in samples that involve catalytic conversion of NO to NO2.
    Type: Application
    Filed: March 19, 2013
    Publication date: October 31, 2013
    Inventors: Ying-Lan Chang, Bradley N. Johnson, Craig Bryant, William Mickelson
  • Patent number: 8568665
    Abstract: A catalyst structure 1 used for hydrogenation reaction or dehydrogenation reaction is characterized by the inclusion of a first coiled catalytic wire body 4 formed by coiling a catalytic wire in which a catalytic material is supported on the surface of a metallic core material, and a second catalytic member 5 disposed on the inner surface side and/or outer surface side of the coiled catalytic wire body 4.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: October 29, 2013
    Assignees: Nippon Seisen Co., Ltd.
    Inventors: Takayuki Seo, Tsuneo Akiura, Masaru Ichikawa
  • Patent number: 8568669
    Abstract: This invention relates to a device for cooling and distributing mixed charges on fixed catalyst beds for use in the cooling zone of descending flow reactors which comprises a flat tray fitted with collector and distributor tubes for liquid superimposed upon and connected to another flat tray of similar design to the upper tray. The device, which is of smaller size in comparison with other commercially available devices, is extremely simple to install industrially and compact, and has as its main characteristic the efficiency with which it promotes reduction of the temperature of the reaction medium when it receives the cooling fluid within the catalytic reactor.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 29, 2013
    Assignee: Petroleo Brasileiro S.A.—Petrobras
    Inventors: Wilson Kenzo Huziwara, Donizeti Aurelio Silva Belato, Jorge Roberto Duncan Lima, Rogério Michelan, William Victor Carlos Candido, Angelo Jose Gugelmin, Paulo Sérgio Freire, Nelson Patrício, Jr.
  • Patent number: 8568680
    Abstract: In one embodiment, a catalyst for ozone oxidation of pollutant components dispersed in a gas is provided. The ozone oxidation catalyst has a porous body formed from a metal body, a ceramic, or polymeric fibers coated with metal. A catalytic noble metal composition is deposited on the surface of the porous body. The catalytic noble metal composition is formed from particles of a noble metal supported by a mesoporous molecular sieve.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 29, 2013
    Assignee: City University of Hong Kong
    Inventors: Kwan San Hui, Kwok Leung Tsui, Man On Fu
  • Patent number: 8561408
    Abstract: The amount of high-temperature steam supplied from external equipment is reduced. Provided is a hydrogen production system (1) including a reactor (3) that allows a humidified process fluid output from a humidifier (2) to react in the presence of a catalyst to transform carbon monoxide in the process fluid into carbon dioxide; a second channel (B) through which the high-temperature process fluid that has reacted in the reactor (3) flows; a circulation channel (C) through which excess water in the humidifier (2) is circulated; and a first heat exchanger (7), disposed at an intersection of the circulation channel (C) and the second channel (B), for heat exchange between the high-temperature process fluid that has reacted in the reactor (3) and the fluid circulated through the circulation channel (C).
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takanori Tsutsumi, Yoshinori Koyama, Katsuhiro Ota, Takashi Fujii, Takashi Yamamoto, Hiromi Ishii
  • Patent number: 8563459
    Abstract: The invention includes a fixed-bed catalyst complex that includes (i) a metal carbene catalyst, wherein the metal is platinum, and (ii) a catalyst support that includes one or more of silica, alumina and/or glass. The invention provides a fixed-bed catalyst complex that includes a catalyst complex including a carbene chosen from those represented by at least one of Formulae (I), (II), (III), and (IV): Where the vales of X and R1 to R7 are specifically defined. The complex also includes a catalyst support that comprises silica, related reaction products, and related reaction systems.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: October 22, 2013
    Assignee: Gelest Technology, Inc.
    Inventors: Gerald L. Larson, Barry C. Arkles, Rudolph A. Cameron
  • Patent number: 8557186
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: October 15, 2013
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Steven T. Perry, Sean P. Fitzgerald, Robert S. Wegeng, Yong Wang, David Vanderwiel, Jennifer L. Marco
  • Patent number: 8557192
    Abstract: Improved design of a catalytic method and reactor for the production of methanol at equilibrium conditions, whereby methanol, as it is formed, is separated from the gaseous phase into the liquid phase within the reactor without reducing the catalytic activity of the methanol catalyst. This is achieved by adjusting the boiling point or temperature of a liquid cooling agent being in indirect contact with the catalyst particles and by providing a specific ratio of catalyst bed volume to cooling surface area. Thereby, condensation of methanol as it is formed in the gaseous phase takes place for the most at the cooling surface arranged evenly distributed within the reactor and if at all within a very limited region of the catalyst bed.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 15, 2013
    Assignee: Haldor Topsoe A/S
    Inventor: Max Thorhauge