Containing More Than 10% Nonferrous Elements (e.g., High Alloy, Stainless) Patents (Class 428/685)
  • Patent number: 7754344
    Abstract: A ferritic stainless steel welded pipe is ferritic stainless steel welded pipe contains, by wt %, C: 0.001 to 0.015%, N: 0.001 to 0.020%, Cr: 11 to 25%, Mo: 0.01 to 2.0%, one or both of Ti and Nb in 0.05 to 0.5%, and B: 0.0003 to 0.0030%, having an elongation of the welded pipe material in the direction becoming the circumferential direction of 30% or more, and having an average Lankford value of 1.5 or more, which is formed, welded, and sized by 0.5 to 2.0% in terms of circumferential length, then annealed at 700 to 850° C., and has the hardness difference between the weld zone and the matrix is 10 to 40 in range and a ratio between the bead thickness of the weld zone and the thickness of the matrix is 1.05 to 1.3.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: July 13, 2010
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Naoto Ono, Toshio Tanoue, Fumio Fudanoki, Tadashi Komori, Shuji Yamamoto
  • Publication number: 20100101780
    Abstract: Industrial tools having an outer diameter surface protected from abrasion due to silicious materials present in the Earth's crust by a layer of a hard-facing alloy with improved crack resistance, improved wear resistance, and improved hardness are provided. Additionally, a process for applying the hard-facing alloy to the surface of the industrial tools is described.
    Type: Application
    Filed: October 30, 2009
    Publication date: April 29, 2010
    Inventors: Michael Drew Ballew, John Robert Ballew, Ravi Menon, Jack Gary Wallin, Francis Louis LeClaire
  • Patent number: 7700212
    Abstract: An enhanced stability and inexpensive bipolar plate for a fuel cell is disclosed. The enhanced stability bipolar plate includes a bipolar plate substrate and a corrosion-resistant coating thermally sprayed on the bipolar plate substrate. A method for enhancing corrosion resistance of a bipolar plate is also disclosed.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: April 20, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Mahmoud H. Abd Elhamid, Gayatri Vyas, Youssef M. Mikhail, Richard H. Blunk, Daniel J. Lisi
  • Publication number: 20100028716
    Abstract: Brazing alloy with a composition consisting essentially of FeaNiRestCrbMocCudSieBfPg, wherein 0 atomic %<=a<=50 atomic %; 5 atomic %<=b<=18 atomic %; 0.2 atomic %<c<=3 atomic %; 4 atomic %<=e<=15 atomic %; 4 atomic %<=f<=15 atomic %; 0 atomic %<=g<=6 atomic %; rest Ni, and wherein if 0 atomic %<a<=50 atomic %; then 0.5 atomic %<=d<3 atomic % and if a=0, then 0.5 atomic %<=d<=5 atomic %.
    Type: Application
    Filed: August 1, 2007
    Publication date: February 4, 2010
    Inventors: Dieter Nuetzel, Thomas Hartmann
  • Publication number: 20090305078
    Abstract: The present invention relates an iron based brazing material comprising an alloy consisting essentially of: 15 to 30 wt % chromium (Cr); 0 to 5.0 wt % manganese (Mn); 15 to 30 wt % nickel (Ni); 1.0 to 12 wt % molybdenum (Mo); 0 to 4.0 wt % copper (Cu); 0 to 1.0 wt % nitrogen (N); 0 to 20 wt % silicone (Si); 0 to 2.0 wt % boron (B); 0 to 16 wt % phosphorus (P); optionally 0.0 to 2.5 wt % of each of one or more of elements selected from the group consisting of carbon (C), vanadium (V), titanium (Ti), tungsten (W), aluminium (Al), niobium (Nb), hafnium (Hf), and tantalum (Ta); the alloy being balanced with Fe, and small inevitable amounts of contaminating elements; and wherein Si, B and P are in amounts effective to lower melting temperature, and Si, B, and P are contained in amounts according to the following formula: Index=wt % P+1.1×wt % Si+3×wt % B, and the value of the Index is within the range of from about 5 wt % to about 20.
    Type: Application
    Filed: November 14, 2007
    Publication date: December 10, 2009
    Applicant: ALFA LAVAL CORPORATE AB
    Inventor: Per Sjodin
  • Publication number: 20090269612
    Abstract: A metal member is manufactured that has a plating layer of precious metal on the surface of a bare metal portion formed of a predetermined metal. First, a surface layer of the bare metal portion is removed. Then, a plating of precious metal is applied to the portion where the surface layer of the bare metal portion was removed. Then, the metal member is heat treated in an inert atmosphere. As a result, a metal member can be manufactured that has less carbide and hydrogen near a boundary surface of the plating layer and the bare metal portion than it would if the removing step and the heat treating step were not performed. With a metal member manufactured in this way, the plating layer does not easily peel away.
    Type: Application
    Filed: May 25, 2007
    Publication date: October 29, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Naotaka Aoyama
  • Patent number: 7604872
    Abstract: This disclosure provides a joining area and method between copper and stainless steel or titanium, as well as the permanent cathode obtained, where said joining area is made of a first zone of a copper-nickel (Cu—Ni) alloy, an intermediate zone with a mostly nickel alloy or pure nickel and a second zone made of a stainless steel-nickel alloy, which is the result of the participating materials being cast in an arc welding process, for example TIG, MIG or manual arc using electrodes of nickel as welding contributor between said materials and their space arrangement, that is to say, leaving a separation between the materials when performing the welding process, thus ensuring as follows: a) greater tensile strength, b) a substantial improvement of corrosion resistance of the joint welding, and c) improvement of conductibility, which can be improved still further by modifying the straight design of the conducting bar by providing it with the “horn”-type shape.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: October 20, 2009
    Assignee: Industria Proveedora de Partes Metalurgicas Limitada
    Inventors: Antonio Carracedo Rosende, Horacio Rafart Mouthon
  • Patent number: 7588836
    Abstract: Disclosed is a phosphated galvanized steel sheet comprising a steel sheet, a zinc-plating layer of ? single phase which is formed on at least one side of the steel sheet and contains Ni in an amount of not less than 10 ppm by mass and not more than the solubility limit thereof, and a phosphate layer which is formed on the zinc-plating layer and contains Mg in an amount of not less than 0.1 % by mass and less than 2.0 % by mass. Although this steel sheet is not subjected to sealing, it has corrosion resistance equivalent to or higher than those of conventional steel sheets which have been subjected to sealing, while having excellent blackening resistance.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: September 15, 2009
    Assignee: JFE Steel Corporation
    Inventors: Hiroki Nakamaru, Chiyoko Tada, Kazumi Yamashita, Hideo Sasaoka, Chiaki Kato
  • Patent number: 7585572
    Abstract: A ball stud having a ball at one end of a rod-shaped stud. The ball stud comprises: a metal plating film formed on the surface of the stud; and a trivalent chromate film continuously formed over both the surface of the metal plating film formed on the stud and the surface of the ball, whereby rust is inhibited in the boundary of the metal plating film. An externally threaded portion is also coated, if formed in the ball stud, on its surface with the metal plating film and the trivalent chromate film.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: September 8, 2009
    Assignee: Kyoritsu Seiki Co., Ltd.
    Inventor: Hirotaka Hattori
  • Patent number: 7553564
    Abstract: A turbomachinery component includes a substrate having a surface, the surface being a material consisting essentially of at least one compound having the chemical formula Mn+1AXn, wherein M is at least one early transition metal selected from groups IIIB, IVB, VB, and VIB, A is at least one element selected from groups IIIA, IVA, VA, VIA, and VIIA, X is one or both of carbon and nitrogen, and n is an integer between 1 and 3. The component is made by forming a compact and sintered substrate with the material, or by coating a substrate with the material.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: June 30, 2009
    Assignee: Honeywell International Inc.
    Inventors: Surojit Gupta, Thirumalai G. Palanisamy, Michel Barsoum, Chien-Wei Li
  • Patent number: 7531129
    Abstract: A high-strength stainless steel, having good mechanical properties and corrosion resistance in a high-pressure hydrogen gas environment, and excellent in stress corrosion cracking resistance, and a container or other device for high-pressure hydrogen gas, which is made of the said stainless steel, are provided. The stainless steel is characterized in that it consists of, by mass %, C: not more than 0.02%, Si: not more than 1.0%, Mn: 3 to 30%, Cr: more than 22% but not more than 30%, Ni: 17 to 30%, V: 0.001 to 1.0%, N: 0.10 to 0.50% and Al: not more than 0.10%, and the balance Fe and impurities. Among the impurities, P is not more than 0.030%, S is not more than 0.005%, and Ti, Zr and Hf are not more than 0.01% respectively, and the contents of Cr, Mn and N satisfy the following relationship [1]: 5Cr+3.4 Mn?500 N??[1].
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: May 12, 2009
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masaaki Igarashi, Hiroyuki Semba, Mitsuo Miyahara, Kazuhiro Ogawa, Tomohiko Omura
  • Patent number: 7527877
    Abstract: A modified platinum group metal coating composition comprising a phase having a solid solution face-centered cubic (fcc) crystal structure, rich in platinum group materials. In order to be effective, the platinum group metal coating material was modified based on the chemical composition and chemical activity of the substrate material. The platinum group metal coating material was modified to include, in solid solution, elements of the superalloy substrate, specifically nickel (Ni) and cobalt (Co). Depending on the substrate material, the modified platinum group metal coating material may not even include Ni or Co, but may be modified to include amounts of different elements that are consistent with the chemical composition of the substrate. The modified platinum metal coating material also includes aluminum (Al). The composition may include small amounts of a second phase isolated within the fcc phase matrix.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 5, 2009
    Assignee: General Electric Company
    Inventors: Mark D. Gorman, Romgopal Darolia, Michael F. Gigliotti, Liang Jiang
  • Publication number: 20090029187
    Abstract: A strip product consists of a metallic substrate, such as stainless steel, and a coating, which in turn comprises at least one metallic layer and one reactive layer. The coated strip product is produced by providing the different layers, preferably by coating, and thereafter oxidizing the coating to accomplish a conductive surface layer comprising perovskite and/or spinel structure.
    Type: Application
    Filed: November 21, 2005
    Publication date: January 29, 2009
    Inventors: Mikael Schuisky, Finn Petersen, Niels Christiansen, Joergen Gutzon Larsen, Soeren Linderoth, Lars Mikkelsen
  • Patent number: 7482065
    Abstract: A multi-layered metallic material comprising a metallic glass layer comprising an alloy layer that has a hardness of at least about 9.2 GPa and a metal layer having a hardness of less than about 9.2 GPa. In application form, an armor structure is provided that is suitable for protecting against ballistic projectiles.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: January 27, 2009
    Assignee: The Nanosteel Company, Inc.
    Inventor: Daniel James Branagan
  • Publication number: 20080318083
    Abstract: The combined alloying of a CrMnMo steel with carbon and nitrogen creates a stainless austenitic steel of high strength which according to the invention contains (in % by mass) 16-21 Cr, 16-21 Mn, 0.5-2.0 Mo, 0.8-1.1 C+N at a C/N ratio of 0.5-1.1 The steel is subjected to open melting and is suited for uses exhibiting one or more of the following features: strength, ductility, corrosion resistance, wear resistance, non-magnetizability.
    Type: Application
    Filed: August 18, 2005
    Publication date: December 25, 2008
    Applicants: Energietechnik Essen GMBH, Schaffler KG, KSB AKTIENGESELLSCHAFT, BOCHUMER VEREIN VERKEHRSTECHNIK GMBH, KOPPERN ENTWICKLUNGS GMBH & CO. KG
    Inventors: Hans Berns, Valentin G Gavriljuk
  • Patent number: 7455811
    Abstract: An iron based brazing material for joining objects by brazing represents an alloy, which apart from iron contains approximately 9-30% Cr, approximately 0-8% Mn, approximately 0-25% Ni, 0-1% N, a maximum of 7% Mo, less than about 6% Si, approximately 0-2% B and/or about 0-15% P, all stated in weight percent, which addition of Si, P, and B in combination or separately lowers the liquidus temperature, that is the temperature at which the brazing material is completely melted. A brazed product is manufactured by brazing of iron based objects with an iron based brazing material which is alloyed with a liquidus lowering element as Si, P and B.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 25, 2008
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Erik Sjodin
  • Publication number: 20080268281
    Abstract: The invented shield components are used for a plasma processing system to adhere deposition materials or process residuals during wafer processing, thus preventing excessive wafer contamination, even when exposed to high temperatures. One embodiment of the invented shields consists of a reaction barrier layer to separate the underlying substrate from the overlying spray coating to prevent solid-state chemical reaction between the substrate and the coating. Another embodiment of the invented shields consists of a substrate and a coating with a substrate-coating combination chosen to allow no new solid-state phase to form at the interface. The invented shields have well-bonded materials interfaces that preserve thermal and mechanical stability under high temperature conditions in a plasma processing system for the containment of deposition contaminates.
    Type: Application
    Filed: April 27, 2007
    Publication date: October 30, 2008
    Inventors: Quan Bai, Patrick Rymer, Jose Gonzalez, Gary Groshong
  • Patent number: 7407715
    Abstract: A method of brazing stainless steel components to form a complex shape such as an impeller. The method includes the steps of providing the stainless steel components shaped and formed from a selected stainless steel alloy; providing a brazing alloy having a selected composition and compatibility with stainless steel; heating the stainless steel components and brazing alloy for a controlled time to a liquidus temperature to effect brazing; cooling the stainless steel components and brazing alloy to a quench temperature substantially lower than the liquidus temperature of the brazing alloy to provide a tensile strength of greater than about 20 Ksi in the brazing alloy; and quenching the assembly from the quench temperature to a temperature of less than about 400° F. in a given time to provide a brazed assembly free of distortion and cracks with desired mechanical properties in the stainless steel components by virtue of the thermal treatment.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: August 5, 2008
    Assignee: Elliott Company
    Inventors: Kent W. Beedon, Phillip Dowson
  • Patent number: 7396597
    Abstract: A stainless steel pipe includes a base metal containing 20-35 mass % of Cr, and a Cr-depleted zone is formed in the surface region of the pipe. The Cr concentration in the Cr-depleted zone is at least 10%, and the thickness of the Cr-depleted zone is at most 20 micrometers. A Cr-based oxide scale layer having a Cr content of at least 50% and a thickness of 0.1-15 micrometers may be provided on the outer side of the Cr-depleted zone. An Si-based oxide scale layer with an Si content of at least 50% may be provided between the Cr-based oxide scale layer and the Cr-depleted zone. The pipe is particularly suitable for use in petroleum refineries or petrochemical plants, such as for use as a pipe of a cracking furnace of an ethylene plant.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: July 8, 2008
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yoshitaka Nishiyama, Yoshimi Yamadera
  • Patent number: 7390577
    Abstract: The invention relates to a spray powder for coating a substrate (2), in particular for coating a bearing part (2) of a bearing apparatus, the spraying powder having at least the following composition: carbon=0.1% to 1.5% by weight, manganese=0.1% to 8% by weight, sulphur=0.1% to 2% by weight, copper=0.1% to 12% by weight and iron=the balance in % by weight to 100%.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: June 24, 2008
    Assignee: Sulzer Metco AG
    Inventor: Gérard Barbezat
  • Publication number: 20080102309
    Abstract: The present invention is directed to a nickel-based alloy, such as INCOLOY or INCONEL, clad stainless steel sheath tubing material for heating elements. This clad material is designed to minimize the cost of heating elements generally constructed entirely of nickel-based alloys alone while providing necessary material requirements of weldability, hot strength, corrosion resistance, thermal shock resistance, and formability.
    Type: Application
    Filed: October 23, 2007
    Publication date: May 1, 2008
    Inventors: Charles D. Tuffile, Clive Britton
  • Patent number: 7353981
    Abstract: A composite metal sheet for use in making lightweight cookware or as a food warming tray comprising a layer of aluminum roll bonded to a layer of stainless steel defining a food-contacting surface on a first side. The food warming tray embodiment also includes a layer of stainless steel mesh roll bonded on a second side. A method of making a composite metal sheet for cookware comprising the steps of: providing a roll pack of ordered layers consisting of (a) a layer of Alclad aluminum, (b) a layer of stainless steel foil, (c) a reusable plate or platen of stainless steel, (d) a layer of stainless steel foil, and (e) a layer of Alclad aluminum; heating the roll pack to a rolling temperature of about 725°-775° F., preferably about 750° F.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: April 8, 2008
    Assignee: All-Clad Metalcrafters LLC
    Inventor: William A. Groll
  • Patent number: 7341795
    Abstract: The invention provides a Fe—Cr alloy structure containing Cr of about 6% or more by mass but about 25% or less by mass, having a corrosion-resistant paint film containing metal powder having ionization tendencies greater than iron, with a content of the metal powder of about 20% or more by volume but about 60% or less by volume in a dry paint film, with a dry film thickness of about 5 ?m or more but about 100 ?m or less; and a manufacturing method thereof; whereby excellent corrosion resistance and excellent adhesion is provided.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: March 11, 2008
    Assignee: JFE Steel Corporation
    Inventors: Yoshihiro Yazawa, Osamu Furukimi, Yasushi Kato, Sadao Hasuno
  • Patent number: 7335428
    Abstract: The invention relates to a cooking vessel comprising a base made of a multilayer material and a side wall, the said multilayer material comprising, in succession from the outside of the vessel to the inside of the vessel: an outer part, having a thickness eE, consisting of a layer of a ferromagnetic Nickel based alloy having a Curie temperature of between 30 and 350° C. and a thermal expansion coefficient of greater than or equal to 6.5.10?6 K?1, and a core, having a thickness ec, comprising at least one layer selected among aluminium, aluminium alloy and copper.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: February 26, 2008
    Assignees: Imphy Alloys, Alinox AG
    Inventors: Hervé Fraisse, Yves Grosbety, Thierry Waeckerle, Markus Spring, Norbert Hoffstaedter
  • Patent number: 7314670
    Abstract: A welded component includes at least one high temperature segment of a high alloy Cr steel with high creep strength and a low temperature segment of a low alloy steel with high toughness and/or a high yield strength which are connected materially to one another via a weld joint. In one such component a gradual transition of chemical, physical and mechanical properties in the joining area is achieved in that between the weld joint and the high temperature segment there are at least two successive clad layers of at least two lower alloy weld metals with a total content of elements which increase the creep strength, such as for example Cr, Mo, W and V, which total content decreases toward the weld joint, and/or an increasing total content of elements which increase the toughness and/or yield strength, such as for example Ni and Mn, which total content increases toward the weld joint.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: January 1, 2008
    Assignee: ALSTOM Technology Ltd
    Inventors: Herbert Bartsch, Richard Brendon Scarlin
  • Publication number: 20070269676
    Abstract: A wear-resistant article that includes a substrate that presents a surface. The substrate has a bulk region and a surface region beginning at and extending inward from the surface toward the bulk region. There is a diffusion barrier layer on at least a portion of the surface of the substrate wherein the diffusion barrier layer is a nickel-based alloy. There is a wear-resistant cladding layer on the diffusion barrier layer wherein the wear-resistant layer contains boron. The surface region of the substrate contains no boron that has been diffused from the wear-resistant cladding layer.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 22, 2007
    Inventors: Kevin M. Singer, Donald W. Bucholz
  • Patent number: 7238434
    Abstract: This invention relates to a welded line pipe structure for transporting corrosive petroleum or natural gas. It is constituted by martensitic stainless steel pipes containing 8–16% Cr and at most 0.05% C. By suitably controlling the welding conditions at the time of girth welding of the steel pipes so as to ensure that the Cr concentration in grain boundary Cr-depleted portions existing immediately beneath a weld oxide scale is at least 5%, the occurrence of SCC in a high temperature CO2 environment can be prevented.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: July 3, 2007
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hisashi Amaya, Kazuhiro Ogawa, Kunio Kondo, Masayuki Sagara, Hiroyuki Hirata
  • Patent number: 7217905
    Abstract: A filler metal including not more than about 0.1% C, not more than about 1.0% Si; not more than about 0.8% Mn; from about 10.5% to about 13.0% Cr; from about 0.65% to about 4.0% Ni; from about 10(% C) to about 1.5% Ti; not more than about 0.5% each of N, S, P, Mo, Nb, Cu, V, or Co; and balance essentially Fe, wherein a weld test pad of the filler metal contains a microstructure comprising martensite. A method of attaching together two components using a modified filler metal which forms a weld containing an amount of martensite sufficient to increase the volume of the weld thereby at least partially offsetting shrinkage of the weld upon cooling, and articles produced thereby.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: May 15, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: Jeffrey B. Hardesty, David E. Nelson
  • Patent number: 7208231
    Abstract: Cookware having improved uniform heat transfer over the entire cross section thereof, the cookware formed from a multi-layered composite metal having a layer of stainless steel roll bonded at or near the core of the composite. The stainless layer is roll bonded to layers of aluminum which, in turn, is roll bonded to layers of stainless steel or aluminum. The layer of stainless steel adjacent to the cooking range may be a ferromagnetic grade of stainless steel if induction-type heating is desired. The cookware may include a non-stick surface applied thereto.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: April 24, 2007
    Assignee: All-Clad Metalcrafters LLC
    Inventor: William A. Groll
  • Patent number: 7179540
    Abstract: A plate type heat exchanger wherein contacting portions of laminated plural plates and fins or contacting portions of laminated plural plates are brazed to form a heat exchange area, characterized in that at least the surface of a plate or fin contacting with a fluid is covered with an alloy comprising in weight ratio 25–35% of chromium, 5–7% of phosphorus, 3–5% of silicon, 0.001–0.1% of at least one selected from the group consisting of aluminum, calcium, yttrium and mischmetal, and balance containing mainly nickel. The alloy may contain 15% or less of iron and or 10% or less of molybdenum. The plate type exchanger exhibits enhanced pressure resistance and is excellent in corrosion resistance.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: February 20, 2007
    Assignees: Brazing Co., LTD., Fukuda Metal Foil & Power Co., LTD.
    Inventor: Kaoru Tada
  • Patent number: 7175919
    Abstract: An adhesive-free multilayered metal laminate having a given thickness which is obtained by bonding a metal sheet having a thin metal film on a surface thereof to a metal foil without using an adhesive; and a process for continuously producing the laminate. The process comprises the steps of; setting a metal sheet on a reel for metal sheet unwinding; setting a metal foil on a reel for metal foil unwinding; unwinding the metal sheet from the metal sheet-unwinding reel and activating a surface of the metal sheet to thereby form a first thin metal film on the metal sheet surface; unwinding the metal foil from the metal foil-unwinding reel and activating a surface of the metal foil to thereby form a second thin metal film on the metal foil surface; and press-bonding the activated surface of the first thin metal film to that of the second thin metal film so that the first thin metal film formed on the metal sheet is in contact with the second thin metal film formed on the metal foil.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: February 13, 2007
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Kinji Saijo, Kazuo Yoshida, Hiroaki Okamoto, Shinji Ohsawa
  • Patent number: 7157150
    Abstract: A method of bonding a stainless steel part to a titanium part by heating a component assembly comprised of the titanium part, the stainless steel part, and a compact titanium-nickel filler material placed between the two parts and heated at a temperature that is less than the melting point of either the stainless steel part or the titanium part. The compact filler material is made of particles, preferably spheres, of discrete layers of nickel and titanium metal that react with each other and with the stainless and titanium parts to form a strong assembly when thermally processed. The component assembly is held in intimate contact at temperature in a non-reactive atmosphere for a sufficient time to develop a hermetic and strong bond between the stainless steel part and the titanium part.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: January 2, 2007
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Guangqiang Jiang, Attila Antalfy, Gary D. Schnittgrund
  • Patent number: 7078108
    Abstract: Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: July 18, 2006
    Assignee: The Regents of the University of California
    Inventors: Xinghang Zhang, Amit Misra, Michael A. Nastasi, Richard G. Hoagland
  • Patent number: 7026057
    Abstract: A new article of manufacture, for example a faucet or other article of hardware, has a specified decorative color, and is resistant to corrosion, abrasion and attack by chemicals. The article includes a substrate, one or more corrosion resistant layers applied to the substrate, a thin transition layer having a composition that varies systematically from a first composition to a second composition and in which the first composition has, at least in part, the function of corrosion protection, and in which the second composition determines the visible color or that portion of the substrate to which the transition layer is applied.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: April 11, 2006
    Assignee: Moen Incorporated
    Inventors: James G. Sheek, Jarek Grembowicz, Inho Song, Timothy J. O'Brien
  • Patent number: 7001675
    Abstract: There is disclosed a method of depositing a nanocomposite coating of stainless steel and a metallic carbide or metallic nitride, e.g. chromium carbide or chromium nitride, onto a stainless steel substrate 10, including the steps of (a) providing the stainless steel substrate 10; (b) depositing stainless steel on the substrate 10; (c) depositing chromium carbide or chromium nitride on the substrate 10; and allowing a nanocomposite coating 14 of the stainless steel and chromium carbide or chromium nitride to form on the substrate 10.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: February 21, 2006
    Assignee: Winsky Technology Ltd.
    Inventor: Winston Siu Yeung Chan
  • Patent number: 6953062
    Abstract: The present invention provides a fuel tank or a fuel pipe excellent particularly in the corrosion resistance of the outer surface in a salt damage environment, and is a fuel tank or a fuel pipe excellent in corrosion resistance characterized by: being formed by using a steel sheet or a steel pipe containing Cr of 9.0 to 25.0 mass % as the base material; on the outer surface thereof, having any one or more of welded portions, brazed portions and structurally gapped portions contacting components; and having one or more of metals, whose electrode potential in a 5%-NaCl aqueous solution at 30° C. is ?0.4 V or less relative to a saturated calomel electrode, attached to at least a part or parts of said portion(s) of the outer surface in an electrically conductive manner.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: October 11, 2005
    Assignee: Nippon Steel Corporation
    Inventors: Shunji Sakamoto, Akihiko Takahashi, Michio Kaneko, Toshio Tanoue, Kenji Kato, Naoto Ono, Masao Kikuchi
  • Patent number: 6935529
    Abstract: A fuel tank for a motor vehicle is fabricated from an austenitic stainless steel sheet having elongation of 50% or more after fracture by a uniaxial stretching test with a work-hardening coefficient of 4000 N/mm2 or a ferritic stainless steel sheet having elongation of 30% or more after fracture with Lankford value of 1.3 or more. The stainless steel sheets are reformed to a complicated shape of a fuel tank without work flaws such as cracks or break-down. Excellent corrosion-resistance of stainless steel itself is maintained in the fabricated fuel tank. Consequently, the proposed fuel tank is used without diffusion of gasoline to the open air over a long term.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: August 30, 2005
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Hanji Ishikawa, Shigeru Morikawa, Toshirou Nagoya, Toshiro Adachi, Naoto Hiramatsu, Satoshi Suzuki
  • Patent number: 6926971
    Abstract: Cookware having improved uniform heat transfer over the entire cross section thereof, the cookware formed from a multi-layered composite metal having a layer of titanium roll bonded at or near the core of the composite. The titanium layer is roll bonded to layers of aluminum which, in turn, is roll bonded to layers of stainless steel. The layer of stainless steel adjacent to the cooking range may be a ferritic stainless steel if induction-type heating is desired. The multi-layered composite is also suitable for making a sole plate for an iron. Both the cookware and sole plate may include a non-stick surface applied thereto.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: August 9, 2005
    Assignee: All-Clad Metalcrafters LLC
    Inventor: William A. Groll
  • Patent number: 6913842
    Abstract: A precision machine part is made of a plurality of pieces with a transient liquid phase diffusion bonding alloy provided between the pieces to bond them together. The precision machine part has one or more conveyance passages formed in it, has a longitudinal axis and is configured to permit passage of liquid or gas through the conveyance passage from a pipe line or cylinder. The pieces of the precision machine part are adhered to each other by transient liquid phase bonding with a ribbon of an amorphous bonding alloy. The bonding alloy can contain 1 to 10 atomic % V or can contain 1 to 15 atomic % of B or P or a mixture of B and P and 1 to 10 atomic % V, the balance being Fe and unavoidable impurities, and can exhibit an amount of contraction in a bonding stress loading direction caused by plastic deformation in the bonding process of not more than 5%. The bonding alloy may be an amorphous Ni-based alloy.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: July 5, 2005
    Assignee: Fukuju Industry Corporation Ltd.
    Inventors: Yasushi Hasegawa, Yasuhiro Shinohara, Yutaka Takagi
  • Patent number: 6893739
    Abstract: A steel plate and a hot-dip galvanized steel plate, superior in terms of high electromagnetic shield capacity. The steel plate is prepared from a composition comprising C, N and S in an amount of 0.150% by weight or less in total; Mn in an amount of 0.1 to 1.0% by weight; Si in an amount of 0.5% by weight or less; Al in an amount of 1.0% by weight or less; P in an amount of 0.06% by weight or less; and Fe for the remainder, and inevitable elements, and shows a yield strength of 18 kg/mm2 or higher, and an elongation of 40% or higher. The hot-dip galvanized steel plate is prepared from a composition comprising C, N and S in an amount of 0.0150 % by weight or less in total; Mn in an amount of 0.2 to 0.8% by weight; Al in an amount of 0.6% by weight or less; Si in an amount of 0.4% by weight or less; P in an amount of 0.06% by weight or less, with the proviso that the sum of Mn, Al, Si and P amounts to 0.2-1.0% by weight; and Fe for the remainder, and inevitably present elements.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: May 17, 2005
    Assignees: Posco, Research Institute of Industrial Science & Technology
    Inventors: Jae-Young Lee, Eel-Young Kim, Jin-Gun Sohn, Noi-Ha Cho, Young-Jin Kwak, Soon-Joo Kwon, Yong-Min Kim, Jung-Sik Lee
  • Patent number: 6869692
    Abstract: Bimetal saw band comprising a support band of high microstructural stability and fatigue strength, comprising 0.25 to 0.35% of carbon, 0.3 to 0.5% of silicon, 0.8 to 1.5% of manganese, 1.0 to 2.0% of molybdenum, 1.5 to 3.5% of chromium, 0.5 to 1.5% of nickel, 0.5 to 2.5% of tungsten, 0.15 to 0.30% of vanadium, 0.05 to 0.10% of niobium, 0.05 to 1.0% of copper, up to 0.2% of aluminum, up to 1% of cobalt, remainder iron including melting-related impurities, and tooth tips made from a steel with high wear resistance, comprising 1.0 to 2.0% of carbon, 3 to 6% of chromium, 1 to 5% of vanadium, 3 to 10% of molybdenum, 4 to 10% of tungsten, 4 to 10% of cobalt, up to 1% of silicon, up to 1% of manganese, up to 0.5% of niobium, up to 0.5% of nitrogen, remainder iron including melting-related impurities.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: March 22, 2005
    Assignee: Stahlwerk Ergste Westig GmbH
    Inventors: Oskar Pacher, Werner Lenoir
  • Patent number: 6861161
    Abstract: A composite tool comprising a supporting part of a metallic material having a first composition and a working part of a metallic material having a second composition which is different from the first composition, a process for the manufacture thereof and a method of cutting an austentic alloy article with this composite tool. The supporting part of the composite tool is made of a tenacious iron-based material, and the working part is made of a precipitation harden iron-cobalt-tungsten alloy. The parts are joined by a metallic connection.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: March 1, 2005
    Assignee: Machner & Saurer GmbH
    Inventors: Helmut Ponemayr, Karl Leban, Manfred Daxel Müller, Herbert Danninger
  • Patent number: 6858050
    Abstract: The present invention comprises a method of manufacturing a brazed body. The method comprises forming a multi-layer assembly comprising: a first material capable of forming a first oxide and having a melting temperature higher than 660° C.; a first reducing metal adjacent the first material, the reducing metal capable of reducing at least a portion of the first oxide on the first material a braze adjacent to the reducing metal; and a second material adjacent the braze, the second material comprising a material having a melting temperature higher than 660° C. The method then comprises creating a vacuum around the assembly, and heating the assembly to melt the reducing metal and the braze. The assembly is then subject to cooling to thereby form the brazed body.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: February 22, 2005
    Assignee: 3M Innovative Properties Company
    Inventor: Gary M. Palmgren
  • Patent number: 6851455
    Abstract: A fuel-filler tube, which is made of a welded pipe of corrosion-resistant austenitic or ferritic stainless steel, has a fuel-supply opening with high dimensional accuracy. The austenitic stainless steel has hardness of 180 HV or less with a work-hardening coefficient of 0.49 or less. The ferritic stainless steel has Lankford value of 1.2 or more with elongation of 30% or more by a uniaxial tensile test.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: February 8, 2005
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Masato Otsuka, Hanji Ishikawa, Satoshi Suzuki, Toshiro Adachi
  • Publication number: 20040247978
    Abstract: In a bipolar plate for a fuel cell including a metal substrate and a metallic coating formed on at least part of a surface of the metal substrate, the durability or the resilience is elevated by suitably selecting a material or a shape of the metal substrate and/or the metallic coating. The material of the metal substrate includes one or more of metals or metal alloys selected from a group consisting of iron, nickel, alloys thereof and stainless steel; and the metallic coating includes a combination of conductive platinum-group metal oxides. The metal substrate may be a thermally oxidized substrate, and the metallic coating may be a conductive oxide. Further, the metallic coating may be a metallic porous element or a metallic porous element having a passivity prevention layer on the surface thereof.
    Type: Application
    Filed: March 18, 2004
    Publication date: December 9, 2004
    Inventor: Takayuki Shimamune
  • Patent number: 6828040
    Abstract: The invention relates to an improved composite used as a bipolar separator plate in fuel cells. The composite of the invention comprises a steel substrate having a carbon coating thereon, the carbon coating comprises a carbon layer derived by pyrolysis of an acetylenic polymer having a content of carbon of at least 90%, the carbon layer protects the substrate against corrosion and improves long term contact resistivity, the polymer is soluble at a temperature below 110° C. in an organic solvent, and the carbon layer contacts said steel substrate. A process for preparing the composite according to the invention is also disclosed.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: December 7, 2004
    Assignees: Institut National de la Recherche Scientifique, Universite McGill
    Inventors: Nicolas Cunningham, Allan S. Hay, Jean-Pol Dodelet, Yeuzhong Meng
  • Patent number: 6818320
    Abstract: A welding method for materials to be welded which are subjected to fluoride passivation treatment, and a fluoride passivation retreatment method, wherein, when fluoride passivation retreatment is conducted after welding, there is no generation of particles or dust. The method provides superior resistance to fluorine system gases. During fluoride passivation treatment, hydrogen is added to the gas (the back shield gas) flowing through the materials to be welded. In one embodiment of the welding method, the thickness of the fluoride passivated film in a predetermined range from the butt end surfaces of the materials to be welded is set to 10 nm or less, followed by subsequent welding. Furthermore, the fluoride passivation retreatment method, includes the steps of heating at least the welded parts following welding and flowing a gas containing fluorine gas in the interior portion of the parts.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: November 16, 2004
    Assignees: Stella Chemifa Kabushiki Kaisha
    Inventors: Tadahiro Ohmi, Takahisa Nitta, Yasuyuki Shirai, Osamu Nakamura
  • Patent number: 6815089
    Abstract: The invention relates to structural components for the boiler zone of power plants or refuse incineration plants, especially tubes or nests of tubes, fin and diaphragm walls, that consist of steel or steel alloys, and is characterized by a continuous closed outer nickel or nickel alloy layer galvanically deposited having a layer thickness of approximately 1 to 5 mm, preferably 1 to 2.5 mm.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: November 9, 2004
    Assignee: BBP Service GmbH
    Inventor: Johann Wilhelm Ansey
  • Patent number: 6805975
    Abstract: Steel sheet for porcelain enameling capable of realizing excellent enamel adhesion with the steel sheet by direct-on enameling once is provided by using a Ti-added steel sheet; there are also a method for producing the same, as well as a porcelain enamel product and the method for producing the same. A steel sheet for porcelain enameling is produced by providing a Ni—Mo alloy plating film on a Ti-added steel sheet containing 0.01% by weight (wherein, % represents “% by weight” hereinafter) or less of C, 0.5% or less of Mn, 0.04% or less of P, 0.04% or less of S, 0.01 to 0.50% of Ti, and balance Fe accompanied by unavoidable impurities, and by then performing heat treatment thereto to control the content of Ni, Mo, and Fe present in the surface of the steel sheet in a predetermined range, porcelain enamel is applied once and fired.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: October 19, 2004
    Assignees: Ferro Enamels (Japan) Limited, Toyo Kohan Co., Ltd.
    Inventors: Fumiaki Sato, Toshihira Hamada, Shuzo Oda, Yoshihiro Jono, Takahiro Hayashida, Junichi Fujimoto, Masao Komai
  • Patent number: 6802430
    Abstract: A fuel tank and a fuel-filler tube, which maintain excellent corrosion-resistance over a long term even in a severely corrosive atmosphere, is made of a ferritic stainless steel sheet good of formability. The steel sheet, which has elongation of 30% or more after fracture by a uniaxial tensile test and minimum Lankford value (value-rmin) of 1.3 or more, is formed to a product shape, and paint is cathodically electrodeposited on a surface of the formed stainless steel sheet. The stainless steel sheet may be one coated with an Al or Zn plating layer. When the fuel tank or fuel-filler tube is fabricated by welding, Zn-rich paint is preferably applied to a welded part in prior to cathodic electrodeposition coating.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: October 12, 2004
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Kouki Tomimura, Yasutoshi Hideshima, Naoto Hiramatsu, Toshiro Adachi, Kazushi Shirayama