Fe-base Component Patents (Class 428/681)
  • Patent number: 8080321
    Abstract: The present invention relates to a rust-preventive metallic component part in which a steel wire to which wire-drawing processing is performed is adapted into a substrate and which comprises a rust-preventive coating film being free from chromium on a surface of the substrate, and to a manufacturing method for the same; and its object is to provide a rust-preventive metallic component part whose rust-preventive coating film exhibits such good adhesiveness to substrate that it is not come off by elastic deformations in service, by sliding contacts at the time of transportation, and the like, and to provide a manufacturing method for the same.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: December 20, 2011
    Assignee: Togo Seisakusyo Corporation
    Inventor: Kazutoshi Sakakibara
  • Patent number: 8076008
    Abstract: A high-strength galvanized steel sheet is provided which has a tensile strength of a level of about 590 MPa and superior formability, including a coating with good appearance. The galvanized steel sheet includes a base steel and a galvanized coating layer formed over the surface of the base steel. The galvanized steel sheet has a chemical composition containing 0.005% to 0.12% of C, 0.7% to 2.7% of Si, 0.5% to 2.8% of Mn, 0.1% or less of P, 0.07% or less of S, 1.0% or less of Al, 0.008% or less of N, and the balance being Fe and inevitable impurities on a mass basis, and a microstructure constituted of at least 90% of ferrite and 2% to 10% of martensite on an area basis. The ferrite has a Vickers hardness of 120 or more on average, and an inclusion is precipitated from the grain boundary with a length of 50% or less relative to the entire length of the grain boundary in the surface layer of the base steel with a depth of 3 ?m from the interface between the coating layer and the base steel.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: December 13, 2011
    Assignee: JFE Steel Corporation
    Inventors: Shinjiro Kaneko, Hiroshi Matsuda, Yoshiyasu Kawasaki, Tatsuya Nakagaito, Yoshitsugu Suzuki, Yusuke Fushiwaki, Takashi Kawano, Saiji Matsuoka
  • Patent number: 8039119
    Abstract: Orientation degree and smoothness of a substrate surface better than those of conventional ones are provided in a textured substrate for epitaxial thin film growth. The present invention is a textured substrate for epitaxial film formation, including a crystal orientation improving layer made of a metal thin film of 1 to 5000 nm in thickness on the surface of the textured substrate for epitaxial film formation having a textured metal layer at least on one surface, wherein differences between orientation degrees (?? and ??) in the textured metal layer surface and orientation degrees (?? and ??) in the crystal orientation improving layer surface are both 0.1 to 3.0°. Further, when another metal different from the metal constituting this textured substrate crystal orientation improving layer is added equivalent to a thin film which is 30 nm or less, and subsequently is subjected to heat treatment, the smoothness of that surface can be improved.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: October 18, 2011
    Assignees: Chubu Electric Power Co., Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Naoji Kashima, Shigeo Nagaya, Kunihiro Shima, Shuichi Kubota
  • Publication number: 20110250074
    Abstract: An article includes a first section extending from an outer periphery to a predetermined surface located inward from the outer periphery. The first section comprises a nanostructured ferritic alloy. The article includes a second section extending from an inner periphery to the predetermined surface located outward from the inner periphery. The second section comprises at least one other alloy different from the nanostructured ferritic alloy.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Richard DiDomizio, Matthew Joseph Alinger, Samuel Vinod Thamboo, Raymond Joseph Stonitsch
  • Patent number: 8029915
    Abstract: The present invention provides a highly corrosion-resistant plated steel sheet that can achieve excellent surface smoothness and formability and, according to the process of the present invention, a hot-dip galvanized steel product excellent in surface smoothness and formability having on the steel product surface a zinc alloy plating layer composed of 4 to 22% by mass of Al, 1 to 5% by mass of Mg, 0.000001 to 0.1% by mass of Ti, 0.000001 to 0.5% by mass of Si and the balance of Zn and unavoidable impurities, the plating layer of the plated steel product having a metal structure in which an [Mg2Si phase], an [Al phase], a [Zn2Mg phase] and a [Zn phase] are present in a mixture in the matrix of an [Al/Zn/Zn2Mg ternary eutectic structure], and the plating layer containing a Ti—Al base intermetallic compound in the [Al phase] and/or the [Zn2Mg phase] and/or the [Zn phase], is produced.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: October 4, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Kazuhiko Honda, Hidetoshi Hatanaka, Hajime Onozawa
  • Patent number: 7998238
    Abstract: A sintered sliding member comprises a back metal (21a) and a ferrous sintered sliding body (20) which is sintering-bonded to the back metal (21a). The ferrous sintered sliding body (20) has martensite phase having a solid soluble carbon concentration of 0.15 to 0.5 wt % and contains carbide in a content of 5 to 50% by volume. The sintered sliding member is excellent in abrasion resistance, seizing resistance and heat crack resistance.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: August 16, 2011
    Assignee: Komatsu Ltd.
    Inventors: Takemori Takayama, Tetsuo Ohnishi, Kazuo Okamura
  • Patent number: 7964290
    Abstract: A magnetic materials construct and a method to produce the construct are disclosed. The construct exhibits large magnetic-field-induced deformation through the magnetic-field-induced motion of crystallographic interfaces. The construct is a porous, polycrystalline composite structure of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. If the struts are polycrystalline, they have a “bamboo” microstructure wherein the grain boundaries traverse the entire width of the strut. The material from which the construct is made is preferably a magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga. The construct is preferably an open-pore foam. The foam is preferably produced with a space-holder technique. Space holders may be dissolvable ceramics and salts including NaAlO2.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 21, 2011
    Assignees: Boise State University, Northwestern University
    Inventors: Peter Mullner, Markus Chmielus, David C. Dunand, Yuttanant Boonyongmaneerat
  • Patent number: 7955754
    Abstract: An enhanced stability and inexpensive bipolar plate for a fuel cell is disclosed. The enhanced stability bipolar plate includes a bipolar plate substrate and a corrosion-resistant coating provided on the bipolar plate substrate. A method for enhancing corrosion resistance of a bipolar plate is also disclosed.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: June 7, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Mahmoud H. Abd Elhamid, Richard H. Blunk, Gayatri Vyas
  • Patent number: 7951465
    Abstract: To provide a steel-aluminum welded material and a spot welding method therefor having high weld strength. The steel-aluminum welded material 3 includes a steel material 1 and an aluminum material 2 having predetermined widths. The area of a nugget 5 of a spot-welded part is determined as a function of the thickness of the aluminum material 2, and the area of a part of the nugget 5 corresponding to a part having a thickness in a range between 0.5 and 10 ?m of an interface reaction layer 6 is defined as a function of the thickness of the aluminum material 2.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: May 31, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Wataru Urushihara, Mikako Takeda, Katsushi Matsumoto, Jun Katoh, Yasuaki Sugizaki, Hidekazu Ido
  • Patent number: 7927714
    Abstract: A metallic article for high temperature applications such as a turbine engine component is protected by a thermal barrier coating system on the article's metallic substrate. The thermal barrier coating system includes a bond coat layer of aluminum containing alloy on the metal substrate, an alumina layer on the bond coat layer and a ceramic thermal barrier layer on the alumina layer. The bond coat layer is doped with elemental barium that enhances the creep resistance of the alumina layer, thus, minimizing spallation of the ceramic thermal barrier layer.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: April 19, 2011
    Assignee: The Trustees of Princeton University
    Inventors: Emily A. Carter, Ivan Milas
  • Patent number: 7919193
    Abstract: A component for use in a high vacuum environment, the component including a core of non-magnetic Hastelloy with a cladding of nickel-iron covering the core at least in part. The component can be, for example, at least one of a gate valve for use in a high vacuum environment of an electron gun, a bearing, a slide way, a gate valve bearing, a rotary slide, a linear slide, an electron beam column, and electron beam chamber, and a vacuum chamber. In this manner, because the final mechanical tolerance is controlled by machining instead of part assembling, extremely high alignment accuracy is obtained. The final part provides field shielding as provided by the nickel alloy shell, low stray field provided by the non-magnetic Hastelloy, good vacuum performance, and tight mechanical tolerance control. Also, because Hastelloy has the advantage of a low oxidation rate in comparison to stainless steel and titanium, there is less contamination buildup due to conditions such as electron beam bombardment.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: April 5, 2011
    Assignee: KLA-Tencor Corporation
    Inventors: Mohammed Tahmassebpur, Salam Harb, Liqun Han, Marian Mankos
  • Patent number: 7906220
    Abstract: A steel/aluminum welded structure comprises a hot-dip Al-coated steel sheet 1 spot welded with an aluminum or aluminum alloy sheet 2. The steel sheet 1 is coated with a coating layer 4 containing, by mass, 3-12% of Si and 0.5-5% of Fe. An area ratio of an Al—Fe binary alloy layer, formed at the joint boundary, is controlled to 90% or less. An unalloyed region 9 exists between an Al—Fe—Si ternary alloy layer 6 at an interface of a steel substrate 5 with the coating layer 4 interface and the Al—Fe binary alloy layer at the joint boundary. A steel substrate 5 preferably contains 0.002-0.020% of N for formation of a N-enriched surface layer in contact with the coating layer 4. The N-enriched layer impedes propagation of the brittle Al—Fe binary alloy layer to the whole of the joint boundary and raises joint strength of the steel/aluminum welded structure.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: March 15, 2011
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Yasunori Hattori, Tadaaki Miono, Atsushi Andoh, Tetsu Iwase, Seiji Sasabe
  • Patent number: 7906219
    Abstract: A metallic glass laminate of the present invention is characterized in that a metallic glass layer of amorphous phase is formed on the substrate surface, and there is no continuous pore (pinhole) through the metallic glass layer. The metallic glass laminate is preferably obtained by solidification and lamination of at least part of the metallic glass powder in the molten state or in the supercooled liquid state on the substrate surface. Because of the dense metallic glass layer of homogenous amorphous phase, the functionalities of metallic glass such as corrosion resistance and wear resistance can be satisfactorily provided. A thick and a large-area metallic glass layer can be formed. The metallic glass layer can also be formed into various shapes within the supercooled liquid temperature range. In addition, a metallic glass bulk can be obtained by removing the substrate.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: March 15, 2011
    Assignees: Topy Kogyo Kabushiki Kaisha, Tohoku University, Akihisa Inoue
    Inventors: Masaki Ohara, Takanori Igarashi, Masaharu Sugiyama, Seiji Yamada, Kenichi Takahashi, Atsuo Mochizuki, Yoshitsugu Motoe, Akihisa Inoue, Hisamichi Kimura
  • Patent number: 7906222
    Abstract: A sliding material has a sintered layer formed atop a backing plate. The sintered layer contains 5-15 mass % of Bi nonuniformly distributed in a Cu—Sn alloy matrix consisting essentially of 8-12 mass % of Sn and a remainder of Cu. The sliding material can be manufactured by nonuniformly mixing Cu—Sn alloy powder and Bi powder, dispersing the mixed powder on a backing plate, and sintering the mixed powder to form a sintered layer on the backing plate. The sliding material does not undergo seizing and does not have separation of the sintered layer from the backing plate even when used in severe conditions such as in hydraulic equipment or construction equipment.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: March 15, 2011
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Sinzo Nakamura, Naoki Sato, Toshio Hakuto
  • Publication number: 20100304178
    Abstract: A carrier material to be used as a placeholder for structuring workpieces having at least one vacuity is disclosed, said carrier material comprising at least two metal powders Mel and Mell, the standard electrode potentials of which are different at room temperature, which can be produced by a method compacting the powders, as well as a method for producing same.
    Type: Application
    Filed: April 16, 2008
    Publication date: December 2, 2010
    Applicant: HERMLE MASCHINENBAU GMBH
    Inventor: Markus Dirscherl
  • Patent number: 7842400
    Abstract: The present invention provides a surface treated steel sheet including a steel sheet; a plating layer containing at least one metal selected from the group consisting of zinc and aluminum on a surface of the steel sheet; and a film on the plating layer, the film containing at least one metal selected from the group consisting of Al, Mg, and Zn, a tetravalent vanadium compound, and a phosphoric acid group. This surface treated steel sheet exhibits excellent corrosion resistance and excellent surface appearance without containing hazardous substances, such as hexavalent chromium, in the film.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: November 30, 2010
    Assignee: JFE Steel Corporation
    Inventors: Takafumi Yamaji, Reiko Yamaji, legal representative, Akira Matsuzaki, Kazuhisa Okai, Keiji Yoshida, Masaaki Yamashita, Yuichi Fukushima, Toshiyuki Okuma
  • Patent number: 7833637
    Abstract: Food cooking surface for a kitchen utensil or cooking appliance, constituted by the surface of a compound fabricated starting from an alloy whose two principal components are zirconium and cobalt.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 16, 2010
    Assignee: SEB S.A.
    Inventors: Stéphane Tuffe, Alain Coudurier
  • Patent number: 7829201
    Abstract: A plain bearing is described having a bearing metal layer, supported by a support shell, made of an aluminum or copper alloy and having a lead-free running layer, possibly applied to the bearing metal layer over an intermediate layer, made of a zinc matrix having at least one further alloy element. To achieve good tribological properties, it is suggested that the zinc matrix of the running layer contains 1 to 49 wt.-% bismuth as an additional alloy element.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: November 9, 2010
    Assignees: Miba Gleitlager GmbH, KS Gleitlager GmbH
    Inventors: Jakob Zidar, Werner Schubert, Megjit Seremeti
  • Publication number: 20100279146
    Abstract: A tool for friction stir welding or forming is provided. The tool comprises a shoulder portion (40b) and optionally a pin portion (5Ob)l the shoulder portion (40b) comprised of at least 60% by weight and up to 100% by weight of tungsten, molybdenum, tantalum, niobium or hafnium, the balance being alloying materials, if used. The tool has at least one surface treatment or coating. Articles welded by the tools are also provided.
    Type: Application
    Filed: August 15, 2007
    Publication date: November 4, 2010
    Applicant: H.C. Starck Ltd.
    Inventors: Charles E.D. Rowe, Jonathan R. Tuck, David George Staines, Wayne Morris Thomas
  • Publication number: 20100275473
    Abstract: A wear component for ground engaging machinery is disclosed. The wear component has a shell formed from a first metallic material and an inner body formed from a second metallic material. The first material is relatively tough, and resistant to impact forces, and the second material is relatively abrasion resistant. A metallurgical bond exists between the first material and the second material.
    Type: Application
    Filed: July 2, 2010
    Publication date: November 4, 2010
    Inventor: Patrick Maher
  • Publication number: 20100273025
    Abstract: A brazing method which provides a braze joint having excellent corrosion resistance and a brazed structure including such a braze joint includes assembling a first member and a second member to be joined into a temporary assembly, the first member including a base plate made of a ferrous material and a diffusion suppressing layer laminated on the base plate and composed of a N—Cr alloy essentially including not less than about 15% and not greater than about 40% of Cr, the second member being disposed on the diffusion suppressing layer of the first member with intervention of a brazing material of a Cu—Ni alloy essentially including not less than about 10% and not greater than about 20% of Ni, and maintaining the temporary assembly at a temperature of not less than about 1,200° C.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 28, 2010
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Tsuyoshi Hasegawa, Masaaki Ishio, Shunji Kajikawa, Yoshitsugu Sakamoto, Takayuki Hayashi
  • Publication number: 20100233508
    Abstract: A method for soldering or welding components in a series production wherein: a fixing seam which connects the components (1, 2) is produced by melting a connecting material (3), which is supplied as an additional material or is formed by a base material of the components (1, 2), along a joint formed by the components (1, 2); and a volume-forming layer of connecting material is deposited onto the fixing seam by melting, or the fixing seam produced by means of the connecting material supplied as an additional material is re-melted.
    Type: Application
    Filed: May 10, 2007
    Publication date: September 16, 2010
    Applicant: EDAG GmbH & Co. KgaA
    Inventors: Jochen Schneegans, Martin Kraft
  • Publication number: 20100173172
    Abstract: A method of forming a wear-resistant coating on a metal substrate includes depositing a metal alloy onto the metal substrate to form a cladding, rough finishing the cladding to thereby provide the cladding with an average roughness, Ra, of from about 50 micro-inches to about 150 micro-inches, and work hardening the cladding to thereby form the wear-resistant coating and a hardened zone thereof, wherein the hardened zone has a hardness greater than a hardness of the metal substrate. A wear-resistant coating system includes the metal substrate and the wear-resistant coating disposed on the metal substrate. The wear-resistant coating is substantially resistant to corrosion from sea water at an ambient temperature of from about ?40° C. to about 50° C.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 8, 2010
    Applicant: Eaton Corporation
    Inventors: Michael Lee Killian, Aquil Ahmad, Clifton Higdon
  • Patent number: 7744990
    Abstract: In a through hole closing process, a metal plate is attached to one surface of a conductive base member having a plurality of through holes by the use of a magnet, in a copper plating process, a copper plating layer is formed on the conductive base member and the metal plate exposed within the through holes, from the side of the conductive base member where the metal plate is not attached, thereby to fill up the through holes, in a film forming process, a Pd alloy film is formed by plating on the surface of the conductive base member after removal of the metal plate, and in a removal process, the copper plating layer is removed by selective etching, thereby to produce a hydrogen production filter that is used in a reformer of a fuel cell so as to be capable of stably producing high purity hydrogen gas.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Dai Nippon Insatsu Kabushiki Kaisha
    Inventors: Hiroshi Yagi, Takanori Maeda, Yoshinori Oota, Yasuhiro Uchida
  • Patent number: 7736753
    Abstract: The present invention is related to a method for forming a structure that contains alternating first and second ferromagnetic layers of different material compositions. A substrate containing a supporting matrix with at least one open pore and a conductive base layer is first formed. Electroplating of the substrate is then carried out in an electroplating solution that contains at least one ferromagnetic metal element and one or more additional, different metal elements. A pulsed current with alternating high and low potentials is applied to the conductive base layer of the substrate structure to thereby form alternating ferromagnetic layers of different material compositions in the open pore of the supporting matrix.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: June 15, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Qiang Huang, Lubomyr T. Romankiw
  • Publication number: 20100143747
    Abstract: A liquid phase diffusion bonding method for a metal machine part superior in the quality of the joint and the productivity enabling the bonding time to be shortened, achieving homogenization of the bonding structure and improving the tensile strength, fatigue strength, and joint quality and reliability. This liquid phase diffusion bonding method of a metal machine part is characterized interposing an amorphous alloy foil for liquid phase diffusion bonding at bevel faces of metal materials, performing primary bonding by melt bonding said amorphous alloy foil and said metal material by resistance welding to form a joint, then performing secondary bonding by liquid phase diffusion bonding by reheating said joint to at least the melting point of said amorphous alloy foil, then holding it there to complete the solidification process of said joint.
    Type: Application
    Filed: February 4, 2010
    Publication date: June 10, 2010
    Applicant: Nippon Steel Corporation
    Inventors: Yasushi Hasegawa, Ryuichi Honma, Yutaka Takagi
  • Publication number: 20100143742
    Abstract: A wear resistant casting and method of fabrication thereof, the casting comprising inserts embedded in a matrix; each insert having a form such that a ratio A/B in any mutually perpendicular section that passes through the centre of mass of the insert is comprised between 0.4 and 2.5, and a distance C between two insert is at least two times smaller that a width thereof; the inserts forming at least one grid.
    Type: Application
    Filed: April 18, 2008
    Publication date: June 10, 2010
    Inventors: Igor Tsypine, Rafael Perlin
  • Publication number: 20100136361
    Abstract: A welding material, to be used for welding a base metal made of an austenitic alloy comprising C?2.0%, Si?4.0%, Mn: 0.01 to 3.0%, P: more than 0.03% to not more 0.3%, S?0.03%, Cr: 12 to 35%, Ni: 6 to 80%, sol. Al: 0.001 to 1% and N?0.3%, with the balance being Fe and impurities to a base metal made of another austenitic alloy, which comprises C: more than 0.3% to 3.0%, Si?4.0%, Mn?3.0%, P?0.03%, S?0.03%, Cr: more than 22% to 55%, Ni: more than 30% to not more than 70%, sol. Al: 0.001 to 1% and N?0.3%, with the balance being Fe and impurities can suppress the weld solidification cracking which occurs in an austenitic alloy having a high P content and showing fully austenitic solidification. Therefore, the said welding material can be widely used in such fields where a welding fabrication is required. The said welding material may contain a specific amount or amounts of one or more elements selected from Cu, Mo, W, V, Nb, Ti, Ta, Zr, Hf, Co, B, Ca, Mg and REM.
    Type: Application
    Filed: January 22, 2010
    Publication date: June 3, 2010
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hirokazu Okada
  • Patent number: 7727639
    Abstract: An iron-based sintered body with a rustproof function comprises a layer containing 0.01 to 5 at % of indium on the surface of the iron-based sintered body, or an iron-based sintered body with a rustproof function contains 0.01 to 5 at % of indium throughout the sintered body, and the iron-based sintered body having iron as its principal component is manufactured by performing sintering in a gas atmosphere containing indium vapor or indium. Thereby obtained is an iron-based sintered body, as well as the manufacturing method thereof, capable of easily improving the rustproof effect without having to hardly change the conventional process.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: June 1, 2010
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventors: Masataka Yahagi, Toru Imori, Atsushi Nakamura
  • Patent number: 7718279
    Abstract: An epitaxial Ni3FeN film with unique magnetic properties such as single magnetic domain (even in a large scale 0.5?×0.5?), which rotates coherently in response to the desired switching field with a very sharp transition is described. The magnetic hysteresis loop of this new magnetic nitride is close to the perfect ideal square with the same value of saturation magnetization, remnant magnetization, and magnetization right before switching (domain reversal). The switching field is tunable which make this material more attractive for magneto-resistive devices such as MRAM's, read heads and magnetic sensors.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: May 18, 2010
    Assignee: Board of Trustees of Michigan State University
    Inventor: Reza Loloee
  • Publication number: 20100119866
    Abstract: Methods for the low-temperature synthesis of an integrated, corrosion-resistant coating structure for metal substrates by means of multi-component pack cementation are provided. The synthesis of the integrated coating structures at low temperatures can avoid or minimize degradation of the mechanical properties of the substrates. The integrated coating structures can increase the lifetime of high temperature steels under severe steam environments and, therefore, provide a technological enabler for the high-temperature operation of steam power generation plants.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: John Harry Perepezko, Ridwan Sakidja
  • Publication number: 20100055491
    Abstract: Fabrication techniques for and examples of metallic composite materials with high toughness, high strength, and lightweight for various structural, armor, and structural-armor applications. For example, various advanced materials based on metallic-intermetallic laminate (MIL) composite materials are described, including materials with passive damping features and built-in sensors.
    Type: Application
    Filed: November 9, 2009
    Publication date: March 4, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Kenneth S. Vecchio, Aashish Rohatgi, John Kosmatka
  • Publication number: 20100047616
    Abstract: A wire (2) for use as a feedstock in metal spraying and in welding contains two components (4, 6) formed from different metals, with the components being in face-to-face contact along a convoluted interface (8) that extends throughout the interior of the wire. This leaves the distribution of the two metals in generally uniform throughout the cross section of the wire. To produce the wire, two flat strips (22, 22 or 30, 32) of the different metals are provided, with the strips (22, 32) of the second component overlying the strips (20, 30) of the first component to form a laminate (24, 34). Then the laminate is deformed into a U-shaped configuration with the second strip being confined within the first strip. Next the ends of the U-shaped laminate are turned inwardly. The resulting configuration, which has a convoluted interface, is drawn through a die to reduce its cross-sectional size and to densify it.
    Type: Application
    Filed: December 17, 2007
    Publication date: February 25, 2010
    Applicant: ARCMELT COMPANY, LC.
    Inventor: David J. Urevich
  • Patent number: 7666519
    Abstract: A high temperature sliding alloy has a matrix 1 of a Ni-base alloy or a heat resistant Fe-base alloy, and contains, by mass, 1 to 35% hard particles consisting of a Co-base intermetallic compound dispersed therein, wherein 0.1 to 10% Ag is dispersed in the matrix. Ag is a soft metal, forms an ultrathin film on a sliding surface caused by sliding with a mating member, and presents a lubricating effect. When Ag forms the ultrafine film and spreads on the sliding surface, it works little as a frictional force against the mating member due to its low shear resistance, and accordingly can achieve a low coefficient of friction.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: February 23, 2010
    Assignee: Daido Metal Company Ltd.
    Inventor: Kouki Ozaki
  • Publication number: 20100040905
    Abstract: A chain component part has a first coating film formed on an iron base material using a water-based rust preventive paint containing a water-based rust preventive pigment containing a nitrate and having good storing stability. Since zinc is eluted earlier, generation of red rust caused by iron is suppressed, and thus durability is improved. A roller chain includes a zinc-iron alloy ground layer formed on an iron base material by impact zinc plating, a first coating film formed using the water-based rust preventive paint, and a second coating film formed using a water-based top coat paint containing a water-based pigment and a water-soluble or hydrolyzable silane coupling agent containing an amino group.
    Type: Application
    Filed: September 5, 2007
    Publication date: February 18, 2010
    Inventors: Yuji Fukuike, Tomohide Takada, Satoshi Sato
  • Publication number: 20100034661
    Abstract: A component is provided for use in a turbine comprising: a substrate formed from an alloy, and an erosion resistant protective structure mechanically coupled to a portion of the substrate for protecting the substrate portion from erosion caused by a fluid. The erosion resistant protective structure may be formed from a shape memory alloy.
    Type: Application
    Filed: August 8, 2008
    Publication date: February 11, 2010
    Inventor: Sudhir Rajagopalan
  • Publication number: 20100028716
    Abstract: Brazing alloy with a composition consisting essentially of FeaNiRestCrbMocCudSieBfPg, wherein 0 atomic %<=a<=50 atomic %; 5 atomic %<=b<=18 atomic %; 0.2 atomic %<c<=3 atomic %; 4 atomic %<=e<=15 atomic %; 4 atomic %<=f<=15 atomic %; 0 atomic %<=g<=6 atomic %; rest Ni, and wherein if 0 atomic %<a<=50 atomic %; then 0.5 atomic %<=d<3 atomic % and if a=0, then 0.5 atomic %<=d<=5 atomic %.
    Type: Application
    Filed: August 1, 2007
    Publication date: February 4, 2010
    Inventors: Dieter Nuetzel, Thomas Hartmann
  • Publication number: 20100015564
    Abstract: A fired heater tube that is resistant to corrosion and fouling is disclosed. The fired heater tube comprises an advantageous high performance coated material composition resistant to corrosion and fouling comprises: (PQR), wherein P is an oxide layer at the surface of (PQR), Q is a coating metal layer interposed between P and R, and R is a base metal layer, wherein P is substantially comprised of alumina, chromia, silica, mullite, spinels, and mixtures thereof, Q comprises Cr, and at least one element selected from the group consisting of Ni, Al, Si, Mn, Fe, Co, B, C, N, P, Ga, Ge, As, In, Sn, Sb, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au and mixtures thereof, and R is selected from the group consisting of low chromium steels, ferritic stainless steels, austenetic stainless steels, duplex stainless steels, Inconel alloys, Incoloy alloys, Fe—Ni based alloys, Ni-based alloys and Co-based alloys.
    Type: Application
    Filed: June 8, 2009
    Publication date: January 21, 2010
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Narasimha-Rao Venkata Bangaru, Mark A. Greaney, Ian A. Cody, F Pierce Hubbard, David Samuel Deutsch
  • Publication number: 20090274929
    Abstract: The present invention provides a surface treated stainless steel sheet for an automobile fuel tank excellent in corrosion resistance under a salt corrosive environment, that is, a surface treated stainless steel sheet for an automobile fuel tank excellent in corrosion resistance under a salt corrosive environment characterized by comprising a ferritic stainless steel sheet base material containing, by mass %, Cr: 10.0 to 25.0%, having an average r value of 1.4 or more, and having a total elongation of 30% or more or an austenitic stainless steel sheet base material containing Cr: 10.0 to 25.0%, having a total elongation of 45% or more, and having a work hardening rate of 400 N/mm2 on the surface of which is formed a plating layer containing 5 to 13% of Si and having a balance of unavoidable impurities and Al by a weight of 5 g/m2 to 80 g/m2, between the plating layer and base iron is formed an alloy layer having a thickness of less than 5.
    Type: Application
    Filed: January 5, 2007
    Publication date: November 5, 2009
    Inventors: Shunji Sakamoto, Toshio Tanoue, Naoto Ono, Takao Kanai
  • Publication number: 20090252986
    Abstract: A protective coating for a metal substrate is provided that is light, durable, galvanically protective, and easily applied at the site of manufacture. The coating has at least two layers, one of which is a galvanizing layer and one of which is a micro-composite of a galvanic metal and a non-conducting material, such as polymer. Such coatings are useful for example to protect pipes or other metal surfaces in corrosive environments. Methods of producing the coating are provided, including methods that use advanced spraying techniques to provide very thin but consistent layers. Using the advanced spraying methods the composite layer can be created by co-spraying the galvanic metal and the nonconductive material onto the surface of the galvanic coating. Optionally, an outer coat of insulating material can be applied to provide further protection to the surface.
    Type: Application
    Filed: December 4, 2008
    Publication date: October 8, 2009
    Applicant: United States Pipe and Foundry Co., LLC
    Inventors: William H. Owen, A. Michael Horton, James Weber
  • Patent number: 7597987
    Abstract: An Au plated film 12 is formed on the surface of a plate-formed metal base 13 composed of a metal less noble than Au, and the product is cut along a planned cutting line 18 reflecting a contour of a desired component, to thereby form a separator 10. Thus-formed separator 10 has the Au plated film 12 formed on the main surface 10a thereof, and has a cutting plane 16 formed as an end face 16 stretched up to the main surface 10a. The metal base 13 exposes in a part of the cutting plane 16, in a width of the exposed region of 1 mm or less. This is successful in providing a metal component for fuel cell which is satisfactory in the corrosion resistance and allows easy fabrication at low costs, a method of manufacturing the same, and also in providing a fuel cell having thus-fabricated metal component for fuel cell.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: October 6, 2009
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Shinobu Takagi, Masaki Shinkawa, Mikio Ura, Shinichi Yagi, Yasushi Kaneta, Tatsuo Hisada
  • Patent number: 7588836
    Abstract: Disclosed is a phosphated galvanized steel sheet comprising a steel sheet, a zinc-plating layer of ? single phase which is formed on at least one side of the steel sheet and contains Ni in an amount of not less than 10 ppm by mass and not more than the solubility limit thereof, and a phosphate layer which is formed on the zinc-plating layer and contains Mg in an amount of not less than 0.1 % by mass and less than 2.0 % by mass. Although this steel sheet is not subjected to sealing, it has corrosion resistance equivalent to or higher than those of conventional steel sheets which have been subjected to sealing, while having excellent blackening resistance.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: September 15, 2009
    Assignee: JFE Steel Corporation
    Inventors: Hiroki Nakamaru, Chiyoko Tada, Kazumi Yamashita, Hideo Sasaoka, Chiaki Kato
  • Patent number: 7585575
    Abstract: A heat-insulating layer has a melting point above 2500° C., a thermal expansion coefficient in excess of 8×10?6 K?1, and a sintering temperature greater than 1400° C. This material has a perovskite structure of the general formula A1+r(B?1/2+xB?1/2+y)O3+z in which: A=at least one element of the group (Ba, Sr, Ca, Be), B?=at least one element of the group (Al, La, Nd, Gd, Er, Lu, Dy, Tb), B?=at least one element of the group (Ta, Nb), and 0.1<r,x,y,z<0.1.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: September 8, 2009
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Robert Vassen, Sigrid Schwartz-Lueckge, Wolfgang Jungen, Detlev Stoever
  • Publication number: 20090218228
    Abstract: An easily handleable composition for metal surface treatment is provided which achieves foundation surface concealment, coating adhesion and corrosion resistance equal to or higher than those obtained by the conventional metal surface treatment compositions. This composition for metal surface treatment places no burden on the environment. A method for treating the surface of a metal material in which such a composition for metal surface treatment is used, and a metal material treated by such a metal surface treatment method, are also provided. Specifically disclosed is a metal surface treatment composition used for a treatment of a metal surface, which composition contains a zirconium compound and/or titanium compound substantially not containing fluorine, and an inorganic acid and/or a salt thereof. This metal surface treatment composition has a pH of not less than 1.5 but not more than 6.5.
    Type: Application
    Filed: February 28, 2007
    Publication date: September 3, 2009
    Applicants: NIPPON PAINT CO., LTD., CHEMETALL GMBH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 7566504
    Abstract: An iron species preform for forming a metal matrix composite is inserted in an aluminum species alloy member to be cast-in. The aluminum species alloy member has bearing faces having a section in a semicircular arc shape. An inner peripheral face of the iron species preform is provided with a plurality of inner side grooves. The inner side groove includes flat portions and groove bottom portions continuous to two end edges continuous to the inner peripheral face and opposed to each other. In a cast-in step, shrinkage in a peripheral direction accompanied by solidifying a melted aluminum species alloy is uniformly received by the respective inner side grooves, movement in the peripheral direction is restrained, a clearance at an interface can be prevented from being brought about, so that a cast-in performance is excellent, and stable bonding strength and close contact of the interface can be ensured.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 28, 2009
    Assignees: Fuji Jukogyo Kabushiki Kaisha, Nippon Piston Ring, Co. Ltd
    Inventors: Teruyuki Oda, Hiroshi Takiguchi
  • Publication number: 20090165341
    Abstract: A soleplate (101) comprises a metallic layer (102), a non-ferromagnetic layer (104) and a ferromagnetic layer (103) sandwiched between the metallic layer (102) and non-ferromagnetic layer (104). The soleplate (101) is used in an induction heating-based cordless iron (100). The electromagnetic field from an induction coil (109) located in a stand (108), where the iron rests and gets charged, can pass beyond the non-ferromagnetic layer (104) and heat the ferromagnetic layer (103) efficiently. The non-ferromagnetic layer (104) that is forming an ironing plate ensures a uniform heat transfer to the metallic layer (102) for good steaming performance for effective cordless ironing.
    Type: Application
    Filed: May 16, 2007
    Publication date: July 2, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Chandra Mohan Janakiraman, Yong Jiang, Job Van Der Burg
  • Publication number: 20090130483
    Abstract: An amorphous, ductile brazing foil is produced with a composition of FeaNibCrcSidBeMofPg with 25?a?50 atomic %; 30?b?45 atomic %; 5<c?15 atomic %; 4?d?15 atomic %; 4?e?15 atomic %; 0?f?5 atomic %; 0?g?6 atomic %; and any impurities, wherein 10?d+e+g?28 atomic % with a+b+c+d+e+f+g=100. Excellent brazing joints can be produced with these brazing foils.
    Type: Application
    Filed: July 18, 2006
    Publication date: May 21, 2009
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Thomas Hartmann, Dieter Nuetzel
  • Patent number: 7527877
    Abstract: A modified platinum group metal coating composition comprising a phase having a solid solution face-centered cubic (fcc) crystal structure, rich in platinum group materials. In order to be effective, the platinum group metal coating material was modified based on the chemical composition and chemical activity of the substrate material. The platinum group metal coating material was modified to include, in solid solution, elements of the superalloy substrate, specifically nickel (Ni) and cobalt (Co). Depending on the substrate material, the modified platinum group metal coating material may not even include Ni or Co, but may be modified to include amounts of different elements that are consistent with the chemical composition of the substrate. The modified platinum metal coating material also includes aluminum (Al). The composition may include small amounts of a second phase isolated within the fcc phase matrix.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 5, 2009
    Assignee: General Electric Company
    Inventors: Mark D. Gorman, Romgopal Darolia, Michael F. Gigliotti, Liang Jiang
  • Patent number: 7527876
    Abstract: A surface-treated steel sheet is disclosed, including a zinc based plated steel sheet having thereon a surface-treated film containing titanium, nickel, aluminum and fluorine and having a film thickness of from 0.05 to 1.0 ?m, the surface-treated film having a titanium deposition amount of from 0.01 to 0.5 g/m2 and containing from 0.01 to 5 parts by mass of nickel, from 0.1 to 25 parts by mass of aluminum and from 1 to 500 parts by mass of fluorine relative to 100 parts by mass of titanium. This surface-treated steel sheet does not contain hexavalent chromium in the film thereof at all and has excellent heat discoloration resistance, corrosion resistance and resistance to blackening.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: May 5, 2009
    Assignees: JFE Steel Corporation, Kansai Paint Co., Ltd.
    Inventors: Nobue Fujibayashi, Akira Matsuzaki, Satoru Ando, Syuji Nomura, Takahiro Kubota, Yoshikazu Morohoshi, Takashi Nakano, Takashi Okubo, Jun Akui
  • Patent number: 7510739
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 31, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett