Sulfur Or Sulfur Containing Component Patents (Class 423/242.1)
  • Patent number: 7404938
    Abstract: Methods and apparatus utilizing hydrogen peroxide are useful to reduce NOx, SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of NOx, SOx and heavy metals, while isolating useful by-products streams of sulfuric acid and nitric acid as well as solids for the recovery of the heavy metals.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: July 29, 2008
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Clyde F. Parrish
  • Patent number: 7393513
    Abstract: A process for treating sulfur at elevated pressures by which the sulfur may be separated from a process gas in a separation vessel, sent to one or more transfer vessels, and the transfer vessel(s) vented to depressurize the sulfur to near atmospheric pressure. The sulfur may subsequently be transferred to ambient storage or other desirable use. The sulfur exiting the separation vessel may also be transferred to an intermediate vessel. The rate of transfer of the sulfur throughout the process may be controlled by controlling the pressure differentials between the various vessels.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: July 1, 2008
    Assignee: S&B Engineers and Constructors, Ltd.
    Inventor: Ronald E. Jones
  • Publication number: 20080145290
    Abstract: The present invention relates to a process and a plant for producing sulfuric acid, in which a starting gas containing sulfur dioxide at least partly reacts with molecular oxygen in at least one contact with at least one contact stage to form sulfur trioxide, and in which the sulfur-trioxide-containing gas produced is introduced into an absorber and converted there to sulfuric acid. To achieve that only small gas volumes must be supplied to the first contact stage, based on the amount of sulfur dioxide used, with at least the same capacity of the plant and by using conventional catalysts, it is proposed in accordance with the invention to supply to the first contact stage a contact gas with a sulfur dioxide content of more than 16 vol-% and with a volumetric ratio of sulfur dioxide to oxygen of more than 2.67:1.
    Type: Application
    Filed: April 12, 2005
    Publication date: June 19, 2008
    Inventors: Karl-Heinz Daum, Hannes Storch, Jan Rieder
  • Publication number: 20080141672
    Abstract: A method of generating electrical power in which a synthesis gas stream generated in a gasifier is combusted in an oxygen transport membrane system of a boiler. The combustion generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Inventors: Minish Mahendra Shah, Aqil Jamal, Raymond Francis Dmevich, Bart Antonie van Hassel, Gervase Maxwell Christie, Hisashi Kobayashi, Lawrence E. Bool
  • Patent number: 7384616
    Abstract: A process for removing contaminants from a waste gas stream comprises treating the waste gas stream to remove at least one of SO2 and NOx and to obtain a lean stream having a reduced level of at least one of SO2 and NOx and, contacting the lean gas stream with a mercury absorbent solution comprising permanganate to remove mercury vapour and to obtain a mercury lean stream and a mercury rich absorbent solution. The mercury rich absorbent solution may be subsequently treated on a batch basis to remove precipitated manganese dioxide and obtain a solution containing mercury ions.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: June 10, 2008
    Assignee: Cansolv Technologies Inc.
    Inventor: Leo Ernest Hakka
  • Patent number: 7374737
    Abstract: The invention concerns the use of a composition based on TiO2 as a catalyst for hydrolyzing COS and/or HCN in a gas mixture, said composition comprising at least 1% by weight of at least one sulphate of an alkaline-earth metal selected from calcium, barium, strontium and magnesium.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 20, 2008
    Assignee: Axens
    Inventors: Christophe Nedez, Jean-Louis Ray
  • Patent number: 7371357
    Abstract: A process for the removal of pollutants from a combustion process and, more particularly, a process for removing pollutants such as carbon dioxide, mercury, sulphur dioxide, nitrogen compounds and oxygen compounds from a combustion process. The process includes the removal of pollutants from a combustion process that produces an emission comprising: cooling the emission to a temperature of about 200° C.; removing nitrogen, water and oxygen from the emission to produce a gas containing a concentration of pollutants; contacting the gas with an aqueous magnesium chloride solution, wherein a slurry mixture is formed; and cooling the gas and the slurry mixture, wherein hydrochloric acid vapour and a sludge are formed.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: May 13, 2008
    Assignee: Clean World Strategies Corp.
    Inventors: Lionel Magumbe, Douglas S. Scott
  • Patent number: 7371363
    Abstract: Provided are methods of producing anhydrous hydrogen fluoride comprising: providing a mixture comprising hydrogen fluoride and at least one halogenated hydrocarbon; and extracting hydrogen fluoride from the mixture by contacting the mixture with a solution of less than about 93 wt. % sulfuric acid solution in water.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: May 13, 2008
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, HsuehSung Tung
  • Patent number: 7361319
    Abstract: The present invention is directed to methods for reducing SOx, NOx, and CO emissions from a fluid stream comprising contacting said fluid stream with a compound comprising magnesium and aluminum and having an X-ray diffraction pattern displaying at least a reflection at a two theta peak position at about 43 degrees and about 62 degrees, wherein the ratio of magnesium to aluminum in the compound is from about 1:1 to about 10:1. In one embodiment, the ratio of magnesium to aluminum in the compound is from about 1:1 to about 6:1. In one embodiment, the ratio of magnesium to aluminum in the compound is from about 1.5:1 to about 10:1. In another embodiment, the invention is directed to methods wherein the ratio of magnesium to aluminum in the compound is from about 1.5:1 to about 6:1.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: April 22, 2008
    Assignee: Intercat, Inc.
    Inventor: Albert Vierheilig
  • Patent number: 7354560
    Abstract: Process for the removal of organic and/or inorganic sulfur from an ammonia stream by passing said stream through a fixed bed of sulfur absorbent in a sulfur absorber and withdrawing a sulfur-free ammonia stream, wherein said sulfur absorbent is a catalyst having a total nickel content in reduced form in the range 10 wt % to 70 wt % with the balance being a carrier material selected from the group of alumina, magnesium alumina spinel, silica, titania, magnesia, zirconia and mixtures thereof.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: April 8, 2008
    Assignee: Haldor Topsoe A/S
    Inventors: Poul Erik Højlund Nielsen, Leif Storgaard
  • Patent number: 7341701
    Abstract: A method and apparatus (22) for treating culinary gaseous effluents (Eg) carried in an air extraction duct of a kitchen, the apparatus includes: a unit (24) for storing in liquid form a nucleophilic active product (Pa), or odour destroyer, able to fix foul-smelling molecules in the form of inert salts, a nebulizing and diffusing unit (26) which vaporizes or sublimates the active product (Pa) coming from the storage unit, and which diffuses the vaporized or sublimated active product (Pa) in an extraction duct (18), at ambient temperature, so as to minimize the discharge of foul-smelling molecules at the outlet of the extraction duct. A plant including this apparatus is also disclosed.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: March 11, 2008
    Inventor: Henry Abehssera
  • Patent number: 7332145
    Abstract: Disclosed is a process for the treatment of gas containing mercaptans and acid gases, including the following steps: (1) separating the acid gases from the said gas and obtaining a sweetened gas and the flow of acid gases containing H2S; (2) reacting the H2S thus obtained in step (1) according to the Claus reaction; (3) concentrating the mercaptans in at least one cut of the said sweetened gas; (4) extracting the mercaptans of the said cut; and further comprising: (5) transforming the mercaptans into dialkyl-disulfide (DSO); (6) hydrogenating DSO into H2S; and (7) reacting the H2S thus obtained at step (6) according to the Claus reaction. An installation for carrying out this procedure is also described.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: February 19, 2008
    Assignee: Total S.A.
    Inventor: Denis Chretien
  • Patent number: 7326392
    Abstract: A method for removing H2S from H2S-containing gaseous streams in which an H2S-containing gaseous stream is introduced into a flow channel and at least one liquid chemical H2S scavenging agent is also introduced into the flow channel. Directly within the flow channel, liquid chemical H2S scavenging agent is transformed into a plurality of H2S scavenging agent droplets, which plurality of H2S scavenging agent droplets are contacted with the H2S-containing gaseous stream, whereby at least a portion of the H2S is absorbed by the plurality of H2S scavenging agent droplets. In accordance with one embodiment, transformation of the liquid chemical H2S scavenging agent is carried out in an inclined flow channel and in accordance with another embodiment, the transformation is carried out using ultrasonic atomization.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: February 5, 2008
    Assignee: Gas Technology Institute
    Inventors: Kevin S. Fisher, Kenneth E. McIntush
  • Patent number: 7323152
    Abstract: A fixed bed containing a particulate catalyst or sorbent material (10) subject to operation at high temperature having a shaped boundary member (16) inclined to the direction of fluid flow through the bed that maintains the depth of said catalyst or sorbent at the boundary of the bed through a series of thermal expansion-thermal contraction cycles is described. By maintaining bed depth, the shaped boundary member (16) can prevent bypass of, e.g. ammonia through a bed of particulate ammonia oxidation catalyst.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: January 29, 2008
    Assignee: Johnson Matthey PLC
    Inventors: Sean Alexander Axon, Andrew Mark Ward, Alan Bruce Briston
  • Patent number: 7323036
    Abstract: A controller directs the operation of an air pollution control (APC) system having one or more controllable operating parameters and a defined operating limit representing a regulatory limit on an allowed amount of pollutant to be emitted by the APC system. An interface receives data representing a value of a regulatory credit available for emitting less of the pollutant than the regulatory limit on the allowed amount of pollutant. A control processor (i) determines a target set point for each of at least one of the one or more controllable operating parameters, which will maximize the regulatory credits earned, based on the received data and (ii) to directs control of each of the at least one controllable operating parameter based on the determined target set point for that parameter.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: January 29, 2008
    Assignee: ALSTOM Technology Ltd
    Inventors: Scott A. Boyden, Stephen Piche
  • Patent number: 7311887
    Abstract: A process reduces SOx emissions in a flue gas stream by adding a wet collector plate section to an existing electrostatic precipitator (ESP) or by converting the last field of an existing ESP to wet operation. To achieve the conversion, the last field or fields of an existing dry ESP are removed and replaced with components made from materials suitable for operation in a wet environment. After the ESP contains wet operation, ammonia is added to the flue gas stream while it is progressing through the collection plates in the ESP.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: December 25, 2007
    Assignee: Siemens Enviromental Systems&Services
    Inventors: Ralph F. Altman, John Montgomery, Boris Altshuler, Wayne P. Buckley
  • Patent number: 7306774
    Abstract: Generally, the present invention provides a method and apparatus for removing a vapor phase contaminant from a gas stream, thereby reducing the concentration of the vapor phase contaminant in the gas stream. In one embodiment, the present invention provides a method for removing a vapor phase contaminant from a gas stream, comprising contacting a gas stream comprising a vapor phase contaminant with a first side of a membrane; sorbing the vapor phase contaminant using the membrane; reacting the vapor phase contaminant into an reacted form of the vapor phase contaminant; transporting the reacted form of the vapor phase contaminant through the membrane to a second side of the membrane; contacting the second side of the membrane with a liquid; and dissolving the reacted form of the vapor phase contaminant into the liquid. Methods for making a membrane comprising a metal for use in the present invention is also described.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: December 11, 2007
    Assignee: Electric Power Research Institute, Inc.
    Inventor: David W. DeBerry
  • Patent number: 7303735
    Abstract: The present invention provides for a method and apparatus for removing contaminants from a gas stream such as a flue gas stream from an industrial process. The process utilizes a prescrubber to contact the gas stream before the gas stream contacts an oxidizer in an oxidizer zone. The oxidized gas is then treated to either a first and second scrubber operation or just a single scrubber operation.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: December 4, 2007
    Assignee: The BOC Group, Inc.
    Inventors: Naresh J. Suchak, Shyam K. Nadkarni, Robert Edward Kelton, John M. Koltick, Jr.
  • Patent number: 7282189
    Abstract: Methods for reducing and eliminating carbon dioxide from the emissions of solid fuel fired power plants, particularly coal fired power plants, and to sequester the carbon dioxide, typically by using existing equipment. In some embodiments, the methods involve pyrolyzing the solid fuel to remove volatile matter and using the volatile matter to produce hydrogen. Additionally, the methods may involve burning the solid fuel or pyrolized solid fuel at very fuel rich stoichiometric conditions. Sequestration may include the production of a carbon dioxide-containing solution and the pumping of the solution into the ground, particularly in areas high in limestone.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: October 16, 2007
    Inventor: Bert Zauderer
  • Patent number: 7276366
    Abstract: A system and method for the purification and biodeodorizing of a gas are disclosed. The system is highly adaptable and capable of operating in a variety of modes to tailor performance of the system to specific odor control applications. The scrubber stages of the system may each be maintained at different conditions to selectively promote bacterial activity that targets a variety of odorous constituents. The pH level of the irrigation fluid provided to each scrubber stage may be controlled.
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: October 2, 2007
    Assignee: Siemens Water Technologies Holding Corp.
    Inventors: Richard D. Parker, Eric C. Davis, Roop C. Jain
  • Publication number: 20070184394
    Abstract: The use of the cementitious ash in building products as total or partial replacement for Portland cement results in reduced carbon dioxide emissions that would otherwise result form the manufacture of Portland cement. In addition to avoided carbon dioxide emissions from calcining of limestone to make Portland cement and the burning of fossil fuels to provide the energy needed to make Portland cement, use of the sorbent components tends to increase the efficiency of energy production from burning of coal, further reducing greenhouse emissions from the burning of fossil fuel to produce energy.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 9, 2007
    Inventor: Douglas C. Comrie
  • Publication number: 20070180835
    Abstract: A method for increasing the nitrogen oxide emissions by either removing or modifying fuel rich nitrogen oxide (NOx) reduction processes thereby improving combustion efficiencies especially with low volatile low sulfur coals, and remove unburned carbon, reduce sulfur dioxide and reducing carbon dioxide emissions, while using post-primary combustion urea or ammonia injection with or without a reburn fuel NOx reducing process to restore NOx to regulated emission levels. Furthermore, adding lime or limestone to the urea or ammonia solution to further reduce SO2 and to increase the concentration of the carbon free fly ash to cementitious concentrations. Furthermore, by proper number and disposition of the injectors in the post combustion zone and by further water diluting the mixture, this NOx reduction process is effective at substantially higher gas temperatures than conventional Selective Non-Catalytic NOx Reduction and with no ammonia slip. This method significantly increases the profitability of power plants.
    Type: Application
    Filed: January 30, 2007
    Publication date: August 9, 2007
    Inventor: Bert ZAUDERER
  • Patent number: 7247285
    Abstract: A method for reducing the cost of emission control by utilizing a combination of low cost, combustion and post-combustion processes to eliminate emissions of sulfur and nitrogen oxides, and trace metals, including mercury, and trace dioxins and furans. These processes are applied sequentially to the combustion flow train of an air-cooled, slagging combustor-boiler, and include two groups of process steps. One group is implemented in the combustor and the other in post combustion zones.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: July 24, 2007
    Inventor: Bert Zauderer
  • Patent number: 7238223
    Abstract: An apparatus for removing constituents from a fluid stream is provided. The apparatus includes a duct, a collection device, a sorbent injector, and an acoustic generator. The duct has a fluid passageway to receive a fluid stream having constituents. The collection device filters the fluid stream. The sorbent injector injects a sorbent in the fluid passageway of the duct. The acoustic generator generates an acoustic field in the fluid passageway of the duct to promote sorption of the constituents for collection by the collection device. Additionally, a method is provided for removing constituents from a fluid stream.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: July 3, 2007
    Assignee: Board of the Regents, The University of Texas System
    Inventor: G. Douglas Meegan, Jr.
  • Patent number: 7226570
    Abstract: An algorithm process for treating fly ash found in flue gas to prevent rapping reentrainment of fly ash particles comprising adding ammonia to the fly ash particles in a stoichometric amount of one part or somewhat less of ammonia to one part of sulfur trioxide, such that rapping reentrainment of fly ash particles in the flue gas is prevented. An algorithm is used to determine the amount of sulfur in the flue gas.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: June 5, 2007
    Assignee: Electric Power Research Institute
    Inventors: Herbert W. Spencer, Ralph F. Altman
  • Patent number: 7223375
    Abstract: A method and system for controlling one or more emissions includes introducing ammonia to react with at least a portion of sulfur trioxides in an exhaust emission and result in at least one or more ammoniated compounds. At least a portion of fly ash particles and the ammoniated compounds in the exhaust emission are precipitated. At least a portion of the ammonia from the precipitated ammoniated compounds is recovered with heat from the exhaust emission and the recovered ammonia is reused.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: May 29, 2007
    Assignee: Progress Materials, Inc.
    Inventor: Joe W. Cochran
  • Patent number: 7214358
    Abstract: Sulphur dioxide is removed from gas streams by contacting the gas stream with an absorbing medium containing an amine capable of forming an amine salt, heat stable salt and sulfite. The level of heat stable salt is selected such that during the regeneration process of the sulphur dioxide rich amine, the pH of the absorbing medium is at a selected level or below when the level of sulfite in the absorbing medium has been reduced to a specified value. The amine that absorbs the sulphur dioxide has a pKa less than that of sulfite. If the absorbent includes a diamine, then the spent absorbing medium is regenerated under conditions such that at least one amine group remains in salt form.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: May 8, 2007
    Assignee: Cansolv Technologies Inc.
    Inventors: Patrick M. Ravary, John Nicolas Sarlis, Paul Joseph Parisi, Leo E. Hakka
  • Patent number: 7186328
    Abstract: A process for the cyclical regeneration of an adsorbent bed containing sulfur-oxidated compounds. The adsorbent bed is used to adsorb and separate sulfur-oxidated compounds from a hydrocarbonaceous stream to produce an adsorbent having adsorbed sulfur-oxidated compounds.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: March 6, 2007
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Ronald M. Gatan, Timothy A. Brandvold, Christopher D. Gosling
  • Patent number: 7056487
    Abstract: A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: June 6, 2006
    Assignee: Siemens Power Generation, Inc.
    Inventor: Richard Allen Newby
  • Patent number: 7052662
    Abstract: A process and apparatus for removing SO2, NO, and NO2 from a gas stream having the steps of oxidizing a portion of the NO in the flue gas stream to NO2, scrubbing the SO2, NO, and NO2 with an alkali scrubbing solution, and removing any alkali aerosols generated by the scrubbing in a wet electrostatic precipitator. The process can also remove Hg by oxidizing it to oxidized mercury and removing it in the scrubbing solution and wet electrostatic precipitator. Alkali sulfates, which are valuable fertilizers, can be withdrawn from the rubbing solution.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: May 30, 2006
    Assignee: Powerspan Corp.
    Inventors: Joanna L. Duncan, Christopher R. McLarnon, Francis R. Alix
  • Patent number: 7048899
    Abstract: A process and apparatus for removing SO2, NO, and NO2 from a gas stream having the steps of oxidizing a portion of the NO in the flue gas stream to NO2, scrubbing the SO2, NO, and NO2 with an ammonia, ammonium hydroxide, alkali hydroxide or carbonate scrubbing solution, regenerating the scrubbing solution with limestone, and removing any particulate matter and aerosols generated by the scrubbing step in a wet electrostatic precipitator. The process can also remove Hg by oxidizing it to oxidized Hg and removing it in the wet electrostatic precipitator. The scrubbing solution is preferably regenerated with limestone or magnesium, and results in a Group II sulfite or sulfate that can be recovered and sold, or landfilled.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: May 23, 2006
    Assignee: Powerspan Corp.
    Inventors: Francis R. Alix, Joanna L. Duncan, Christopher R. McLarnon
  • Patent number: 7037485
    Abstract: A steam methane reforming method in which a feed stream is treated in a reactor containing a catalyst that is capable of promoting both hydrogenation and partial oxidation reactions. The reactor is either operated in a catalytic hydrogenation mode to convert olefins into saturated hydrocarbons and/or to chemically reduce sulfur species to hydrogen sulfide or a catalytic oxidative mode utilizing oxygen and steam to prereform the feed and thus, increase the hydrogen content of a synthesis gas produced by a steam methane reformer. The method is applicable to the treatment of feed streams containing at least 15% by volume of hydrocarbons with two or more carbon atoms and/or 3% by volume of olefins, such as a refinery off-gas. In such case, the catalytic oxidative mode is conducted with a steam to carbon ratio of less than 0.5, an oxygen to carbon ratio of less than 0.25 and a reaction temperature of between about 500° C. and about 860° C.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: May 2, 2006
    Assignee: Praxair Technology, Inc.
    Inventors: Raymond Francis Drnevich, Vasilis Papavassiliou
  • Patent number: 6991771
    Abstract: A process and apparatus for removing SO2, NO, and NO2 from a gas stream having the steps of oxidizing a portion of the NO in the flue gas stream to NO2, scrubbing the SO2, NO, and NO2 with an ammonia scrubbing solution, and removing any ammonia aerosols generated by the scrubbing in a wet electrostatic precipitator. The process can also remove Hg by oxidizing it to HgO and removing it in the wet electrostatic precipitator. Ammonium sulfate, a valuable fertilizer, can be withdrawn from the scrubbing solution.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: January 31, 2006
    Assignee: Powerspan Corp.
    Inventors: Joanna L. Duncan, Christopher R. McLarnon, Francis R. Alix
  • Patent number: 6958136
    Abstract: The present invention is directed to a process for treating, reducing, and/or stabilizing various wastes or flue gases. In one embodiment, the process is directed to treatment of alkali bearing wastes that include nitrate and/or nitrite-rich wastes. Optionally, the disclosed method can be utilized for treatment of hazardous wastes, including radioactive hazardous waste compounds. In general, the present invention includes processing a waste or gaseous stream with the addition of suitable carbon-containing additives to treat and reduce nitrogen-containing compounds in the waste. Additives may be gaseous, liquid or solid reduction-promoting agents, catalysts, and the like. The reaction products obtained from the process of the invention include mainly alkali carbonate, nitrogen, hydrogen, carbon monoxide and carbon dioxide.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: October 25, 2005
    Assignee: Manufacturing and Technology Conversion International, Inc.
    Inventors: Ravi Chandran, Momtaz N. Mansour
  • Patent number: 6955794
    Abstract: A plasma reactor including a first dielectric having at least one slot defined therethrough, and a segmented electrode including a plurality of electrode segments, each electrode segment is disposed proximate an associated slot. Each electrode segment may be formed in different shapes, for example, a plate, bar, rim, or plug. The electrode segment may be hollow, solid, or made from a porous material. The reactor may include a second electrode and dielectric with the first and second dielectrics separated by a predetermined distance to form a channel therebetween into which the plasma exiting from the slots defined in the first dielectric is discharged. The fluid to be treated is passed through the channel and exposed to the plasma discharge. If the electrode segment is hollow or made of a porous material, then the fluid/gas to be treated may be fed into the slots defined in the first dielectric and exposed therein to the maximum plasma density.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: October 18, 2005
    Assignee: Plasmasol Corporation
    Inventors: Edward J. Houston, Jr., Kurt Kovach, Richard Crowe, Seth Tropper, Michael Epstein
  • Patent number: 6936231
    Abstract: A process and apparatus for removing SO2, O, and NO2 from a gas stream having the steps of oxidizing a portion of the NO in the flue gas stream to NO2, scrubbing the SO2, NO, and NO2 with an ammonia scrubbing solution, and removing any ammonia aerosols generated by the scrubbing in a wet electrostatic precipitator. The process can also remove Hg by oxidizing it to HgO and removing it in the wet electrostatic precipitator. Ammonium sulfate, a valuable fertilizer, can be withdrawn from the scrubbing solution.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: August 30, 2005
    Assignee: Powerspan Corp.
    Inventors: Joanna L. Duncan, Christopher R. McLarnon, Francis R. Alix
  • Patent number: 6896858
    Abstract: A gas refining method for adsorbing a reducing gas obtained by pressure gasification of coal or oil comprises introducing a reducing gas stream into an adsorbing and removing zone where it contacts an adsorbent. Sulfur-containing compounds are adsorbed onto the adsorbent and a first oxygen-containing gas stream is introduced into the adsorbing and removing zone in order to form a regeneration gas containing sulfur dioxide. The regeneration gas is contacted with a second oxygen-containing stream and a calcium-containing liquid slurry to effect absorption of sulfur dioxide by the slurry and precipitation of a gypsum compound. The temperature of the slurry is varied to cause selective precipitation of 60 -gypsum hemihydrate or gypsum dihydrate.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: May 24, 2005
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Atsushi Tatani, Makoto Susaki, Kazuaki Kimura, Taku Shimizu, Toshikuni Sera, Kenji Inoue
  • Patent number: 6863875
    Abstract: In a flue gas treating system, an absorption tower (21), a reheating section (22) and a fan (23) are arranged in line on a vertical axis so as to function as at least a part of a stack for emitting the treated flue gas into the atmosphere. Moreover, in a flue gas treating process, the amount of ammonia injected in the denitration step (a denitrator (2)) and/or the amount of ammonia at a point downstream of the denitration step are determined so as to be on such an excessive level that ammonia or ammonium salt will remain in the flue gas introduced into the desulfurization step (absorption tower (21)). Thus, the size and cost of the equipment can be reduced.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: March 8, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shinichiro Kotake, Kazuaki Kimura, Kazumitsu Suzuki, Naohiko Ukawa, Toru Takashina
  • Patent number: 6818193
    Abstract: A plasma reactor including a first dielectric having at least one capillary defined therethrough, and a segmented electrode including a plurality of electrode segments, each electrode segment is disposed proximate an associated capillary. Each electrode segment may be formed in different shapes, for example, a pin, stud, washer, ring, or disk. The electrode segment may be hollow, solid, or made from a porous material. The reactor may include a second electrode and dielectric with the first and second dielectrics separated by a predetermined distance to form a channel therebetween into which the plasma exiting from the capillaries in the first dielectric is discharged. The fluid to be treated is passed through the channel and exposed to the plasma discharge. If the electrode segment is hollow or made of a porous material, then the fluid to be treated may be fed into the capillaries in the first dielectric and exposed therein to the maximum plasma density.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: November 16, 2004
    Assignees: Plasmasol Corporation, Stevens Institute of Technology, LLC
    Inventors: Christos Christodoulatos, George Korfiatis, Richard Crowe, Erich E Kunhardt
  • Publication number: 20040182000
    Abstract: Various processes and systems are disclosed for converting carbonaceous materials into a product gas stream. For instance, the product gas stream may be endothermically converted to a gas through a steam reforming process. The present invention is directed to various methods and systems for increasing throughput and efficiency of the system. Further, the present invention is also directed to sulfur removal methods and systems from a gas stream.
    Type: Application
    Filed: September 10, 2003
    Publication date: September 23, 2004
    Inventors: Momtaz N. Mansour, Ravi Chandran
  • Publication number: 20040156768
    Abstract: The invention provides a preservative gas generating device which has a carrier sheet (6); a layer of a matrix forming material having a preservative gas generating compound dispersed therein (8), the layer of matrix forming material being adapted to permit the generation of a preservative gas by the preservative gas generating compound and to permit the gas to permeate out of the matrix formed by the material, the matrix forming material being adhered to the carrier sheet (6) in the form of a layer covering an area of the carrier sheet so as to form at least one discrete zone (8) with a peripheral area of the carrier sheet surrounding the discrete zone(s) being substantially free of the matrix forming material; and a cover sheet (10) secured to said peripheral area to enclose the layer of matrix forming material between the carrier sheet and the cover sheet; and wherein at least one of the carrier sheet and the cover sheet are permeable to said preservative gas.
    Type: Application
    Filed: February 24, 2004
    Publication date: August 12, 2004
    Inventors: Douglas Ronald Sanderson, Willem Jacobus Opperman
  • Publication number: 20040120874
    Abstract: A method for reducing the cost of emission control by utilizing a combination of low cost, combustion and post-combustion processes to eliminate emissions of sulfur and nitrogen oxides, and trace metals, including mercury, and trace dioxins and furans. These processes are applied sequentially to the combustion flow train of an air-cooled, slagging combustor-boiler, and include two groups of process steps. One group is implemented in the combustor and the other in post combustion zones.
    Type: Application
    Filed: December 1, 2003
    Publication date: June 24, 2004
    Inventor: Bert Zauderer
  • Patent number: 6752975
    Abstract: Denitrated combustion exhaust gas is desulfurized with ammonia, the waste water obtained from washing the desulfurization waste water or dust ash is filtered using calcium carbonate, the pH of the filtrate is adjusted, carbon dioxide and/or aqueous carbonic acid is added and then a flocculating agent is added, and ammonia is recovered from the supernatant after precipitation and separation of the solid portion. The recovered ammonia is added to the denitrated gas for treatment of the combustion exhaust gas.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: June 22, 2004
    Assignee: Showa Denko K.K.
    Inventors: Toshio Ohi, Yoshiharu Mizuno, Tatsuharu Arai, Koichi Nishimura, Tsunekichi Kuriyama, Yasuaki Toyomasu, Toshitaka Hiro
  • Patent number: 6740226
    Abstract: In a hydrocracking unit, the flash gases from the high-pressure separator are fed to the bottom of an absorption zone where the entering gases are counter-currently contacted with a lean solvent. The lean solvent absorbs away the contained methane, ethane, propane, butanes and pentanes (C1+) from the contained hydrogen. The overhead gas stream from the absorption zone typically contains hydrogen at a purity of 90 to 98 mol %, or even higher, which is fed to the recycle gas stream to provide hydrogen purity in the range of 96 to 99 mol %, thereby providing an increase in the overall efficiency of the hydroprocessor unit. The process can also be employed with hydrotreating, hydrodesulfurization, hydrodenitrogenation and hydrodealkylation reactors.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: May 25, 2004
    Assignee: Saudi Arabian Oil Company
    Inventors: Yuv Raj Mehra, Ali Hassan Al-Abdulal
  • Patent number: 6649132
    Abstract: The present invention relates to a process for removing nitrogen oxides, sulfur dioxides and mercury from gas streams such as furnace or utility boiler flue gas streams, particularly those derived from coal-fired utility boilers. A stream containing relatively low concentration of ozone from an ozone concentrator is feed to a barrier discharge reactor. Nitrogen oxides and mercury in the flue gas are oxidized by oxygen and hydroxyl radicals formed in the reactor. The flue gas is then directed to a reactor duct along with the ozone at a greater concentration wherein the remaining nitrogen oxides and mercury in the gas stream will react with the ozone to form nitric acid, nitric acid precursors, mixtures thereof and mercuric oxide. These impurities can then be removed from the gas stream by use of an aqueous scrubber, a wet electrostatic precipitator, a dry scrubber or a semi-dry scrubber.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: November 18, 2003
    Assignee: The BOC Group, Inc.
    Inventors: Shuen-Cheng Hwang, Neeraj Saxena, Naresh Suchak, Robert J. Ferrell
  • Patent number: 6645459
    Abstract: H2S is removed from an H2S-rich gas, and sulfur is produced, by a process in which the H2S-rich gas is reacted with SO2 in a reactor in the presence of an organic solvent and a catalyst, an H2S-containing off-gas is removed from the reactor and is combusted to produce an SO2-rich combustion gas. Preferably, the reactor off-gas is combusted with a substoichiometric amount of oxygen so that the combustion gas also contains water vapor and sulfur vapor. The combustion gas is cooled by direct quench or indirect heat exchange to produce an aqueous stream comprising primarily water and containing suspended solid sulfur and polythionic acids, e.g., a Wackenroder's liquid, and the aqueous stream is used to provide cooling for the H2S—SO2 reaction. Problems associated with production and handling of Wackenroder's liquids are overcome and sulfur values in these materials are recovered.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: November 11, 2003
    Assignee: The Regents of the University of California
    Inventor: Scott Lynn
  • Patent number: 6641626
    Abstract: The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: November 4, 2003
    Assignee: Eltron Research, Inc.
    Inventors: Pamela Van Calcar, Richard Mackay, Anthony F. Sammells
  • Publication number: 20030164309
    Abstract: A method and device for removing, deodorizing and purifying odor, smoke and harmful substances from exhaust gas or flue gas employs a water solution containing hypohalogen acid such as hypochlorous acid soda, an alkaline electrolyte such as potassium hydroxide or sodium hydroxide and a saline electrolyte such as sodium chloride, potassium chloride, sodium bromide or potassium bromide which is electrolyzed to produce an electrolytic water solution which is fed to a deodorizing tower and brought into contact with exhaust gas or flue gas to remove odor, smoke and harmful substances in the exhaust gas or flue gas.
    Type: Application
    Filed: December 9, 2002
    Publication date: September 4, 2003
    Applicant: OMEGA CO., LTD.
    Inventors: Shinichi Nakamura, Kunihiko Fukuzuka, Jingo Nakazawa
  • Patent number: 6610264
    Abstract: A process and system is disclosed for removing sulfur from tail-gas emitted from a Claus sulfur recovery process. First, the tail-gas is oxidized so as to convert sulfur therein to sulfur oxides. Oxidized tail-gas is directed into an absorber where a solid absorbent absorbs substantially all the sulfur oxides thereon. After allowing sufficient time for a desired amount of sulfur oxides to be absorbed, absorption is ceased. Next, the solid absorbent containing the absorbed sulfur oxides is contacted with a reducing gas so as to release an off gas containing hydrogen sulfide and sulfur dioxide. Upon releasing sulfur from the solid absorbent, the solid absorbent is regenerated and redirected into the absorber. Sulfur in the off gas emitted by regeneration is concentrated to an extent sufficient for use within a Claus sulfur recovery process for conversion to elemental sulfur.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: August 26, 2003
    Assignee: ExxonMobil Oil Corporation
    Inventors: John Scott Buchanan, Joseph F. Sodomin, III, David L. Stern, Gerald J. Teitman
  • Patent number: 6610265
    Abstract: A fuel processing system is operative to remove substantially all of the sulfur present in a logistic fuel stock supply. The fuel stock can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The system is a part of a fuel cell power plant. The fuel stock supply is fed through a reformer where the fuel is converted to a hydrogen rich fuel which contains hydrogen sulfide. The hydrogen sulfide-containg reformer exhaust is passed through a sulfur scrubber, to which is added a small quantity of air, which scrubber removes substantially all of the sulfur in the exhaust stream by means of the Claus reaction. The desulfurizing step causes sulfur to deposit on the scrubber bed, which after a period of time, will prevent further sulfur from being removed from the reformer exhaust stream.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: August 26, 2003
    Assignee: UTC Fuel Cells, LLC
    Inventors: Donald F. Szydlowski, Roger R. Lesieur, Richard A. Sederquist