Trench Capacitor Patents (Class 438/243)
  • Patent number: 7387930
    Abstract: A method of fabricating a bottle trench and a bottle trench capacitor. The method including: providing a substrate; forming a trench in the substrate, the trench having sidewalls and a bottom, the trench having an upper region adjacent to a top surface of the substrate and a lower region adjacent to the bottom of the trench; forming an oxidized layer of the substrate in the bottom region of the trench; and removing the oxidized layer of the substrate from the bottom region of the trench, a cross-sectional area of the lower region of the trench greater than a cross-sectional area of the upper region of the trench.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: June 17, 2008
    Assignees: International Business Machines Corporation, Infineon Technologies North America Corp., Infineon Technologies AG
    Inventors: Oh-Jung Kwon, Kenneth T. Settlemyer, Jr., Ravikumar Ramachandran, Min-Soo Kim
  • Publication number: 20080135906
    Abstract: A dynamic random access memory device including a capacitor structure, e.g., trench, stack. The device includes a substrate (e.g., silicon, silicon on insulator, epitaxial silicon) having a surface region. The device includes an interlayer dielectric region overlying the surface region. In a preferred embodiment, the interlayer dielectric region has an upper surface and a lower surface. The device has a container structure within a portion of the interlayer dielectric region. The container structure extends from the upper surface to the lower surface. The container structure has a first width at the upper surface and a second width at the lower surface. The container structure has an inner region extending from the upper surface to the lower surface. In a specific embodiment, the container structure has a higher dopant concentration within a portion of the inner region within a vicinity of the lower surface and on a portion of the inner region near the vicinity of the lower surface.
    Type: Application
    Filed: October 13, 2006
    Publication date: June 12, 2008
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Roger Lee, Guoqing Chen, Fumitake Mieno
  • Patent number: 7384842
    Abstract: A method for fabricating silicon-on-insulator (SOI) trench memory includes forming a trench on a substrate, wherein a buried oxide layer is disposed on the substrate, a SOI layer is disposed on the buried oxide layer, and a hardmask layer is disposed on the SOI layer, implanting ions into the substrate and the SOI layer on a first opposing side of the trench and a second opposing side the trench to partially form a capacitor, depositing a node dielectric in the trench, filling the trench with a first polysilicon, removing a portion of the first polysilicon from the trench, removing an exposed portion of the node dielectric, filling the trench with a second polysilicon, masking to define an active region on the hardmask layer, forming shallow trench isolation (STI) such that the STI contacts a portion of the buried oxide layer, removing the hardmask layer, and forming a transistor.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: June 10, 2008
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Herbert L. Ho, Geng Wang
  • Patent number: 7381613
    Abstract: A semiconductor device includes a group of capacitors and a trench. Each capacitor includes a first conductive material layer, a dielectric layer, and a second conductive material layer. The dielectric layer is located between the first and second conductive material layers. The first conductive material layer coats an inside surface of a cup-shaped opening formed in an insulating layer. The trench is formed in the insulating layer. The trench extends between and crosses each of the capacitors in the group. The dielectric layer and the second conductive material layer are formed over the first conductive material layer in the cup-shaped openings and over an inside surface of the trench. The second conductive material layer extends between the capacitors of the group via the trench. Also, the second conductive material layer forms top electrodes for the capacitors of the group.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: June 3, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Kuo-Chi Tu
  • Publication number: 20080124863
    Abstract: A trench device and method for fabricating same are provided. The trench device has a collar with a first portion that is doped and a second portion that is undoped. Fabrication of the partially doped collar can be done by deposition of a doped insulator in the trench, removal of a portion of the doped deposition, deposition of an undoped insulator in the trench and removal of a portion of the doped and undoped insulators.
    Type: Application
    Filed: January 31, 2008
    Publication date: May 29, 2008
    Inventors: Kangguo Cheng, Geng Wang
  • Publication number: 20080121961
    Abstract: A transistor, which is formed in a semiconductor substrate having a top surface, includes first and second source/drain regions, a channel connecting the first and second source/drain regions, and a gate electrode for controlling an electrical current flowing in the channel. The gate electrode is disposed in a lower portion of a gate groove defined in the top surface of the semiconductor substrate. The upper portion of the groove is filled with an insulating material. The channel includes a fin-like portion in the shape of a ridge having a top side and two lateral sides in a cross-section perpendicular to a direction defined by a line connecting the first and second source/drain regions. The gate electrode encloses the channel at the top side and the two lateral sides thereof.
    Type: Application
    Filed: September 8, 2006
    Publication date: May 29, 2008
    Inventor: Till Schloesser
  • Patent number: 7378312
    Abstract: An inner spacer is formed in a sidewall of a gate in contact with a first active region that is electrically connected to an upper capacitor, thereby reducing a gate induced drain leakage (GIDL). A structure of a recess gate transistor includes a gate insulation layer, a gate electrode, a first gate spacer, a second gate spacer and source/drain regions. The gate insulation layer is formed within a recess. The gate electrode is surrounded by the gate insulation layer and is extended from within the recess. The first gate spacer is spaced with a predetermined distance horizontally with a portion of the gate insulation layer, being formed in a sidewall of the gate electrode. The second gate spacer is formed in another part of the sidewall of the gate electrode. The source/drain regions are formed mutually oppositely on first and second active regions with the gate electrode therebetween.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: May 27, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ji-Young Kim
  • Patent number: 7375034
    Abstract: Recessing a trench using feed forward data is disclosed. In one embodiment, a method includes providing a region on a wafer including a trench area that includes a trench and a field area that is free of any trench, and a material applied over the region so as to fill the trench in the trench area and form a step between the trench area and the field area; etching to partially etch the trench; determining a target etch duration (tD) for etching to the target depth (DT); and etching the trench to the target depth (DT) for a period approximately equal to the target etch duration (tD). The target etch duration tD may be fed forward for recessing another trench to the target depth DT. The method does not require a send ahead wafer, is fully compatible with conventional automated processes and provides in-situ etch time correction to each wafer.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: May 20, 2008
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng
  • Patent number: 7375029
    Abstract: A method for fabricating contact holes in a semiconductor body proceeds from a structure in which: a plurality of trenches isolated from one another by mesa regions are provided in the semiconductor body, and electrodes are provided in the trenches, which electrodes are electrically insulated from the semiconductor body by a first insulation layer, and the upper ends of which electrodes are situated at a deeper level than the upper ends of the trenches. The method comprises the steps of: producing a second insulation layer by subjecting parts of the surface of the structure to a thermal oxidation process, and carrying out a planarization process in such a way that the semiconductor body is uncovered in the region of the mesa regions, and forming the contact holes in the mesa regions using the residues of the second insulation layer remaining after the planarization process as a contact hole mask.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: May 20, 2008
    Assignee: Infineon Technologies AG
    Inventor: Martin Poelzl
  • Publication number: 20080113478
    Abstract: Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Inventors: Kurt D. Beigel, Jigish D. Trivedi, Kevin G. Duesman
  • Publication number: 20080111175
    Abstract: A method of forming a vertical DRAM device. A lower trench is filled with polycrystalline or amorphous semiconductor for a capacitor. An upper trench portion has exposed sidewalls of single-crystal semiconductor. The method then includes etching the single-crystal semiconductor sidewalls to widen the of the upper trench portion beyond the exposed upper surface of the semiconductor fill of the capacitor to form exposed regions of single-crystal semiconductor on a bottom portion of the upper trench adjacent to the exposed upper surface of the semiconductor fill. A trench top insulating layer is deposited on the bottom portion of the upper trench, over the upper surface of the semiconductor fill and over the adjacent regions of single-crystal semiconductor. The method then includes forming a vertical gate dielectric layer, wherein the trench top insulating layer extends below the vertical gate insulating layer.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Richard O. Henry, Kenneth T. Settlemyer
  • Publication number: 20080111174
    Abstract: A memory device comprises an array of memory cells, the memory cells being at least partially formed in a semiconductor substrate having a surface, each of the memory cells including an access transistor and a storage capacitor for storing data, the storage capacitor including a first and a second capacitor electrodes and a capacitor dielectric disposed between the first and second capacitor electrodes. The first capacitor electrode extends to a first electrode height. The memory device also includes a peripheral portion including peripheral circuitry and a wiring layer. The wiring layer includes first lines, wherein a bottom surface of each of the first lines is disposed at a bottom surface height which is greater than 0.25 times the first electrode height, and each of the first lines has a line thickness less than 200 nm.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Applicant: QIMONDA AG
    Inventors: Peter Baars, Klaus Muemmler
  • Patent number: 7371645
    Abstract: Fabrication of recessed channel array transistors (RCAT) with a corner gate device includes forming pockets between a semiconductor fin that includes a gate groove and neighboring shallow trench isolations that extend along longs sides of the semiconductor fin. A protection liner covers the semiconductor fin and the trench isolations in a bottom portion of the gate groove and the pockets. An insulator collar is formed in the exposed upper sections of the gate groove and the pockets, wherein a lower edge of the insulator collar corresponds to a lower edge of source/drain regions formed within the semiconductor fin. The protection liner is removed. The bottom portion of the gate groove and the pockets are covered with a gate dielectric and a buried gate conductor layer. The protection liner avoids residuals of polycrystalline silicon between the active area in the semiconductor fin and the insulator collar.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: May 13, 2008
    Assignee: Infineon Technologies AG
    Inventors: Klaus Muemmler, Peter Baars, Stefan Tegen
  • Patent number: 7368341
    Abstract: An explanation is given of, inter alia, a circuit arrangement containing a trench which penetrates through a charge-storing layer (18) and a doped semiconductor layer (14). The trench simultaneously fulfils a multiplicity of functions, namely an insulating function between adjacent components, the patterning of the charge-storing layer and also the subdivision of doping layers of the semiconductor layer (14).
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: May 6, 2008
    Assignee: Infineon Technologies AG
    Inventors: Achim Gratz, Klaus Knobloch, Franz Schuler
  • Publication number: 20080102578
    Abstract: The present invention provides a manufacturing method for an integrated semiconductor structure and a corresponding semiconductor structure. The method comprises the steps of: forming a peripheral circuitry in a peripheral device region, said peripheral circuitry comprising a peripheral transistor at least partially formed in said semiconductor substrate and having a first gate dielectric formed in a first high temperature process step; forming a plurality of memory cells in a memory cell region, each of said memory cells comprising an access transistor at least partially formed in a semiconductor substrate and having a second gate dielectric formed in a second high temperature process step and having a metallic gate conductor; wherein said first and second high temperature process steps are performed before a step of forming said metallic gate conductor.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 1, 2008
    Inventor: Till Schlosser
  • Publication number: 20080102579
    Abstract: A method of forming an isolation layer of a semiconductor device includes forming first trenches in an isolation region of a semiconductor substrate. A spacer is formed on sidewalls of each of the first trenches. Second trenches are formed in the isolation region below the corresponding first trenches. Each second trench is narrower and deeper than the corresponding first trench. A first oxide layer is formed on sidewalls and a bottom surface of each of the second trenches. The first trench is filled with an insulating layer.
    Type: Application
    Filed: December 28, 2006
    Publication date: May 1, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventors: Cha Deok Dong, Whee Won Cho, Jung Geun Kim, Cheol Mo Jeong, Suk Joong Kim, Jung Gu Lee
  • Publication number: 20080102577
    Abstract: A method for preparing a trench capacitor structure first forms at least one trench in a substrate, and forms a buried bottom electrode on the lower outer surface of the trench. A dielectric layer is formed to cover an inner sidewall of the trench, and a plurality of deposition processes are then performed to form several polysilicon layers in the trench, wherein a process of introducing a gas containing dopants into the trench is performed at an interval of these deposition processes to diffuse the dopants into the polysilicon layers. Afterward, a planarization process and an anisotropic dry etching process are performed to remove a portion of the polysilicon layers from the top portion of the trench to form a top electrode in the lower portion of the trench. A collar insulation layer is then formed on the upper sidewall of the trench, and the collar insulation layer is used as an implanting mask to perform an implanting process to implant the dopants into the top electrode.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 1, 2008
    Applicant: PROMOS TECHNOLOGIES INC.
    Inventors: Su Chen Lai, Hung-Kwei Liao
  • Patent number: 7364972
    Abstract: A semiconductor device comprises a semiconductor substrate, a first circuit formed on the substrate, and a second circuit connected to the first circuit as an input/output portion thereof and powered by a voltage higher than that for the first circuit, the first circuit including a first and a second field-effect transistor, the first drain region of the first transistor accompanying a first load capacitance, the second drain region of the second transistor accompanying a second load capacitance smaller than the first load capacitance, and the first gate insulation film of the first transistor having an average relative dielectric constant higher than that of the second gate insulation film of the second transistor, thereby realizing a high operation speed.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: April 29, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mizuki Ono, Akira Nishiyama
  • Patent number: 7365018
    Abstract: A non-volatile memory device having memory elements with a channel length of, e.g., 45-55 nm or less, is fabricated using existing lithographic techniques. In one approach, patterns of first and second photomasks are transferred to the same photoresist layer. The first photomask can have openings with a given feature size F that are spaced apart by the feature size F, for instance. The second photomask has an opening which is sized to create a desired inter-select gate gap, such as 3 F or 5 F. A third photomask is used to provide protective portions in a second photoresist layer over the select gate structures. The final structure has memory elements of width F spaced apart by a distance F, and select gates of width 3 F spaced apart by 3 F or 5 F. In another approach, the patterns of three photomasks are transferred to respective photoresist layers to create an analogous final structure.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: April 29, 2008
    Assignee: Sandisk Corporation
    Inventors: Masaaki Higashitani, Tuan Pham, Masayuki Ichige, Koji Hashimoto, Satoshi Tanaka, Kikuko Sugimae
  • Patent number: 7364965
    Abstract: A semiconductor device having a DRAM has a capacitor in which a dielectric film and an upper electrode are laminated on a lower electrode comprising a polysilicone, in which a natural oxide film oxidized by oxygen in the atmosphere grows to at least 1.5 nm on the surface of a lower electrode of the capacitor. Further, in forming the dielectric film, the dioxide film further grows in the case of using an oxidative raw material. This brings forth a reduction in capacitance, and an increase of a leakage current is caused. Therefore, after a dielectric film having a reduction property has been formed, the reduction property is promoted by a heat treatment to thereby reduce a dioxide film and realize making the dioxide film on the lower electrode surface thinner.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: April 29, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Osamu Tonomura, Hiroshi Miki, Yuichi Matsui, Tomoko Sekiguchi, Kikuo Watanabe
  • Publication number: 20080096346
    Abstract: A method for preparing a trench capacitor structure first forms at least one trench in a substrate, and forms a capacitor structure in the bottom portion of the trench, wherein the capacitor structure includes a buried bottom electrode positioned on a lower outer surface of the trench, a first dielectric layer covering an inner surface of the bottom electrode and a top electrode positioned on the surface of the dielectric layer. Subsequently, a collar insulation layer is formed on the surface of the first dielectric layer above the top electrode, and a first conductive block is then formed in the collar insulation layer. A second conductive block with dopants is formed on the first conductive block, and a thermal treating process is performed to diffuse the dopants from the second conductive block into an upper portion of the semiconductor substrate to form a buried conductive region.
    Type: Application
    Filed: November 21, 2006
    Publication date: April 24, 2008
    Applicant: PROMOS TECHNOLOGIES INC.
    Inventors: Ching Lee, Chin Wen Lee, Chin Long Hung, Zheng Cheng Chen
  • Patent number: 7361546
    Abstract: A method of forming a conductive stud is provided. The method includes providing a substrate which has an upper surface and an opening. The opening exposes a portion of a vertical memory device. A conductive layer is formed over the substrate to fill the opening. A chemical mechanical polishing is performed on the conductive layer to form a conductive stud having an upper surface substantially lower than the upper surface of the substrate.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: April 22, 2008
    Assignee: Nanya Technology Corporation
    Inventors: Shian-Jyh Lin, Chia-Sheng Yu, Wen-Sung Tsou
  • Patent number: 7358133
    Abstract: A method for forming a semiconductor device is provided. The method comprises providing a substrate with recessed gates and deep trench capacitor devices therein. Protrusions of the recessed gates and upper portions of the deep trench capacitor devices are revealed. Spacers are formed on sidewalls of the upper portions and the protrusions. Buried portions of conductive material are formed in spaces between the spacers. The substrate, the spacers and the buried portions are patterned to form parallel shallow trenches for defining buried bit line contacts and capacitor buried surface straps. A layer of dielectric material is formed in the shallow trenches. Word lines are formed across the recessed gates. Bit lines are formed to electrically connect the buried bit line contacts without crossing the capacitor buried surface straps, and stack capacitors are formed to electrically connect with the capacitor buried surface straps. A semiconductor device is also provided.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: April 15, 2008
    Assignee: Nanya Technology Corporation
    Inventor: Pei-Ing Lee
  • Patent number: 7358556
    Abstract: A static random access memory (SRAM) cell structure at least comprising a substrate, a transistor, an upper electrode and a capacitor dielectric layer. A device isolation structure is set up in the substrate to define an active region. The active region has an opening. The transistor is set up over the active region of the substrate. The source region of the transistor is next to the opening. The upper electrode is set up over the opening such that the opening is completely filled. The capacitor dielectric layer is set up between the upper electrode and the substrate.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: April 15, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Tzung-Han Lee, Kuang-Pi Lee, Wen-Jeng Lin, Rern-Hurng Larn
  • Patent number: 7354822
    Abstract: A vertical pass transistor used in a DRAM cell for maintaining a low total leakage current and providing adequate drive current is described together with a method of fabricating such a device. The transistor gate is engineered in lieu of the channel. The vertical pass transistor for the DRAM cell incorporates two gate materials having different work functions. The gate material near the storage node is n-type doped polysilicon. The gate material near the bit line diffusion is made of silicide or metal having a higher work function than the n-polysilicon. The novel device structure shows several advantages: the channel doping is reduced while maintaining a high Vt and a low sub-threshold leakage current; the carrier mobility improves with the reduced channel doping; the body effect of the device is reduced which improves the write back current; and the sub-threshold swing is reduced because of the low channel doping.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: April 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Geng Wang, Yujun Li, Qiqing C. Ouyang
  • Patent number: 7354821
    Abstract: Trench capacitors that have insulating layer collars in undercut regions and methods of fabricating such trench capacitors are provided. Some methods of fabricating a trench capacitor include forming a first layer on a substrate. A second layer is formed on the first layer opposite to the substrate. A mask is formed that has an opening on top of the first and second layers. A first trench is formed by removing a portion of the first and second layers through the opening in the mask. A portion of the first layer under the second layer is removed to form an undercut region under the second layer. An insulating layer collar is formed in the undercut region under the second layer. A second trench is formed that extends from the first trench by removing a portion of the substrate through the opening in the mask. A buried plate is formed in the substrate along the second trench. A dielectric layer is formed on an inner wall and bottom of the second trench.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: April 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Suk-jin Chung, Seung-hwan Lee, Sung-tae Kim, Young-sun Kim, Jae-soon Lim, Young-geun Park
  • Patent number: 7354786
    Abstract: A micromechanical sensor element and a method for the production of a micromechanical sensor element that is suitable, for example in a micromechanical component, for detecting a physical quantity. Provision is made for the sensor element to include a substrate, an access hole and a buried cavity, at least one of the access holes and the cavity being produced in the substrate by a trench etching and/or, in particular, an isotropic etching process. The trench etching process includes different trenching (trench etching) steps which may be divided into a first phase and a second phase. Thus, in the first phase, at least one first trenching step is carried out in which, in a predeterminable first time period, material is etched out of the substrate and a depression is produced. In that trenching step, a typical concavity is produced in the wall of the depression.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: April 8, 2008
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Stefan Finkbeiner, Matthias Illing, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20080079049
    Abstract: An embedded semiconductor device which a logic region and the memory region are planarized with planarization resistance patterns and a method of manufacturing the same are disclosed.
    Type: Application
    Filed: August 2, 2007
    Publication date: April 3, 2008
    Inventors: Se-young Lee, Il-young Yoon, Boung-ju Lee
  • Patent number: 7351634
    Abstract: A method for fabricating a trench capacitor is disclosed. A substrate having a first pad layer is provided. STI structure is embedded into the first pad layer and the substrate. A second pad layer is deposited over the first pad layer and the STI structure. Two adjacent trenches are etched into the first, second pad layers, and the semiconductor substrate. The second pad layer and a portion of the STI structure between the two trenches are etched to form a ridge. A liner is formed on interior surface of the trenches. A first polysilicon layer is formed on the liner. A capacitor dielectric layer is formed on the first polysilicon layer. The two adjacent trenches are filled with a second polysilicon layer. The second polysilicon layer is then etched until the capacitor dielectric layer is exposed. The fabrication process is easy to integrate to SoC chip.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: April 1, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Nan Su, Yung-Chang Lin, Jun-Chi Huang
  • Patent number: 7348596
    Abstract: A test device for detecting current leakage between deep trench capacitors in DRAM devices. The test device is disposed in a scribe line region of a wafer. In the test device, a first trench capacitor pair has a first deep trench capacitor and a second deep trench capacitor connected in parallel. A first transistor has a first terminal electrically coupled to the first deep trench capacitor and a control terminal electrically coupled to a first word line. A second transistor has a first terminal electrically coupled to the second deep trench capacitor and a control terminal electrically coupled to a second word line. First and second bit lines are electrically coupled to the first and second transistors respectively. The first and second bit lines are separated and the first and second word lines are perpendicular to the bit line regions.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: March 25, 2008
    Assignee: Nanya Technology Corporation
    Inventor: Yu-Chang Lin
  • Patent number: 7348235
    Abstract: An isolation insulation film is formed in an isolation trench in an upper portion of a silicon substrate. The isolation insulation film has an opening by which inner walls and bottom of the isolation trench are exposed. A lower diffusion layer serving as a lower electrode of capacitors of DRAM cells extends into the inner walls of the isolation trench exposed by the opening, and a dielectric layer is formed in almost constant thickness on the inner walls and bottom of the isolation trench exposed by the opening. An upper electrode is partially buried in the opening. A channel cut layer is formed in the vicinity of the bottom of the opening.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: March 25, 2008
    Assignee: Renesas Technology Corp.
    Inventor: Yoshitaka Fujiishi
  • Patent number: 7344954
    Abstract: A substrate is provided having an oxide layer, a first nitride-silicon, a STI, and a second nitride-silicon. A pattern poly-silicon layer on the second nitride-silicon layer is etched to form a deep trench opening. Etching the pattern poly-silicon layer also deepens the deep trench opening. Then, a conductive layer is filled in the deep trench opening.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: March 18, 2008
    Assignee: United Microelectonics Corp.
    Inventors: Ta-Chuan Yeh, Ni-Min Chung, Kao-Su Huang, Yung-Chang Lin, Ruey-Chyr Lee, Chien-Kuo Wang
  • Patent number: 7344953
    Abstract: On a substrate surface, which has been patterned in the form of a relief, of a substrate, typically of a semiconductor wafer, a deposition process is used to provide a covering layer on process surfaces which are vertical or inclined with respect to the substrate surface. The covering layer is patterned in a direction which is vertical with respect to the substrate surface by limiting a process quantity of at least one precursor material and/or by temporarily limiting the deposition process, and is formed as a functional layer or mask for subsequent process steps.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: March 18, 2008
    Assignee: Infineon Technologies, AG
    Inventors: Thomas Hecht, Matthias Goldbach, Uwe Schröder
  • Publication number: 20080057660
    Abstract: A semiconductor device using a recessed step gate. An embodiment comprises a recessed region in a portion of the substrate, a transistor with one source/drain region located within the recessed region and one source/drain region located out of the recessed region, a storage device connected to the source/drain located out of the recessed region, and a bit line connected to the source/drain located within the recessed region.
    Type: Application
    Filed: August 29, 2006
    Publication date: March 6, 2008
    Inventors: Kuo-Chi Tu, Jai-Hoon Sim, Chun-Yao Chen
  • Patent number: 7339228
    Abstract: A first plane of memory cells is formed on mesas of the array. A second plane of memory cells is formed in valleys adjacent to the mesas. The second plurality of memory cells is coupled to the first plurality of memory cells through a series connection of their source/drain regions. Wordlines couple rows of memory cells of the array. Metal shields are formed between adjacent wordlines and substantially parallel to the wordlines to shield the floating gates of adjacent cells.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: March 4, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 7335554
    Abstract: A method for fabricating a semiconductor device includes forming a first trench by etching a substrate already provided with a storage node contact (SNC) region and a bit line contact (BLC) region, forming a protection layer on sidewalls of the first trench, forming a sacrificial layer over the substrate and filling the first trench, etching the sacrificial layer to have a portion of the sacrificial layer remain in the first trench in the BLC region of the substrate, forming a second trench extending horizontally by etching the substrate underneath the first trench, and filling the first and second trenches to form an isolation structure.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: February 26, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jong-Man Kim, Hyeon-Soo Kim
  • Patent number: 7335553
    Abstract: A method for forming a trench capacitor and memory cell by providing a substrate on which a grid STI and a plurality of active regions covered by a hard mask layer are formed. A photoresist is formed and a low grade photo mask having only X direction consideration is used to define the required pattern on the photoresist. The hard mask layer and the STI are used as an etching mask to etch a plurality of deep trenches. Then diffusion regions, capacitor dielectric layer, and polysilicon filled to form the capacitor bottom electrode are sequentially formed to complete the forming for trench capacitors. After removing the hard mask layer and performing a logic process, the memory cells are completed.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: February 26, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Nan Su, Jun-Chi Huang
  • Patent number: 7332393
    Abstract: A cylindrical capacitor comprising at least a substrate, a cylindrical bottom electrode, a structure layer, a top electrode and a capacitor dielectric layer is provided. The substrate has several plugs. The cylindrical bottom electrodes are disposed on the substrate and electrically connected to the respective plugs. The structure layer surrounds the periphery of each cylindrical bottom electrode. The structure layers that surround the two opposing cylindrical bottom electrodes have no mutual contact while the structure layers that surround two neighboring cylindrical bottom electrodes contact each other. Furthermore, the top electrodes cover the respective cylindrical bottom electrodes and the capacitor dielectric layer is disposed between each top electrode and corresponding cylindrical bottom electrode. Due to the structure layers, the mechanical strength of the whole cylindrical capacitor is improved and the density of the capacitor can be increased.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 19, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Heng-Yuan Lee, Ching-Yuan Ho, Lurng-Shehng Lee, Chieh-Shuo Liang
  • Patent number: 7332394
    Abstract: A method of integrating the fabrication of a capacitor cell and a logic device region, wherein the surface area of a capacitor region is increased, and the risk of a capacitor depletion phenomena is reduced, has been developed. After formation of insulator filled STI regions featuring tapered sides, a portion of the insulator layer in an STI region is recessed below the top surface of the semiconductor substrate exposing a bare, tapered side of the semiconductor substrate. Ion implantation into the tapered side of the portion of semiconductor substrate exposed in the recessed STI portion, as well as into a top portion of semiconductor substrate located adjacent to the recessed STI portion, results in formation of a capacitor region now greater in surface area than a counterpart capacitor region which is formed via implantation into only a top portion of semiconductor substrate.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: February 19, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Min-Hsiung Chiang
  • Patent number: 7332390
    Abstract: A semiconductor memory device and fabrication method thereof. In a semiconductor memory device, each memory cell comprises a deep trench and a capacitor disposed on the lower portion thereof. A collar oxide layer having a first second sidewalls is disposed on the deep trench. The top of the first sidewall is at the same height as the surface of the semiconductor substrate. The top of the second sidewall is substantially equal to the top of the capacitor. The memory cell further comprises a buried conductor layer disposed on the second sidewall and the capacitor and a buried strap adjoining the buried conductive layer, and a transistor disposed on the surface of the semiconductor substrate and electrically connected to the capacitor through the buried strap and the buried conductive layer.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: February 19, 2008
    Assignee: Winbond Electronics Corp.
    Inventor: Wen-Yueh Jang
  • Patent number: 7332392
    Abstract: A trench capacitor structure includes a semiconductor substrate comprising thereon a STI structure. A capacitor deep trench is etched into the semiconductor substrate. Collar oxide layer is disposed on inner surface of the capacitor deep trench. A first doped polysilicon layer is disposed on the collar oxide layer and on the exposed bottom of the capacitor deep trench. A capacitor dielectric layer is formed on the first doped polysilicon layer. A second doped polysilicon layer is formed on the capacitor dielectric layer. A deep ion well is formed in the semiconductor substrate, wherein the deep ion well is electrically connected with the first doped polysilicon layer through the bottom of the capacitor deep trench. A passing gate insulation (PGI) layer is formed on the second doped polysilicon layer and on the STI structure.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: February 19, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Chang Lin, Sun-Chieh Chien, Chien-Li Kuo, Ruey-Chyr Lee
  • Publication number: 20080035975
    Abstract: A semiconductor memory device includes: a transistor formed in a substrate; a capacitor formed above one of source/drain regions of the transistor; a bit line formed above the substrate and extending in the gate length direction of the transistor; a first conductive plug connecting one of the source/drain regions and the capacitor; a second conductive plug connected to the other source/drain region that is not connected to the first conductive plug; and a third conductive plug formed on the second conductive plug and connected to the bit line. The central axis of the third conductive plug is displaced from the central axis of the second conductive plug in the gate width direction of the transistor.
    Type: Application
    Filed: July 12, 2007
    Publication date: February 14, 2008
    Inventors: Ryo Nakagawa, Takashi Nakabayashi, Hideyuki Arai
  • Publication number: 20080032471
    Abstract: A method for manufacturing a shallow trench isolation structure in a deep trench and application thereof are provided, wherein the deep trench having an upper electrode and an insulation layer on the upper electrode is formed in a substrate which has a pad insulation layer. The method comprises the following steps: forming a hard mask on the first insulation layer, doping a first portion of the hard mask, removing the undoped portion of the hard mask to expose a portion of the first insulation layer and reserve the first portion of the hard mask, removing the exposed portion of the first insulation layer to expose a portion of the upper electrode, and forming a conductive layer on the exposed portion of the upper electrode wherein a predetermined distance exists between the upper surface of the conductive layer and the pad insulation layer.
    Type: Application
    Filed: October 13, 2006
    Publication date: February 7, 2008
    Applicant: Promos Technologies Inc.
    Inventors: Wen-Shuo Kuo, Chao-Hsi Chung, Yung Yao Lee, Hui-Min Li
  • Patent number: 7326626
    Abstract: The capacitor of the present invention comprises: an opening part formed in an interlayer insulating film on a semiconductor substrate; a lower electrode made of a polycrystalline silicon with an uneven surface part; a chemical oxide film formed on the uneven surface part of the lower electrode; an silicon oxynitride film which is obtained by modifying the chemical oxide film by nitriding processing; a capacitive insulating film made of a metal oxide film formed on the silicon oxynitride film; and an upper electrode formed on the capacitive insulating film.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: February 5, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasuhiro Kawasaki, Kenji Yoneda
  • Patent number: 7326612
    Abstract: A method is provided for fabricating a semiconductor structure, such as a DRAM memory cell, that includes an elevated region with at least one sidewall. The at least one sidewall is provided with an insulation layer. A mask layer is applied to the insulation layer. The mask layer is patterned in such a way that it is removed from the surface of the elevated region and from an edge region of the insulation layer, said edge region adjoining the sidewall of the elevated region. A material is implanted into the surface of the elevated region and also into the edge region of the insulation layer. The material preferably alters the properties of the surface of the elevated region and also increases the etching rate of the insulation layer. The mask layer is removed and the insulation layer is subjected to a whole-area etching step.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: February 5, 2008
    Assignee: Qimonda AG
    Inventor: Mark Hollatz
  • Patent number: 7320911
    Abstract: A method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes comprising sidewalls. The plurality of capacitor electrodes are supported at least in part with a retaining structure which engages the sidewalls, with the retaining structure comprising a fluid previous material. A capacitor dielectric material is deposited over the capacitor electrodes through the fluid previous material of the retaining structure effective to deposit capacitor dielectric material over portions of the sidewalls received below the retaining structure. Capacitor electrode material is deposited over the capacitor dielectric material through the fluid previous material of the retaining structure effective to deposit capacitor electrode material over at least some of the capacitor dielectric material received below the retaining structure. Integrated circuitry independent of method of fabrication is also contemplated.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: January 22, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej S. Sandhu
  • Patent number: 7320912
    Abstract: A method for forming a trench capacitor includes: removing a portion of the substrate to form a trench within the substrate; forming at a buried isolation layer within the substrate; forming in the substrate a first electrode of the trench capacitor at least in areas surrounding a lower portion of the trench; forming a dielectric layer of the trench capacitor; and forming a second electrode of the trench capacitor in the trench. The buried isolation layer intersects with the trench and has one or more gaps for providing body contact between a first substrate area above the buried isolation layer and a second substrate area below the buried isolation layer.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: January 22, 2008
    Assignee: PROMOS Technologies Inc.
    Inventors: Yueh-Chuan Lee, Ming-Sheng Tung
  • Publication number: 20080014696
    Abstract: A trench capacitor and the method of manufacturing the same are provided. A rough polysilicon layer is formed on an inner electrode layer and subsequently mantled by a dielectric layer, and then filled up with an outer electrode layer. The present invention utilizes the characteristic that the rough polysilicon layer has bigger surface area to substantially increase the contact area between the dielectric layer and the inner electrode layer, and make the capacitance of the capacitor increase.
    Type: Application
    Filed: June 1, 2006
    Publication date: January 17, 2008
    Inventor: Nan-Hsiung Tsai
  • Publication number: 20080006866
    Abstract: A semiconductor device may include a semiconductor substrate that includes first and second regions; first, second, and third insulating layers; a capacitor dielectric layer that includes first and second dielectric layers; a gate insulating layer formed on the first and second regions; a gate formed on the gate insulating layer of the second region; a first capacitor electrode formed on the capacitor dielectric layer; and junction regions formed in the semiconductor substrate on sides of the gate. The first and second regions may include first and second trenches, respectively. The third insulating layer may be formed on the second insulating layer, which may be formed on the first insulating layer, which may be formed on an inner surface of the second trench. The second dielectric layer may be formed on the first dielectric layer, which may be formed on an inner surface of the first trench.
    Type: Application
    Filed: June 20, 2007
    Publication date: January 10, 2008
    Inventor: In-jung Lee
  • Patent number: 7316951
    Abstract: The present invention provides a fabrication method for a trench capacitor having an insulation collar (10) in a silicon substrate (1), having the steps of: providing a trench (5) in the silicon substrate (1); providing the insulation collar (10) in the upper trench region as far as the top side of the silicon substrate (1); depositing a layer (12) made of a metal oxide in the trench (5); carrying out a thermal treatment for selectively reducing the layer (12), a region of the layer (12) that lies below the insulation collar (10) above the silicon substrate (1) being reduced and being converted into a first capacitor electrode layer (15) made of a corresponding metal silicide, and a region of the layer (12) that lies above the insulation collar (10) not being reduced; selectively removing the non-reduced region of the layer (12) that lies above the insulation collar (10); providing a capacitor dielectric layer (18) in the trench (5) above the first capacitor electrode layer (15); and providing a second capaci
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: January 8, 2008
    Assignee: Infineon Technologies AG
    Inventors: Martin Gutsche, Harald Seidl