Electrode Structure Or Composition Patents (Class 429/523)
  • Publication number: 20140193745
    Abstract: The invention relates to a method for preparing a substrate surface structured with thermally stable metal alloy nanoparticles, which method comprises—providing a micellar solution of amphiphilic molecules such as organic diblock or multiblock copolymers in a suitable solvent; —loading the micelles of said micellar solution with metal ions of a first metal salt; —loading the micelles of said micellar solution with metal ions of at least one second metal salt; —depositing the metal ion-loaded micellar solution onto a substrate surface to form a (polymer) film comprising an ordered array of (polymer) domains; co-reducing the metal ions contained in the deposited domains of the (polymer) film by means of a plasma treatment to form an ordered array of nanoparticles consisting of an alloy of the metals used for loading the micelles on the substrate surface.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 10, 2014
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Joachim P. Spatz, Sebastian Lechner
  • Patent number: 8771898
    Abstract: Described herein are solid oxide fuel cells and manufacturing methods thereof. In certain aspects, the solid oxide fuel cells described herein include a plurality of anodes and a plurality of cathodes in which the anodes and cathodes are alternately stacked on each other and have non-overlapping sections in which the anodes and cathodes do not overlap partially. In certain aspects, the plurality of anodes are electrically connected to a first electrode, and the plurality of cathodes are electrically connected to a second electrode. In certain aspects, a solid electrolyte can be included, for example, between the anode and the cathode. In certain aspects, partitioning sections are disposed between each of the cathodes and the first electrode and between each of the anodes and the second electrode.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: July 8, 2014
    Assignees: TDK Corporation, Tohoku University
    Inventors: Kei Sugiura, Atsushi Hitomi, Takeshi Urano, Hitoshi Takamura
  • Publication number: 20140178788
    Abstract: A catalyst slurry for a fuel cell, an electrode manufactured using the catalyst slurry, a membrane-electrode assembly including the electrode, a fuel cell including the membrane-electrode assembly, and a method of manufacturing the electrode are provided. The catalyst slurry includes a catalyst material, an acid component, a binder, and a solvent component having a viscosity of at least about 20 cps at about 20° C.
    Type: Application
    Filed: August 15, 2013
    Publication date: June 26, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-su HA, Suk-gi HONG, Jung-ock PARK, Yoon-hoi LEE, Joon-hee KIM
  • Patent number: 8758959
    Abstract: The processes include: a layer superposition step in which the step of sputtering or vapor-depositing a mixture layer including a first pore-forming metal and a catalyst metal on a substrate and the step of forming an interlayer of a second pore-forming metal or a fibrous-carbon interlayer are alternately conducted repeatedly two or more times to thereby form a multilayer structure containing mixture layers and interlayers; and a pore formation step in which after the layer superposition step, the multilayer structure is subjected to a pore formation treatment.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: June 24, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wu Mei, Tsuyoshi Kobayashi, Mutsuki Yamazaki, Yoshihiko Nakano
  • Patent number: 8758957
    Abstract: A flow field plate for fuel cell applications includes a metal with a graphene-containing layer disposed over at least a portion of the metal plate. The graphene-containing layer includes an activated surface which is hydrophilic. Moreover, the flow field plate is included in a fuel cell with a minimal increase in contact resistance. Methods for forming the flow field plates are also provided.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: June 24, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Gayatri Vyas Dadheech, Thomas A. Trabold, Youssef M. Mikhail, Mahmoud H. Abd Elhamid
  • Publication number: 20140170531
    Abstract: The present disclosure relates to solid oxide fuel cells, and particularly raw powder materials which form a layer in a solid oxide fuel. The raw powder materials include an ionic conductor powder material; and an electronic conductor powder material. The ratio of an average particle diameter of the ionic conductor powder material to an average particle diameter of the electronic conductor powder material is greater than about 1:1, and an average particle diameter of at least one of the electronic conductor powder material or the ionic conductor powder material is coarse.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 19, 2014
    Applicant: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Aravind MOHANRAM, Yeshwanth NARENDAR, Zachary R. PATTERSON, John D. PIETRAS
  • Publication number: 20140170526
    Abstract: The invention has an object of providing catalysts that are not corroded in acidic electrolytes or at high potential, have excellent durability and show high oxygen reducing ability. An aspect of the invention is directed to a process wherein metal carbonitride mixture particles or metal oxycarbonitride mixture particles are produced from an organometallic compound of a Group IV or V transition metal, a metal salt of a Group IV or V transition metal, or a mixture of these compounds using laser light as a light source.
    Type: Application
    Filed: February 19, 2014
    Publication date: June 19, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuaki WAKIZAKA, Toshikazu SHISHIKURA
  • Publication number: 20140162169
    Abstract: A fuel cell electrode catalyst including an active complex including a cerium (Ce)-nitrogen (N) bond and having an oxygen reduction activity of at least 1 milliampere per square centimeter at 0.5 volts versus a reversible hydrogen electrode.
    Type: Application
    Filed: May 22, 2013
    Publication date: June 12, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kang-hee LEE, Chan-ho PAK, Dae-jong YOO, Jun-ho LEE, Seon-ah JIN
  • Patent number: 8741504
    Abstract: A solid catalyst having a close-packed structure has basic structural units present in the surface of the solid catalyst, the basic structural units including (i) a triangular lattice constituted of atoms of platinum, ruthenium, and at least one additional element which are disposed at the vertexes in the triangular lattice so that each atom of one of the elements adjoins atoms of the other elements or (ii) a rhombic lattice constituted of atoms of platinum, ruthenium, and at least one additional element which are disposed at the vertexes in the rhombic lattice in an atomic ratio of 1:2:1 so that each ruthenium atom directly adjoins a platinum atom and an atom of the additional element; and a fuel cell includes either of the solid catalyst as an anode-side electrode catalyst.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yoshida, Fumihiko Aiga, Satoshi Itoh, Yoshiko Hiraoka, Reiko Yoshimura, Tsukasa Tada
  • Patent number: 8741488
    Abstract: An electrode which has a Si-containing material layer and a porous film, and a lithium battery employing the same. In the electrode, the Si-containing material layer is applied on an electrode current collector and/or an electrode active material to protect the surface of the electrode current collector from oxidation. Also, the applied Si-containing material layer enhances the adhesion between the electrode current collector and the electrode active material to improve cycle life characteristics. Also, it increases the adhesion between the electrode active material and the porous film to reduce resistance, and to improve ohmic contacts and to lower the Shottkey barrier. In addition, the electrode includes the porous film functioning as a separator, and thus can provide a battery which is safe under conditions of overcharge and heat exposure without needing an additional separator.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: June 3, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Hee Kim, Won-Chull Han, Jae-Yun Min
  • Publication number: 20140141354
    Abstract: A fuel cell electrode including a catalyst layer including: a catalyst; and a conductor storage material having pores with an average diameter of about 5 nm to about 1000 nm.
    Type: Application
    Filed: June 14, 2013
    Publication date: May 22, 2014
    Inventors: Jung-ock PARK, Yoon-hoi LEE, Jin-su HA, Suk-gi HONG
  • Publication number: 20140141355
    Abstract: The disclosure provides a graphene electrode, an energy storage device employing the same, and a method for fabricating the same. The graphene electrode includes a metal foil, a non-doped graphene layer, and a hetero-atom doped graphene layer. Particularly, the hetero-atom doped graphene layer is separated from the metal foil by the non-doped graphene layer.
    Type: Application
    Filed: July 24, 2013
    Publication date: May 22, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsiao-Feng HUANG, Ping-Chen CHEN, Chun-Hsiang WEN, Wei-Jen LIU
  • Publication number: 20140134521
    Abstract: A carbon material of an embodiment includes: a columnar structure in which a carbon compound having a graphene skeleton is laminated, the graphene skeleton whose some of carbon atoms are substituted with nitrogen atoms. In the carbon material, a graphene skeleton surface of the carbon compound is inclined at an angle of 5 degrees or more and 80 degrees or less with respect to a column axial direction of the columnar structure.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Katsuyuki NAITO, Norihiro YOSHINAGA, Shigeru MATAKE, Yoshihiro AKASAKA
  • Publication number: 20140127607
    Abstract: A cathode for a solid oxide fuel cell, the cathode including: a mixed ionic-electronic conductor having a structure in a form of a pattern.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 8, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Chan KWAK, Doh-won JUNG, Ji-haeng YU, Hee-jung PARK, Sung-jin AHN
  • Publication number: 20140127605
    Abstract: A method of deposition, by drop-on-demand inkjet printing, of the catalytic layer of a fuel cell comprising the deposition, on a printing surface, of an ink generating substantially circular structures comprising a bead at their periphery.
    Type: Application
    Filed: October 24, 2013
    Publication date: May 8, 2014
    Applicant: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventors: Rémi VINCENT, Anne-Gaëlle MERCIER
  • Patent number: 8715885
    Abstract: A solid oxide fuel cell comprises a porous anode electrode, a dense non-porous electrolyte and a porous cathode electrode. The anode electrode comprises a first member and a plurality of parallel plate members extending from the first member. The cathode electrode comprises a second member and a plurality of parallel plate members extending from the second member. The plate members of the cathode electrode inter-digitate with the plate members of the anode electrode and the electrolyte fills the spaces between the first and second members and the parallel plate members of the anode electrode and the cathode electrode.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: May 6, 2014
    Assignee: LG Fuel Cell Systems Inc.
    Inventors: Gerard D. Agnew, Peter J. Dixon
  • Patent number: 8715370
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. A method of fabricating a thin aluminum anode galvanic cell is provided, the method comprising, forming a recess in the silicon wafer, the recess having no more than three sidewalls, depositing a catalytic metal layer on a bottom surface of the recess, positioning a double-side sticky tape layer having a bottom side positioned to contact the no more than three sidewalls of the recess and positioning an aluminum foil layer to contact a top side of the double-side sticky tape layer and in overlying relation to the recess, thereby forming the galvanic cell.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 6, 2014
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Publication number: 20140120457
    Abstract: The present invention relates to a laminar structure which is used in a microporous layer, an electrode layer or the like of a membrane electrode assembly for a fuel cell, and also relates to a production method for same. The laminar structure is a laminar structure which is comprised in the membrane electrode assembly (MEA) of a polymer electrolyte membrane fuel cell (PEMFC), and comprises an electrosprayed layer which is formed by the lamination of electrospraying ink, that has been charged by means of an electric field, through an electrospraying process in which the electrospraying ink is dispersed and sprayed as electrospraying liquid droplets, and, in the electrospraying process, the electrospraying substance transmission mode is set in accordance with the adjustment of electrospraying process variables.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 1, 2014
    Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Han Shin Choi, Hye Sook Joo
  • Patent number: 8710110
    Abstract: A process of producing a membrane includes extruding diluent and polymer to form an extrudate, the polymer includes a first polyethylene having an Mw<1.0×106, a second polyethylene having an Mw?1.0×106, and a polypropylene having an Mw?5.0×105 and a ?Hm?80.0 J/g; wherein the sum of the polypropylene having an Mw?5.0×105 and a ?Hm?80.0 J/g and the second polyethylene is ?15.0 wt. % and processing the extrudate into a membrane having a thickness ?12.0 ?m by stretching the extrudate in at least one planar direction at about 108.0 to 116.0° C. after removing the solvent to a magnification factor of ?1.1 and excludes any stretching of the extrudate after removing the solvent at a magnification factor or >1.1 and removing at least a portion of the diluent from the extrudate.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: April 29, 2014
    Assignee: Toray Battery Separator Film Co. Ltd.
    Inventors: Shintaro Kikuchi, Kotaro Takita, Kazuhiro Yamada
  • Patent number: 8709964
    Abstract: The invention relates to a process for producing a surface-modified carbon-comprising support, which comprises the following steps: (a) mixing of the carbon-comprising support with at least one metal compound, a carbon- and/or nitrogen-comprising organic substance and optionally a dispersion medium, (b) optionally evaporation of the dispersion medium at a temperature in the range from 40 to 200° C., (c) heating of the mixture to a temperature in the range from 500° C. to 1200° C. to form metal carbides, metal nitrides, metal oxycarbides, metal oxynitrides, metal carboxynitrides and/or metal carbonitrides on the carbon-comprising support. The invention further relates to a use of the surface-modified carbon-comprising support.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 29, 2014
    Assignee: BASF SE
    Inventors: Bastian Ewald, Claudia Querner
  • Patent number: 8703361
    Abstract: A membrane electrode assembly manufacturing method that includes: (a) forming a first electrode on a first release paper and a second electrode on a second release paper corresponding to the first electrode; (b) forming first incision parts in the first release paper at a predetermined interval along the first electrode's edge and second incision parts in the second release paper at a predetermined interval along the second electrode's edge; (c) adhering a first release paper surface on which the first electrode is formed on one electrolyte membrane surface and adhering one second release paper surface in which the second electrode is formed on the other electrolyte membrane surface; and (d) removing one part of the first release paper corresponding to the first electrode along the first incision part and removing one part of the second release paper corresponding to the second electrode along the second incision part.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 22, 2014
    Assignee: Hyundai Motor Company
    Inventor: Ki Sub Lee
  • Publication number: 20140106259
    Abstract: A positive electrode composite for a solid oxide fuel cell, on the positive electrode composite including: a porous reaction prevention layer; and a mixed-conductivity material disposed in the porous reaction prevention layer.
    Type: Application
    Filed: May 6, 2013
    Publication date: April 17, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chan KWAK, Hee-jung PARK, Dong-hee YEON, Zongping SHAO, Dengjie CHEN, Fucheng WANG
  • Publication number: 20140099568
    Abstract: Disclosed are a catalyst for a fuel cell, a method of preparing the same, and an electrode for a fuel cell, a membrane-electrode assembly for a fuel cell, and a fuel cell system including the same, and the catalyst includes a carrier; and an active metal supported on the carrier, wherein the carrier is crystalline carbon bonded with a functional group represented by the following Chemical Formula 1 at the surface thereof. In Chemical Formula 1, each substituent is the same as described in the detailed description.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 10, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Myoung-Ki Min, Yong-Bum Park, Sung-Chul Lee, Jun-Young Kim, Hee-Tak Kim
  • Patent number: 8691716
    Abstract: The invention describes the preparation of electrocatalysts, both anodic (aimed at the oxidation of the fuel) and cathodic (aimed at the reduction of the oxygen), based on mono- and plurimetallic carbon nitrides to be used in PEFC (Polymer electrolyte membrane fuel cells), DMFC (Direct methanol fuel cells) and H2 electrogenerators. The target of the invention is to obtain materials featuring a controlled metal composition based on carbon nitride clusters or on carbon nitride clusters supported on oxide-based ceramic materials. The preparation protocol consists of three steps. In the first the precursor is obtained through reactions of the type: a) sol-gel; b) gel-plastic; c) coagulation-flocculation-precipitation.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Breton S.p.A.
    Inventors: Vito Di Noto, Enrico Negro, Sandra Lavina, Giuseppe Pace
  • Patent number: 8691717
    Abstract: The invention discloses core/shell, type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell=outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is in the range of 20 to 100 nm, preferably in the range of 20 to 50 nm. The thickness of the outer shell (tshell) is about 5 to 20% of the diameter of the inner particle core of said catalyst particle, preferably comprising at least 3 atomic layers. The core/shell type catalyst particles, particularly the particles comprising a Pt˜based shell reveal a high specific activity. The catalyst particles are preferably supported on suitable support materials such as carbon black and are used as electrocatalysts for fuel cells.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 8, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stéphanie Chevalliot
  • Patent number: 8685593
    Abstract: A flow field plate for fuel cell applications includes a metal with a carbon layer disposed over at least a portion of the metal plate. The carbon layer is overcoated with a silicon oxide layer to form a silicon oxide/carbon bilayer. The silicon oxide/carbon bilayer may be activated to increase hydrophilicity. The flow field plate is included in a fuel cell with a minimal increase in contact resistance. Methods for forming the flow field plates are also provided.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 1, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Gayatri Vyas Dadheech, Michael J. Lukitsch
  • Patent number: 8685575
    Abstract: The invention disclosed is a catalyst composition for an air cathode for use in an electrochemical cell, in particular in alkaline electrolyte metal-air e.g. zinc-air, fuel cells. The catalyst composition comprises an active material CoTMMP and silver, supported on carbon wherein the ratio of silver to CoTMPP is 1:1 to 2.4:1. Optional ingredients include a hydrophobic and a hydrophobic bonding agent, MnO2, WC/Co or both. The catalyst composition is supported on microporous support layer and nickel foam or mesh to form an air cathode.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 1, 2014
    Assignee: National Research Council of Canada
    Inventors: Vladimir Neburchilov, Haijiang Wang, Wei Qu
  • Patent number: 8685594
    Abstract: A cathode catalyst for a fuel cell includes a carrier, and an active material including M selected from the group consisting of Ru, Pt, Rh, and combinations thereof, and Ch selected from the group consisting of S, Se, Te, and combinations thereof, with the proviso that the active material is not RuSe when the carrier is C.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 1, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Alexey AlexandrovichSerov, Chan Kwak, Myoung-Ki Min, Si-Hyun Lee
  • Publication number: 20140087289
    Abstract: A particulate carbon catalyst in which particles having a particle diameter of 20 nm-1 ?m account for a volume fraction of at least 45%, and the content of nitrogen atoms is 0.1-10 atomic % relative to the amount of carbon atoms.
    Type: Application
    Filed: May 21, 2012
    Publication date: March 27, 2014
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, TEIJIN LIMITED
    Inventors: Masayuki Chokai, Nobuaki Kido, Yuta Nabae, Masa-aki Kakimoto, Seizo Miyata
  • Patent number: 8679705
    Abstract: An electrode for fuel cells including a catalyst layer containing a benzoxazine monomer, a catalyst and a binder, and a fuel cell employing the electrode. The electrode for the fuel cells contains an even distribution of benzoxazine monomer, which is a hydrophilic (or phosphoric acidophilic) material and dissolves in phosphoric acid but does not poison catalysts, thereby improving the wetting capability of phosphoric acid (H3PO4) within the electrodes and thus allowing phosphoric acid to permeate first into micropores in electrodes. As a result, flooding is efficiently prevented. That is, liquid phosphoric acid existing in large amount within the electrodes inhibits gas diffusion which; this flooding occurs when phosphoric acid permeates into macropores in the electrodes. This prevention of flooding increases the three-phase interfacial area of gas (fuel gas or oxidized gas)-liquid (phosphoric acid)-solid (catalyst).
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: March 25, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hee-young Sun, Seong-woo Choi, Tae-young Kim
  • Publication number: 20140080037
    Abstract: An electrode for a fuel cell including a gas diffusion layer, and a catalyst layer bound to at least one surface of the gas diffusion layer and including a catalyst and a binder; and a fuel cell including the electrode.
    Type: Application
    Filed: April 23, 2013
    Publication date: March 20, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Suk-gi HONG, Jung-ock Park, Ki-chun KIL, Seong-eun PARK, Un-gyu PAIK
  • Publication number: 20140080032
    Abstract: Electrically conductive meshes with pore sizes between about 20 and 3000 nanometers and with appropriately selected strand geometry can be used as engineered supports in electrodes to provide for improved performance in solid polymer electrolyte fuel cells. Suitable electrode geometries have essentially straight, parallel pores of engineered size. When used as a cathode, such electrodes can be expected to provide a substantial improvement in output voltage at a given current.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 20, 2014
    Applicants: Ford Motor Company, Daimler AG
    Inventors: Tatyana Soboleva, Jasna Jankovic, Mohammed Hussain, Jingwei Hu, Andreas Putz
  • Patent number: 8669012
    Abstract: A battery capable of improving cycle characteristics is provided. An anode includes: an anode active material layer including an anode active material on an anode current collector, the anode active material including silicon (Si) and having a plurality of pores, in which after electrode reaction, the volumetric capacity of a pore group with a diameter ranging from 3 nm to 200 nm both inclusive per unit weight of silicon is 0.3 cm3/g or less, and the rate of change in the amount of mercury intruded into the plurality of pores is distributed so as to have a peak in a diameter range from 200 nm to 15000 nm both inclusive, the rate of change in the amount of mercury intruded being measured by mercury porosimetry.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 11, 2014
    Assignee: Sony Corporation
    Inventors: Takakazu Hirose, Kenichi Kawase, Isamu Konishiike, Nozomu Morita, Takayuki Fujii
  • Patent number: 8669021
    Abstract: The invention relates to an electrode compartment for an electrochemical cell, including a bicontinuous micro-emulsion, wherein catalytic parts are generated in-situ in a fluid, which can act as a cathode as well as an anode. The electrode compartment comprises a connection to supply fuel or an oxidator, for example oxygen, to the compartment. The electrode compartment is part of a refreshing system with a reserve container for an emulsion and a storage container for used emulsion, conduits to connect each of the containers with the electrode compartment and a transport unit, for example a pump, to move the emulsion.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: March 11, 2014
    Assignee: Delft Enterprises B.V.
    Inventors: Rutger Alexander David Van Raalten, Krishna Narayan Kumar Kowlgi, Gerardus Joseph Maria Koper
  • Publication number: 20140065517
    Abstract: The invention relates to gas diffusion electrodes for rechargeable electrochemical metal-oxygen cells, which comprise at least one porous support and one or more layers which are applied to one side of the porous support and comprise at least one catalyst for a metal-oxygen cell, wherein at least one function-relevant parameter changes continuously or discontinuously with increasing distance from the porous support in the catalyst-comprising layer or layers. The present invention further relates to processes for producing such gas diffusion electrodes and rechargeable electrochemical metal-oxygen cells comprising such gas diffusion electrodes.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: BASF SE
    Inventors: Alexander Panchenko, Sigmar Braeuninger, Arnd Garsuch, Ruediger Schmidt
  • Patent number: 8663852
    Abstract: An aerobic microbial fuel cell anode electrode, a fuel cell using the anode, and methods of use. An anode electrode having a conductive exterior surface and having sufficient porosity to allow a fuel-bearing liquid flowing in a cavity within the anode to escape and to supply fuel to a biologically active microbe film grown on the exterior of the anode is situated in the fuel cell. When operated in an aerobic environment, such as water, the anode and a cathode can supply electrical power to a load without the need for a semi-permeable membrane between the anode and the cathode. Several embodiments in which the anode electrode is machined from a graphite block or cylinder are described. Conditions for growing the biologically active film and for operating the fuel cell are described.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: March 4, 2014
    Assignee: University of Massachusetts
    Inventors: Kelly Nevin, Derek Lovley
  • Patent number: 8658331
    Abstract: A catalyst ink composition for a fuel cell electrode is provided. The catalyst ink composition includes a plurality of electrically conductive support particles; a catalyst formed from a finely divided precious metal, the catalyst supported by the conductive support particles; an ionomer; at least one solvent; and a reinforcing material configured to bridge and distribute stresses across the electrically conductive support particles of the ink composition upon a drying thereof. An electrode for a fuel cell and a method of fabricating the electrode with the catalyst ink composition are also provided.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Gerald W. Fly, Yeh-Hung Lai, Chunxin Ji, Jeanette E. Owejan
  • Patent number: 8652985
    Abstract: An electrode catalyst layer for use in a fuel cell, the layer having a composite particle material in which catalyst particles are supported on conductive particles, a proton conductive polymer and a metal oxide, wherein said metal oxide is non-particulate.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: February 18, 2014
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Masanobu Wakizoe, Naoto Miyake
  • Patent number: 8652707
    Abstract: Tubular ceramic structures of non-circular cross section, e.g., anode components of tubular fuel cells of non-circular cross section, are manufactured by applying ceramic-forming composition to the external non-circular surface of the heat shrinkable polymeric tubular mandrel component of a rotating mandrel-spindle assembly, removing the spindle from said assembly after a predetermined thickness of tubular ceramic structure of non-circular cross section has been built up on the mandrel and thereafter heat shrinking the mandrel to cause the mandrel to separate from the tubular ceramic structure of non-circular cross section.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 18, 2014
    Assignee: WATT Fuel Cell Corp.
    Inventors: Caine Finnerty, Benjamin Emley
  • Publication number: 20140030618
    Abstract: Disclosed are an electrode for a fuel cell that includes an electrode substrate and a surface-treatment layer disposed on the electrode substrate and including a hydrophilic layer and a hydrophobic layer partially disposed on the hydrophilic layer. Also disclosed are a method of fabricating an electrode for a fuel cell, a membrane-electrode assembly, and a fuel cell system including the membrane-electrode assembly.
    Type: Application
    Filed: August 17, 2012
    Publication date: January 30, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Jun-Young KIM, Myoung-Ki MIN, Hee-Tak KIM
  • Patent number: 8637209
    Abstract: Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: January 28, 2014
    Inventors: Allan J. Jacobson, Shuangyan Wang, Gun Tae Kim
  • Patent number: 8632927
    Abstract: A direct fuel cell comprises a cathode comprising electroactive catalyst material; and an anode assembly comprising an anode having a porous layer and electroactive catalyst material in the porous layer. The electrode characteristics of the anode assembly are selected so that fuel supplied to the anode is reacted within the anode so that cross-over from the anode to the cathode does not have more than a 10% negative effect on voltage or a 25 mV voltage loss when at peak power and steady state conditions. The anode and cathode each have a first major surface facing each other in non-electrical contact and without a microporous separator or ion exchange membrane therebetween.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 21, 2014
    Assignee: National Research Council of Canada
    Inventors: David P. Wilkinson, Alfred Lam
  • Patent number: 8628895
    Abstract: A hyper-branched polymer that has a dendritic unit, a linear unit, a terminal unit, and a degree of branching of about 0.05 to about 1. The hyper-branched polymer can be included in an electrode and/or an electrolyte membrane of a fuel cell.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: January 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-woo Choi, Cheol-hee Ahn, Jung-ock Park, Mi-jung Yim
  • Publication number: 20140011102
    Abstract: Provided is an oxygen reduction catalyst having a high oxygen reduction performance. An oxygen reduction catalyst according to the present embodiment includes a transition metal oxide to which an oxygen defect is introduced, and a layer that is provided on the transition metal oxide and that contains an electron conductive substance. A method for producing an oxygen reduction catalyst according to the present embodiment includes heating a transition metal carbonitride as a starting material in an oxygen-containing mixed gas. In addition, a method for producing an oxygen reduction catalyst according to the present embodiment includes heating a transition-metal phthalocyanine and a carbon fiber powder as starting materials in an oxygen-containing mixed gas.
    Type: Application
    Filed: March 21, 2012
    Publication date: January 9, 2014
    Applicant: YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Ken-ichiro Ota, Akimitsu Isihara, Shigenori Mitsushima, Koichi Matsuzawa, Keisuke Ukita, Hideto Imai, Masashi Matsumoto, Takashi Miyazaki
  • Patent number: 8617771
    Abstract: A manufacturing method of MEA of the present invention includes coating a catalyst ink for first electrode catalyst layer containing an electron conducting material loading a catalyst, a polymer electrolyte, and a solvent on a substrate to form a coated layer; removing the solvent in the coated layer to form at least two types of first electrode catalyst layers having different polymer electrolyte content ratios; coating an electrolyte ink containing the polymer electrolyte and the solvent on the first electrode catalyst layer to form a coated layer; removing the solvent in the coated layer to form a polymer electrolyte layer; coating a catalyst ink for second electrode catalyst layer containing the electron conducting material loading the catalyst, the polymer electrolyte, and the solvent on the polymer electrolyte layer to form a coated layer; and removing the solvent in the coated layer to form a second electrode catalyst layer.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 31, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventor: Masashi Oota
  • Patent number: 8617770
    Abstract: One embodiment of the invention includes a method including providing a cathode catalyst ink comprising a first catalyst, an oxygen evolution reaction catalyst, and a solvent; and depositing the cathode catalyst ink on one of a polymer electrolyte membrane, a gas diffusion medium layer, or a decal backing.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: December 31, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Susan G. Yan, Hubert A. Gasteiger, Paul Taichiang Yu, Wenbin Gu, Jingxin Zhang
  • Patent number: 8620637
    Abstract: Disclosed is a fuel cell simulator for predicting the power generation performance of a fuel cell including a membrane-electrode assembly having an electrolyte membrane, a catalyst layer, and a diffusion layer. The fuel cell simulator includes a model creation unit for modeling a catalyst layer from the geometry and property data of the catalyst layer, and a calculation unit for calculating the power generation state distribution of the catalyst layer or macro physical property values by using the catalyst layer model and establishing simultaneous equations of gas transportation, water production-transportation phase change, electrical conduction, heat conduction, and catalytic reaction.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: December 31, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Makoto Fujiuchi, Atsushi Ida, Takashi Harada, Tadashi Kawamoto
  • Patent number: 8609743
    Abstract: Disclosed is a method for producing an electrolyte membrane for fuel cells, which is characterized in that a radically polymerizable monomer is graft-polymerized to a resin without using a photopolymerization initiator by bringing the radically polymerizable monomer into contact with the resin after irradiating the resin with ultraviolet light. The electrolyte membrane for fuel cells obtained by ultraviolet irradiation graft polymerization has both excellent oxidation resistance and excellent mechanical characteristics. By using such an electrolyte membrane, there can be obtained a fuel cell exhibiting extremely high performance.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: December 17, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Mitsuhito Takahashi
  • Publication number: 20130323611
    Abstract: A nickel/zinc (Ni/Zn) flow battery employs a solid suspension charge material to maintain high charge density via stability of a suspension including a binder, conductive carbon and an electrolyte. Zinc oxide (ZnO) is employed as the anodic (anode) charge material and nickel hydroxide (Ni(OH)2) is employed as the cathodic (cathode) charge material, and form respective anodic and cathodic suspensions using carbon powder and additives to form particles having high stability and high energy density. The resulting suspensions are circulated in a charge cell connected to a load for providing electrical power.
    Type: Application
    Filed: May 13, 2013
    Publication date: December 5, 2013
    Inventors: Yan Wang, Diran Apelian, Yang Bai, Wenhuan Li
  • Publication number: 20130323624
    Abstract: The invention relates to an electrocatalyst for a fuel cell comprising carbon nanotubes as substrate, ruthenium oxide deposited on the substrate, platinum particles supported on the ruthenium oxide, and manganese dioxide layer coated on the surface of the ruthenium oxide-platinum particles deposited carbon nanotubes. The invention also relates to the method of preparing the electrocatalyst for a fuel cell comprising the steps of depositing ruthenium oxide on the surface of carbon nanotubes, depositing platinum particles on the ruthenium oxide, and coating a manganese dioxide layer on the surface of the ruthenium oxide-platinum particles deposited carbon nanotubes.
    Type: Application
    Filed: March 4, 2013
    Publication date: December 5, 2013
    Applicant: NANO AND ADVANCED MATERIALS INSTITUTE LIMITED
    Inventors: Hongjuan Wang, Feng Peng, Hao Yu, Jiadao Zheng