Containing More Than 10% Nonferrous Elements (e.g., High Alloy, Stainless) Patents (Class 428/685)
  • Publication number: 20040197598
    Abstract: A stainless steel/Cu clad which has high-temperature strength enough to be not easily deformed and be sufficiently practical and high thermal conductivity for a high temperature use, and a manufacturing method of such a clad. The stainless steel/Cu clad of the invention is formed by bonding a high Mn austenitic stainless steel containing 9-16 mass % Mn and Cu metallically. Manufacturing of the stainless steel/Cu clad is carried out as follows. That is, a first sheet made of the high Mn austenitic stainless steel, a second sheet made of Cu, and a third sheet of a heat resisting steel which acts as a peeling material are wound in a coil shape in a state where they are laminated in such order and, subsequently, the obtained coil is vacuum-annealed, thereby bonding them and manufacturing the high Mn austenitic stainless steel/Cu clad having high-temperature strength and high-thermal conductivity.
    Type: Application
    Filed: March 25, 2004
    Publication date: October 7, 2004
    Inventors: Daisuke Imai, Masahiro Sasaki, Katunori Shirae
  • Patent number: 6797406
    Abstract: The present invention relates to a color cathode ray tube provided with a pressed-type shadow mask. As material for constituting the shadow mask 6, a single plate body made of a composite gradient alloy plate consisting of three layers 6A, 6B, 6C or more in which an alloy element has the concentration gradient which is continuously changed from one surface to the other surface is used. The present invention can realize a pressed mask having a large radius of curvature by self-correcting the thermal deformation such as a doming or the like.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: September 28, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Noriharu Matsudate, Nobuhiko Hosotani
  • Patent number: 6783871
    Abstract: The instant invention is directed to a bonded product, such as a manifold, for gas or liquid chromatographs, and a method for making the same. The bonded product is made using the following steps: (i) contacting two or more steel sheets; (ii) heating the contacted sheets to a temperature substantially below the melting temperature of the sheets; (iii) applying pressure to the contacted sheets; and (iv) cooling the contacted sheets. No intermediate foreign material is used to bond the steel sheets, e.g., no welding material or TLP diffusion bonding plate is utilized. Nonetheless, a strong, leak free bond is generated at temperatures as low as 1700° F. (926.6° C.). The bond is molecular in nature, as evidenced by grains that grow from one sheet to another across the interface between the two sheets.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: August 31, 2004
    Assignee: Agilent Technologies, Inc.
    Inventor: Peisheng Sheng
  • Patent number: 6783870
    Abstract: This invention describes the roll bonding of Al and Ni-bearing Cu alloys to suitable substrates to produce self-brazing materials for the elevated temperature, aggressive environment application. The Al and Ni-bearing Cu alloy for the self-brazing layers can be obtained by cladding layers of elemental Ni and Al to Cu. The Al content in the self-brazing layers can be varied from 2 to 100%. The Ni content in the self-brazing Cu alloy can be varied from 10 to 100%. Additional alloying elements in the commercial Cu alloys such as Fe, Cr, Si, Mn, Sn and Zn are unavoidable. Trace elements in the commercial alloys such as Pb, Ag and As will also affect the brazing and shall be reduced.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: August 31, 2004
    Assignee: Engineered Materials Solutions, Inc.
    Inventors: Gardner S. Haynes, Bijendra Jha, Chen-Chung S. Chang
  • Patent number: 6780527
    Abstract: The present invention includes a personal ornament having a white coating layer and a method for making the same. The base article is made of metal and the white-colored stainless steel coating layer is formed by a dry plating process. The base metal may be ferrous or non-ferrous.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: August 24, 2004
    Assignee: Citizen Watch Co., Ltd.
    Inventors: Koichi Naoi, Akiyoshi Takagi, Yukio Miya, Fumio Tase, Kazumi Hamano
  • Patent number: 6776928
    Abstract: The invention relates to an electrically conductive powder coating composition having anti-static properties comprising metallic fibers. Further, the coating composition shows effective EMF shielding. Very good results are found when the metallic fibers have an L/D ratio in the range between 5 and 75, wherein L is the length of the fiber and D is the diameter of the fiber. In a preferred embodiment stainless steel fibers are incorporated in the powder coating composition.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: August 17, 2004
    Assignee: Akzo Nobel N.V.
    Inventors: Tullio Rossini, Franco Folcio, Corrado Dotti
  • Publication number: 20040137232
    Abstract: The invention provides a Fe—Cr alloy structure containing Cr of about 6% or more by mass but about 25% or less by mass, having a corrosion-resistant paint film containing metal powder having ionization tendencies greater than iron, with a content of the metal powder of about 20% or more by volume but about 60% or less by volume in a dry paint film, with a dry film thickness of about 5 &mgr;m or more but about 100 &mgr;m or less; and a manufacturing method thereof; whereby excellent corrosion resistance and excellent adhesion is provided.
    Type: Application
    Filed: June 23, 2003
    Publication date: July 15, 2004
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshihiro Yazawa, Osamu Furukimi, Yasushi Kato, Sadao Hasuno
  • Patent number: 6706416
    Abstract: A method of producing a corrosion resistant ferrous product is disclosed. The product is produced by rolling a heated billet which comprises a mass of mild steel swarf in a stainless steel jacket. Two reducing agents are present in the jacket when the billet is heated. The first reducing agent is in the form of powdered aluminum, titanium turnings or other metal having a greater affinity for oxygen than chrome and which promotes the formation of CO rather than CO2 from air or oxygen which enters or evolves in the billet above about 800° C. The second reducing agent is in gaseous or vapour form substantially below that temperature. The second reducing agent may be provided by premixing with the swarf such substances as ammonium chloride or urea, which dissociate to form reducing gases when heated. Alternatively, the billet can be heated in a reducing furnace and the gas in the furnace may act as the second reducing agent.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: March 16, 2004
    Inventor: Antonino Giorgio Cacace
  • Patent number: 6703143
    Abstract: The present invention provides a metal foil excellent in electrical contact stability, and low in cost, by eliminating plating processes. Specifically, the present invention is a metal foil excellent in electrical contact stability characterized by having a surface roughness wherein the ratio Ra/Sm between the arithmetic average of roughness Ra and the average interval Sm of concavities and convexities is 0.001 or more, which average values are obtained by measuring the roughness in the direction in which the average interval Sm of the concavities and convexities on the surface is smallest. It is preferable that the material of the metal foil is stainless steel or phosphor bronze.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: March 9, 2004
    Assignee: Nippon Steel Corporation
    Inventors: Hiroshi Kihira, Masao Kikuchi
  • Patent number: 6673467
    Abstract: A metallic component exposed to high temperature steam is provided with a coating comprising a thin primer layer deposited on the surface of the metallic component and a thicker overlay layer on top of the primer layer. The primer layer consists of highly ductile, oxidation resistant material such that it remains free of any defects over a long period of exposure. The overlay layer consists of an oxidation resistant, less ductile, and low-cost material. It protects the thin primer layer from mechanical damage and chemical degradation. The primer layer protects the base material of the metallic component from oxidizing steam that may penetrate through cracks of the overlay layer. Due to suitable choice of coating materials and thicknesses of the layers the coating is low-cost.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: January 6, 2004
    Assignee: Alstom (Switzerland) Ltd
    Inventors: Richard Brendon Scarlin, Reinhard Knödler
  • Patent number: 6667110
    Abstract: A hybrid steel cord and method of making such cord which includes, in contact with one or more carbon steel wire(s), at least one stainless steel wire whose microstructure contains less than 20% of martensite (% by volume). Articles made of plastic and/or rubber, in particular tire envelopes or the carcass reinforcement plies of such envelopes embodying such cords.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: December 23, 2003
    Assignee: Compagnie Générale des Establissements Michelin - Michelin & Cie
    Inventors: François-Jacques Cordonnier, Eric Depraetere
  • Patent number: 6663984
    Abstract: Clad steel roiled section suitable for reinforcing concrete is disclosed, which is produced from a bimetallic ingot comprising a basic material containing a group of alloy elements including Si and Al, and a surface layer of a ferritic or austenitic stainless steel containing a group of alloy elements including Cr and Ni, by hot rolling the ingot to an intermediate billet and a rolled section, and subjecting the rolled section to heat treatment. A feature of the reinforcing clad steel rolled products is that the basic material is steel containing, in percent by weight, from 1.0 to 5.0 Si and from 0.1 to 5.0 Al, with the proviso that 3.0≦(Si+Al)≦6.0. The reinforcing clad rolled products exhibit superior mechanical strength and impact toughness, improved corrosion resistance and high bond strength between the layers and with concrete.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: December 16, 2003
    Assignee: Zakrytoe Aktsionerone Obschestvo “Transkom”
    Inventors: Vasily Petrovich Vostrikov, Konstantin Igorevich Gramotnev, Vyacheslav Nikolaevich Chernyshev, Aleksei Valerievich Sadovsky, Petr Vasilievich Vostrikov
  • Patent number: 6652991
    Abstract: The addition of small amounts of CeO2 and Cr to intermetallic compositions of NiAl and FeAl improves ductility, thermal stability, thermal shock resistance, and resistance to oxidation, sulphidization and carburization.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: November 25, 2003
    Assignee: The Governors of the University of Alberta
    Inventors: You Wang, Weixing Chen
  • Publication number: 20030196715
    Abstract: The present invention provides a fuel tank or a fuel pipe excellent particularly in the corrosion resistance of the outer surface in a salt damage environment, and is a fuel tank or a fuel pipe excellent in corrosion resistance characterized by: being formed by using a steel sheet or a steel pipe containing Cr of 9.0 to 25.0 mass % as the base material; on the outer surface thereof, having any one or more of welded portions, brazed portions and structurally gapped portions contacting components; and having one or more of metals, whose electrode potential in a 5%-NaCl aqueous solution at 30° C. is −0.4 V or less relative to a saturated calomel electrode, attached to at least a part or parts of said portion(s) of the outer surface in an electrically conductive manner.
    Type: Application
    Filed: January 31, 2003
    Publication date: October 23, 2003
    Inventors: Shunji Sakamoto, Akihiko Takahashi, Michio Kaneko, Toshio Tanoue, Kenji Kato, Naoto Ono, Masao Kikuchi
  • Publication number: 20030196732
    Abstract: A corrosion-resistant coated base metal coated with a corrosion resistant alloy. The corrosion resistant alloy includes tin and zinc. The corrosion resistant coated base metal includes a heat created intermetallic layer primarily including copper and zinc.
    Type: Application
    Filed: September 24, 2002
    Publication date: October 23, 2003
    Applicant: The Louis Berkman Company, an Ohio corporation
    Inventors: Jay F. Carey, Mehrooz Zamanzadeh
  • Patent number: 6633739
    Abstract: A detoning blade including a steel member of stainless steel or carbon steel having a length, a width, and a thickness and a coating including titanium nitride or tungsten carbide having a thickness ranging from 0.1 microns to 4 microns or a coating of diamond embedded chromium having a thickness ranging from 2.5 microns to 7.5 microns.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: October 14, 2003
    Assignee: Xerox Corporation
    Inventors: Frederick B. White, Alicia G. Hughes, Michael J. DeLuzio, Ann M. Kazakos
  • Patent number: 6623869
    Abstract: A metallic material of the invention which comprises, in mass %, C: not more than 0.2%, Si: 0.01-4%, Mn: 0.05-2%, P: not more than 0.04%, S: not more than 0.015%, Cr: 10-35%, Ni: 30-78%, Al: not less than 0.005% but less than 4.5%, N: 0.005-0.2%, and one or both of Cu: 0.015-3% and Co: 0.015-3%, with the balance substantially being Fe, and of which the value of 40Si+Ni+5Al+40N+10 (Cu+Co), wherein the symbols of elements represent the contents of the respective elements, is not less than 50 and has excellent corrosion resistance in an environment in which metal dusting is ready to occur and, therefore, can be utilized as or in heating furnace pipes, piping systems, heat exchanger pipes and so forth to be used in a petroleum refinery or in petrochemical plants, and can markedly improve the equipment durability and safety.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: September 23, 2003
    Inventors: Yoshitaka Nishiyama, Nobuo Otsuka
  • Publication number: 20030170487
    Abstract: An exterior component for a portable timepiece having decorativeness and corrosion resistance and the portable timepiece are to be provided. In a double-layer clad material, the inside of a timepiece case is made of a titanium material and the outside is made of a pure aluminum material. In the pure aluminum material, alumite treatment is carried out from a surface to a given depth. A step portion is provided in the upper portion of the timepiece case, a glass fixing packing is fitted in the step portion, and glass is press-fitted here. A backside cover is fixed to an upper face of a movement. The movement with the backside cover is arranged so that a step portion for a face provided in the timepiece case is in contact with a part of the face. The backside cover is screwed into the timepiece case until the backside cover is in contact with a contact face of backside cover of the timepiece case, to be fixed to the timepiece case.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 11, 2003
    Inventor: Shigeru Miyama
  • Patent number: 6613432
    Abstract: Coatings, devices and methods are provided, wherein the contacting surface of a medical device with at least one contacting surface for contacting a bodily fluid or tissue is modified by plasma treatment in a plasma comprising nitrogen-containing molecules and oxygen-containing molecules. The nitrogen-containing molecules include NH3, (NH4)+, N2O, NO, NO2 and N2O4, and the oxygen-containing molecules include O2 and O3. The plasma-modified contacting surface exhibits decreased adhesion of at least some mammalian cells, such as platelets and leukocytes, decreased restenosis when used with stents, and increased apoptosis. Additional layers may be applied, including plasma polymerized hydrocyclosiloxane monomers, amine-providing groups such as N-trimethylsilyl-allylamine, polyoxyalkylene tethers, and bioactive compounds.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: September 2, 2003
    Assignee: BioSurface Engineering Technologies, Inc.
    Inventors: Paul O. Zamora, Shigemasa Osaki, Meng Chen
  • Patent number: 6593010
    Abstract: A composite material and a method of making a composite material is disclosed. The composite comprises a core of a precipitation hardenable metal having a coefficient of thermal expansion less than 9 parts per million/° C. in the temperature range of 20° C. to 100° C. The core material is clad with a transition metal or transition metal alloy cladding layer covering at least one surface of the core.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: July 15, 2003
    Assignee: Hood & Co., Inc.
    Inventors: Anthony John Izbicki, Michael Anthony Perricci, Jean Charles Bonnel
  • Publication number: 20030118859
    Abstract: There is provided a surface alloyed component which comprises a base alloy with a diffusion barrier layer enriched in silicon and chromium being provided adjacent thereto. An enrichment pool layer is created adjacent the diffusion barrier and contains silicon and chromium and optionally titanium or aluminum. The method comprises depositing a surface alloy on the base alloy at a temperature in the range of 400 to 1000° C. and heat treating the surface alloy at a ramp temperature rate of at least 5C°/minute, preferably 10 to 20° C./minute, to a desired maximum temperature at which the surface alloyed component is maintained for a time sufficient to provide the enrichment pool or the enrichment pool with a diffusion barrier layer. A reactive gas treatment may be used to generate a replenishable protective oxide scale of alumina or chromia on the outermost surface of the surface alloyed component.
    Type: Application
    Filed: November 22, 2002
    Publication date: June 26, 2003
    Inventors: Andrew George Wysiekierski, Gary Anthony Fisher, Sabino Steven Anthony Petrone, Radhakrishna Chakravarthy Mandyam
  • Patent number: 6582835
    Abstract: Dip-coated ferrite stainless steel sheet usable in the automobile exhaust sector, characterized in that it comprises a steel core with the following composition by weight: 10.5%≦chromium≦20% 0%≦aluminum≦0.6% 0.003%≦carbon≦0.06% 0.003%≦nitrogen≦0.04% 0%≦silicon≦0.6% 0%≦manganese≦0.6% 0%≦sulfur≦0.002% iron and impurities inherent in processing, and a metal coating deposited by dipping the strip in a molten metal bath containing in particular aluminum and at least one rare earth element: cerium, lanthanum, praseodymium, neodymium, mixed metal and/or yttrium.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: June 24, 2003
    Assignee: Usinor
    Inventors: Laurent Antoni, Raphael Craen
  • Patent number: 6572984
    Abstract: Laminates consisting of a high-damping core material sandwiched between two stiff, weldable skins. The laminate structures have increased resonant freguencies, improved damping characteristics, do not outgas, and may have a decreased inertial moment. The laminates are comprised of 100% metal constituents, and do not rely on epoxy or low-melting point solders.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: June 3, 2003
    Assignee: Intriplex Technologies, Inc.
    Inventor: Damon Brink
  • Patent number: 6544662
    Abstract: A process is disclosed for brazing plate/plate and plate/fin multi-channeled structures using an amorphous brazing foil as a brazing filler metal between the parts in order to form uniform joints having optimal dimensions, shape and strength. The parts are assembled in an unconstrained stack, and a controlled load is applied to the top of the stack. The stack is then heated to a temperature at which the interlayer melts and reacts with the base metal to form the joints. The stack is cooled resulting in a brazed structure having the desired characteristics, wherein the brazed joints are optimally formed and the strength of the structure is equal to the underlying strength of the base metal.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: April 8, 2003
    Assignee: AlliedSignal Inc.
    Inventors: Anatol Rabinkin, Nicholas DeCristofaro
  • Publication number: 20030064245
    Abstract: Clad steel roiled section suitable for reinforcing concrete is disclosed, which is produced from a bimetallic ingot comprising a basic material containing a group of alloy elements including Si and Al, and a surface layer of a ferritic or austenitic stainless steel containing a group of alloy elements including Cr and Ni, by hot rolling the ingot to an intermediate billet and a rolled section, and subjecting the rolled section to heat treatment. A feature of the reinforcing clad steel rolled products is that the basic material is steel containing, in percent by weight, from 1.0 to 5.0 Si and from 0.1 to 5.0 Al, with the proviso that 3.0≦(Si+Al)≦6.0. The reinforcing clad rolled products exhibit superior mechanical strength and impact toughness, improved corrosion resistance and high bond strength between the layers and with concrete.
    Type: Application
    Filed: April 2, 2002
    Publication date: April 3, 2003
    Inventors: Vasily Petrovich Vostrikov, Konstantin Igorevich Gramotnev, Vyacheslav Nikolaevich Chernyshev, Aleksei Valerievich Sadovsky, Petr Vasilievich Vostrikov
  • Publication number: 20030059634
    Abstract: A personal ornament having a white coating layer comprises a base article made of a metal, and a white-colored stainless steel coating layer formed by a dry plating process on at least a part of the surface of the base article. Another personal ornament having a white coating layer comprises a base article made of a nonferrous metal, an underlying plating layer formed on the surface of the base article, and a white-colored stainless steel coating layer formed by a dry plating process on at least a part of the surface of the underlying plating layer.
    Type: Application
    Filed: February 26, 2002
    Publication date: March 27, 2003
    Inventors: Koichi Naoi, Akiyoshi Takagi, Yukio Miya, Fumio Tase, Kazumi Hamano
  • Patent number: 6514631
    Abstract: A heating furnace tube, a method of using the same and a method of manufacturing the same which have been developed with a view to eliminating inconveniences occurring when a carbon-containing fluid is made to flow in the heating furnace tube. The heating furnace tube which comprises a rare earth oxide particle distributed iron alloy containing 17-26 wt. % of Cr and 2-6 wt. % of Al. The method of manufacturing this heating furnace tube which comprises the steps of forming or inserting an insert metal on or into at least one of a joint end portion of one heating furnace tube element and that of the other heating furnace tube element, bringing these two joint end portions into pressure contact with each other directly or via an intermediate member, and diffusion welding the two heating furnace tube elements to each other by heating the insert metal.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: February 4, 2003
    Assignee: JGC Corporation
    Inventors: Katsumi Yamamoto, Takeo Murata, Rin Sasano, Kenji Sato, Toshikazu Nakamura, Muneyasu Ichimura, Kunio Ishii, Keizo Hosoya
  • Patent number: 6479013
    Abstract: A method of casting non-ferrous metals such as aluminum, magnesium, or zinc alloys uses casting components made from a tool steel comprising effective amounts of carbon, silicon, manganese, chromium, molybdenum, and vanadium, optional amounts of cobalt and increased level of molybdenum. Using the tool steel as a casting component, particularly as a mold, provides improvements in corrosion resistance, oxidation resistance, softening resistance, degradation resistance and deformation resistance. The tool steel casting component has a chromium oxide layer which is formed, in one mode, during the casting operation, to enhance the life and durability of the casting component and improve its casting performance.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: November 12, 2002
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Tomoaki Sera, Masahide Umino, Kunio Kondo
  • Patent number: 6475647
    Abstract: A method for protecting high temperature stainless steel from coking and corrosion at elevated temperatures in corrosive environments, such as during ethylene production by pyrolysis of hydrocarbons or the reduction of oxide ores, by coating the stainless steel with a coating of MCrAlX in which M is nickel, cobalt, iron or a mixture thereof and X is yttrium, hafnium, zirconium, lanthanum or combination thereof deposited onto and metallurgically bonded to the stainless steel by plasma transferred arc deposition of atomized powder of MCrAlX. The coating has a thick, dense, continuous and smooth transition region providing an effective metallurgically bond of the coating with the stainless steel. The coating retains a relatively high aluminum content which permits generation of an adherent alumina layer on the surface, providing good resistance to high temperature oxidation together with good anti-coking and hot erosion resistance properties.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: November 5, 2002
    Assignee: Surface Engineered Products Corporation
    Inventors: Juan Manuel Mendez Acevedo, Chinnia Gounder Subramanian
  • Publication number: 20020155313
    Abstract: The present invention comprises a method of manufacturing a brazed body. The method comprises forming a multi-layer assembly comprising: a first material capable of forming a first oxide and having a melting temperature higher than 660° C.; a first reducing metal adjacent the first material, the reducing metal capable of reducing at least a portion of the first oxide on the first material a braze adjacent to the reducing metal; and a second material adjacent the braze, the second material comprising a material having a melting temperature higher than 660° C. The method then comprises creating a vacuum around the assembly, and heating the assembly to melt the reducing metal and the braze. The assembly is then subject to cooling to thereby form the brazed body.
    Type: Application
    Filed: February 20, 2001
    Publication date: October 24, 2002
    Applicant: 3M Innovative Properties Company
    Inventor: Gary M. Palmgren
  • Publication number: 20020150788
    Abstract: A process is disclosed for brazing plate/plate and plate/fin multi-channeled structures using an amorphous brazing foil as a brazing filler met between the parts in order to form uniform joints having optimal dimensions, shape and strength. The parts are assembled in an unconstrained stack, and a controlled load is applied to the top of the stack. The stack is then heated to a temperature at which the interlayer melts and reacts with the base metal to form the joints. The stack is cooled resulting in a brazed structure having the desired characteristics, wherein the strength of the structure is equal to the underlying strength of the base metal.
    Type: Application
    Filed: October 25, 1999
    Publication date: October 17, 2002
    Inventors: ANATOL RABINKIN, NICHOLAS DECRISTOFARO
  • Patent number: 6436556
    Abstract: The invention relates to a method and a device for the production of a strip-like metallic composite material by the high-temperature dip coating of a metallic carrier strip, consisting of a metallurgic vessel for receiving the liquid depositing material, through which the carrier strip is capable of being led in a preferably vertical run-through direction by means of pairs of rollers arranged on the entry and the exit side, and of a preheating device for the carrier strip, said preheating device being located upstream of the metallurgic vessel. At the same time, the preheating device (41) is arranged in a housing (61) which is arranged in the entry region upstream of the metallurgic vessel (11) and surrounds the carrier strip (21) and into which the medium coming from a media supply (52) is capable of being introduced via at least one feed (51) led into the housing.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: August 20, 2002
    Assignees: SMS Demag AG, Thyssen Krupp Stahl AG
    Inventors: Wolfgang Bleck, Rolf Bünten, Frank Friedel, Oliver Picht, Wolfgang Reichelt, Wilhelm Schmitz, Dieter Senk, Paul Splinter, Ulrich Urlau
  • Patent number: 6420054
    Abstract: Masking device for a color cathode-ray display tube with a flat scree, of the type comprising a support frame for a tensioned shadowmask and a tensioned shadowmask mounted on the support frame so as to undergo tensioning at room temperature, in which device the support frame is made of a hardened Fe—Ni alloy having a thermal expansion coefficient between 20° and 150° C. of less than 5×1031 6 K−1 and a yield stress Rp0.2 at 20° C. of greater than 700 MPa, and the tensioned shadowmask is made of a hardened FeNi or Fe—Ni alloy having a thermal expansion coefficient between 20° C. and 150° C. of less than 5×10−6 K−1.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: July 16, 2002
    Assignee: Imphy Ugine Precision
    Inventors: Ricardo Cozar, Pierre-Louis Reydet, Jean-Pierre Reyal
  • Patent number: 6418994
    Abstract: The present invention provides a stainless steel wire for a carcass of a tire and a process for making such a wire. The wire comprises at least 0.02% and at most 0.2% carbon, at least 3% and at most 20% nickel, at least 12% and at most 28% chromium, the sum of the nickel and chromium being at least equal to 20% and at most 35% (% in weight). The structure of the steel comprises at least 20% in volume of martensite and it is devoid of austenite or it comprises less than 80% of it in volume.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: July 16, 2002
    Assignee: Michelin Recherche et Technique S.A.
    Inventors: Jean-Claude Arnaud, Christian Lamoureux, Eric Depraetere
  • Patent number: 6413651
    Abstract: A kind of composite metal coil/plate includes one parent metal coil/plate and at least one clad metal coil/plate as well as an interlayer composed of atoms of a brazing filler, the parent metal and the clad metal. The interlayer is about 2-10 &mgr;m in thickness. The present invention also relates to a method of manufacturing composite metal coil/plate. The method comprises pre-cladding the parent and clad metal coils/plates as well as the brazing filler foil in an inert or reductive atmosphere at 850-1000° C., and hot rolling cladding the same under inert or reductive atmosphere at 900-1050° C. A composite metal plate is obtained after cooling.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: July 2, 2002
    Inventors: Mengjie Yan, Qinglian Meng
  • Patent number: 6410161
    Abstract: A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200° C.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: June 25, 2002
    Assignee: FuelCell Energy, Inc.
    Inventor: Jian Li
  • Patent number: 6403235
    Abstract: The strength and wear resistance of a steel component is improved by adhering to it a material of higher strength compatible metal alloy, such as Inconel (RTM) 725 or like precipitation or age hardenable alloy. The higher strength alloy may be adhered by welding, plasma spraying, dip coating or electroplating. The component may be subjected to post-deposition heat treatment which preferably simultaneously softens a heat affected zone in the component and hardens the higher strength material.
    Type: Grant
    Filed: December 4, 1997
    Date of Patent: June 11, 2002
    Assignee: FMC Corporation
    Inventors: Gregory L. Glidden, Thomas McNeilly, Manuel N. Maligas
  • Publication number: 20020066769
    Abstract: This invention describes the roll bonding of Al and Ni-bearing Cu alloys to suitable substrates to produce self-brazing materials for the elevated temperature, aggressive environment application. The Al and Ni-bearing Cu alloy for the self-brazing layers can be obtained by cladding layers of elemental Ni and Al to Cu. The Al content in the self-brazing layers can be varied from 2 to 100%. The Ni content in the self-brazing Cu alloy can be varied from 10 to 100%. Additional alloying elements in the commercial Cu alloys such as Fe, Cr, Si, Mn, Sn and Zn are unavoidable. Trace elements in the commercial alloys such as Pb, Ag and As will also affect the brazing and shall be reduced.
    Type: Application
    Filed: October 12, 2001
    Publication date: June 6, 2002
    Inventors: Gardner S. Haynes, Bijendra Jha, Chen-Chung S. Chang
  • Patent number: 6399216
    Abstract: A method for coating stainless steel in which a metallic material layer of Cr and alloys of Cr and at least one of Mo, W, Ni, Si, Ti, Zr is deposited onto a metal substrate. The metallic material layer is then annealed so as to form a diffusion layer between the metallic protective coating and the metal substrate. Thereafter, the metallic material layer may be passivated, forming a stable composition of at least one of carbides, borides, nitrides, silicides, oxides, and mixtures thereof on the metallic protective coating. The protective coatings of this invention significantly reduce the corrosion rate of stainless steel used in bromide-based absorption systems.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: June 4, 2002
    Assignee: Gas Research Institute
    Inventors: Palitha Jayaweera, Angel Sanjurjo, Kai-Hung Lau, Naixiong Jiang, David M. Lowe
  • Patent number: 6387543
    Abstract: A protective layer for load-transferring contact surfaces of gas turbine components, especially titanium turbine components is capable to take up alternating loads at higher temperatures. The protective layer is formed of an alloy having the following composition in percent by weight: aluminum (Al) 4-8%; chromium (Cr) 2-5%; iron (Fe) 0-3.5%; and copper (Cu) remainder.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: May 14, 2002
    Assignee: MTU Aero Engines GmbH
    Inventor: Wolfgang Eichmann
  • Patent number: 6387541
    Abstract: A titanium aluminide turbine blade (10) includes an aerofoil (12), a platform (14) and a root (16). A protective coating (2) is applied to the aerofoil (12) and the platform (14) of the turbine blade (10). The protective coating (2) comprises austenitic stainless steel. A chromium oxide layer (22) is formed on the protective coating (2). The protective coating (20) and chromium oxide layer (22) provides oxidation and sulphidation resistance for the titanium aluminide article (10).
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: May 14, 2002
    Assignee: Rolls-Royce plc
    Inventors: Simon Gray, Clive B. Ponton, Michael H. Jacobs, Hugh E. Evans
  • Patent number: 6379821
    Abstract: This invention relates to a large-diameter, thick-wall martensitic stainless steel welded pipe. For this welded pipe, the size of the raised weld bead portion on the inside surface is restricted to be small based on a conditional formula derived by considering the bead width and height and the yield strength of the base metal and of the weld metal. As a result, the base metal portion and pipe inside surface seam portion of this welded pipe are superior in corrosion resistance, in particular stress corrosion cracking resistance (SCC resistance). The sulfide stress corrosion resistance (sour gas resistance) and carbon dioxide corrosion resistance can be further improved by selecting the chemical compositions. This welded pipe is very well suited for use as a pipe for a pipeline for conveying a crude oil and a natural gas with no dehydration treatment, which is highly corrosive to metals.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: April 30, 2002
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Takahiro Kushida, Tomohiko Omura, Kunio Kondo, Kazuhiro Ogawa, Masahiko Hamada
  • Patent number: 6331214
    Abstract: Its basic means is a monolithically bonded construct prepared by monolithically bonding together a rare-earth magnet 2 and a an alloy material that is a high melting point metal or a high specific-tenacity material through the solid phase diffusion bonding by the hot isostatic pressing treatment, and a monolithically bonded construct with an interposal of a thin layer of the high melting point metal between a rare-earth magnet 2 and an alloy material 3, 4 that is a high specific-tenacity material.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: December 18, 2001
    Assignees: Kabushiki Kaisha Meidensha, Sumitomo Special Metals Co., LTD
    Inventors: Masaki Koga, Nobutaka Suzuki, Hitoshi Saitoh, Kenshiro Oyamada, Koki Tokuhara, Shuji Mino, Naoyuki Ishigaki, Hitoshi Yamamoto
  • Publication number: 20010051283
    Abstract: An object of the present invention is to provide a three-layer clad material in which stainless steel is used as the substrate, Ni or an Ni alloy is monolithically pressure-welded to either principal plane of the substrate, and Cu is monolithically pressure-welded to the other principal plane, or a two- or three-layer clad material in which Ni or an Ni alloy is monolithically pressure-welded to at least one principal plane of the substrate, wherein this high-strength, high-drawability clad material allows the thickness ratio of the stainless steel to be further increased, mechanical strength (tensile strength) to be raised above that of a conventional two- or three-layer clad material, and the thickness of the entire clad material to be reduced.
    Type: Application
    Filed: June 29, 2001
    Publication date: December 13, 2001
    Inventor: Masaaki Ishio
  • Patent number: 6329081
    Abstract: There is provided a stainless steel sheet material, used for a semiconductor manufacturing device, to which it difficult for fine dust to be attached and from the surface of which the attaching dust can be easily washed away. Also, there is provided a method of manufacturing the stainless steel sheet material. A stainless steel sheet material characterized in that: the number of pinholes, the area of each pinhole exceeding 0.25 mm2, in the area of 10 cm2 on the surface of a skinpass-rolled stainless steel sheet material is not more than 10; and the average surface roughness Ra on the center line in the direction perpendicular to the rolling direction is not more than 0.15 &mgr;m. A method of manufacturing a stainless steel sheet material comprising the steps of: annealing a stainless steel cold-rolled sheet in a heat-treatment furnace having no support rollers in a temperature region exceeding 600° C.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: December 11, 2001
    Assignee: Nippon Steel Corporation
    Inventors: Fumio Fudanoki, Toshihiko Sugimoto, Satoshi Akamatsu, Masanori Hashimoto
  • Patent number: 6329080
    Abstract: An object of the present invention is to provide a three-layer clad material in which stainless steel is used as the substrate, Ni or an Ni alloy is monolithically pressure-welded to either principal plane of the substrate, and Cu is monolithically pressure-welded to the other principal plane, or a two- or three-layer clad material in which Ni or an Ni alloy is monolithically pressure-welded to at least one principal plane of the substrate, wherein this high-strength, high-drawability clad material allows the thickness ratio of the stainless steel to be further increased, mechanical strength (tensile strength) to be raised above that of a conventional two- or three-layer clad material, and the thickness of the entire clad material to be reduced.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: December 11, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventor: Masaaki Ishio
  • Patent number: 6329069
    Abstract: A composite structure comprising a body having a surface and cladding covering at least a part of said surface of the body and being in intimate contact with the surface. The body and cladding are formed of different materials.
    Type: Grant
    Filed: July 24, 1997
    Date of Patent: December 11, 2001
    Assignee: Surface Genesis, Inc.
    Inventors: Gholam Reza Zadno Azizi, Raj Subramaniam, Mir A. Imran, Jeffrey W. Simpson
  • Patent number: 6326089
    Abstract: A multi-element composite object composed from first, second, and third metal components is provided, wherein the first metal and the third metal are weld incompatible. The multi-element composite object includes a first component fabricated from a first metal. A second component, fabricated from a second metal, is brazed to the first component A third component, fabricated from a third metal, is inertia welded to the second component . The first metal may be provided as a titanium alloy, e.g. a TiNi alloy. The second metal may be provided as low-carbon mild or alloy steel. The third metal may be provided as alloy steel, e.g., 9310 nickel alloy steel. In an embodiment, the multi-element composite object is a gear assembly, with the first element of the gear assembly object being a shaft and the third element of the gear assembly being a gear member with hardened teeth surfaces. The first and second components can be mechanically keyed together via an anti-rotational element.
    Type: Grant
    Filed: March 28, 1998
    Date of Patent: December 4, 2001
    Inventor: Raymond J. Claxton
  • Patent number: 6322907
    Abstract: Composite wire comprising a core made of carbon steel the chemical composition of which consists, by weight, of: 0.15%≦C≦0.6%; 0.1%≦Si≦0.3%; 0.3%≦Mn≦1%; 0% V≦0.3%; the remainder being iron and impurities resulting from processing; and an outer layer made of stainless steel the composition of which consists, by weight, of 0.005%≦C≦0.05%; 0.005%≦N≦0.05%; 0.1%≦Si≦2%; 0.1%≦Mn≦5%; 5%≦Ni≦12%; 10%≦Cr ≦20%; 0%≦Mo≦3%; 0%≦Cu≦4%; the remainder being iron and impurities resulting from processing. The diameter of the wire is less than 1 mm and the tensile strength of the wire is in excess of 2000 MPa.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: November 27, 2001
    Assignees: Aster, Ugine-Savoie Imphy
    Inventors: Jean-Michel Hauser, Marc Francois
  • Patent number: 6316128
    Abstract: A three-layer clad material in which stainless steel is used as the substrate, Ni or an Ni alloy is monolithically pressure-welded to either principal plane of the substrate, and Cu is monolithically pressure-welded to the other principal plane, wherein this high-strength, high-drawability clad material allows the thickness ratio of the stainless steel to be further increased, mechanical strength (tensile strength) to be raised above that of a conventional two- or three-layer clad material, and the thickness of the entire clad material to be reduced. Uniform tension can be created across the entire thin sheet, folding or creasing can be prevented from occurring during pressure welding, the thickness of the thin Ni and Cu sheets prior to pressure welding can be reduced to about 5 &mgr;m, and the thickness ratio of each of the thin sheets in the three-layer clad material for cell cases can be reduced to about 0.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: November 13, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventor: Masaaki Ishio