Trench Capacitor Patents (Class 438/243)
  • Publication number: 20130134490
    Abstract: A trench is formed in a semiconductor substrate, and is filled with a node dielectric layer and at least one conductive material fill portion that functions as an inner electrode. The at least one conductive material fill portion includes a doped polycrystalline semiconductor fill portion. A gate stack for an access transistor is formed on the semiconductor substrate, and a gate spacer is formed around the gate stack. A source/drain trench is formed between an outer sidewall of the gate spacer and a sidewall of the doped polycrystalline semiconductor fill portion. An epitaxial source region and a polycrystalline semiconductor material portion are simultaneously formed by a selective epitaxy process such that the epitaxial source region and the polycrystalline semiconductor material portion contact each other without a gap therebetween. The polycrystalline semiconductor material portion provides a robust low resistance conductive path between the source region and the inner electrode.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karen A. Nummy, Chengwen Pei, Werner A. Rausch, Geng Wang
  • Patent number: 8450214
    Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The substrate is exposed to a buffered fluoride etch solution which undercuts the silicon to provide lateral shelves when patterned in the <100> direction. The resulting structure includes an undercut feature when patterned in the <100> direction.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: May 28, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Janos Fucsko, David H. Wells
  • Patent number: 8441097
    Abstract: Methods to form memory devices having a MIM capacitor with a recessed electrode are described. In one embodiment, a method of forming a MIM capacitor with a recessed electrode includes forming an excavated feature defined by a lower portion that forms a bottom and an upper portion that forms sidewalls of the excavated feature. The method includes depositing a lower electrode layer in the feature, depositing an electrically insulating layer on the lower electrode layer, and depositing an upper electrode layer on the electrically insulating layer to form the MIM capacitor. The method includes removing an upper portion of the MIM capacitor to expose an upper surface of the electrode layers and then selectively etching one of the electrode layers to recess one of the electrode layers. This recess isolates the electrodes from each other and reduces the likelihood of a current leakage path between the electrodes.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: May 14, 2013
    Assignee: Intel Corporation
    Inventors: Joseph M. Steigerwald, Nick Lindert, Steven J. Keating, Christopher J. Jezewski, Timothy E. Glassman
  • Patent number: 8440523
    Abstract: A method is disclosed to fabricate an electro-mechanical device such as a MEMS or NEMS switch. The method includes providing a structure composed of a silicon layer disposed over an insulating layer that is disposed on a silicon substrate. The silicon layer is differentiated into a partially released region that will function as a portion of the electro-mechanical device. The method further includes forming a dielectric layer over the silicon layer; forming a hardmask over the dielectric layer, the hardmask being composed of hafnium oxide; opening a window to expose the partially released region; and fully releasing the partially released region using a dry etching process to remove the insulating layer disposed beneath the partially released region while using the hardmask to protect material covered by the hardmask. The step of fully releasing can be performed using a HF vapor.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Michael A Guillorn, Fei Liu, Ying Zhang
  • Patent number: 8426321
    Abstract: A process for making a dielectric material where a precursor polymer selected from poly(phenylene vinylene)polyacetylene, poly(p-phenylene), poly(thienylene vinylene), poly(1,4-naphthylene vinylene), and poly(p-pyridine vinylene) is energized said by exposure by radiation or increase in temperature to a level sufficient to eliminate said leaving groups contained within the precursor polymer, thereby transforming the dielectric material into a conductive polymer. The leaving group in the precursor polymer can be a chloride, a bromide, an iodide, a fluoride, an ester, an xanthate, a nitrile, an amine, a nitro group, a carbonate, a dithiocarbamate, a sulfonium group, an oxonium group, an iodonium group, a pyridinium group, an ammonium group, a borate group, a borane group, a sulphinyl group, or a sulfonyl group.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: April 23, 2013
    Assignee: Sandia Corporation
    Inventors: Shawn M. Dirk, Ross S. Johnson, David R. Wheeler, Gregory R. Bogart
  • Patent number: 8426268
    Abstract: The present invention relates to semiconductor devices, and more particularly to a structure and method for forming memory cells in a semiconductor device using a patterning layer and etch sequence. The method includes forming trenches in a layered semiconductor structure, each trench having an inner sidewall adjacent a section of the layered semiconductor structure between the trenches and an outer sidewall opposite the inner sidewall. The trenches are filled with polysilicon and the patterning layer is formed over the layered semiconductor structure. An opening is then patterned through the patterning layer, the opening exposing the section of the layered semiconductor structure between the trenches and only a vertical portion of the polysilicon along the inner sidewall of each trench. The layered semiconductor structure is then etched. The patterning layer prevents a second vertical portion of the polysilicon along the outer sidewall of each trench from being removed.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: April 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, David M. Dobuzinsky, Byeong Y. Kim, Munir D. Naeem
  • Patent number: 8420479
    Abstract: A contact level in a semiconductor device may be used for providing a capacitor that may be directly connected to a transistor, thereby providing a very space-efficient capacitor/transistor configuration. For example, superior dynamic RAM arrays may be formed on the basis of the capacitor/transistor configuration disclosed herein.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: April 16, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Dmytro Chumakov
  • Publication number: 20130087840
    Abstract: A memory cell includes a transistor device comprising a pair of source/drains, a body comprising a channel, and a gate construction operatively proximate the channel. The memory cell includes a capacitor comprising a pair of capacitor electrodes having a capacitor dielectric there-between. One of the capacitor electrodes is the channel or is electrically coupled to the channel. The other of the capacitor electrodes includes a portion of the body other than the channel. Methods are also disclosed.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: Kamal M. Karda, Suraj J. Mathew, Jaydip Guha
  • Patent number: 8409962
    Abstract: present invention discloses a manufacturing method for a copper interconnection structure with MIM capacitor. The method firstly makes a copper conductive pattern in a copper interconnection structure and a copper through hole bolt connected with the copper conductive pattern; etch away an insulation layer around the copper through hole bolt and deposit a etch stop layer, so as to expose the top and side surface of the copper through hole bolt and part of the top surface of the copper conductive pattern; deposit a dielectric layer on the obtained structure and fill a protection material in the recession area of the obtained structure; etch a trench for receiving other copper conductive patterns; remove the protection material; plate copper in the recession area, and plate copper in the trench, so as to obtain a copper interconnection structure with MIM capacitor.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 2, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Deyuan Xiao, Xiaolu Huang
  • Patent number: 8410535
    Abstract: A capacitor and a manufacturing method thereof are provided. The capacitor includes a first electrode, a first metal layer, a dielectric layer and a second electrode. The first electrode is disposed on a substrate. The first metal layer is disposed on the first electrode. The dielectric layer is disposed on the first metal layer, wherein the material of the first metal layer does not react with the material of the dielectric layer. The second electrode is disposed on the dielectric layer.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 2, 2013
    Assignee: Nanya Technology Corporation
    Inventors: Kuo-Hui Su, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8399321
    Abstract: The method for manufacturing a memory device is provided. The method includes: implanting a first impurity into the substrate adjacent to the gate conductor structure to form a source region on a first side of the gate conductor structure and a drain region on a second side of the gate conductor structure; implanting a second impurity into the substrate to form a halo implantation region disposed adjacent to the source region, wherein the halo implantation region has a doping concentration which does not degrade a data retention time of the memory device; and performing an annealing process to the drain region, forming a diffusion region under the drain region, wherein the process temperature of the annealing process is controlled to ensure that the diffusion region has a doping concentration substantially equal to a threshold concentration which maintains an electrical connection between the drain and the deep trench capacitor.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: March 19, 2013
    Assignee: Nanya Technology Corporation
    Inventors: Ping Hsu, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8350311
    Abstract: The present invention provides a technology capable of providing a semiconductor device having an MIM structure capacitor with improved reliability. The capacitor has a lower electrode, a capacitor insulating film, and an upper electrode. The lower electrode is comprised of a metal film embedded in an electrode groove formed in an insulating film over the main surface of a semiconductor substrate; and the upper electrode is comprised of a film stack of a TiN film (lower metal film) and a Ti film (cap metal film) formed over the TiN film (lower metal film).
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: January 8, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiyuki Kaneko, Hiroyasu Noso, Katsuhiko Hotta, Shinichi Ishida, Hidenori Suzuki, Sadayoshi Tateishi
  • Patent number: 8343844
    Abstract: A method of manufacturing a capacitor of a semiconductor device includes forming a high-k dielectric pattern on a semiconductor substrate, the high-k dielectric pattern having a pillar shape including a hole therein, forming a lower electrode in the hole of the high-k dielectric pattern, locally forming a blocking insulating pattern on an upper surface of the lower electrode, and forming an upper electrode covering the high-k dielectric pattern and the blocking insulating pattern.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: January 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wandon Kim, Jong Cheol Lee, Jin Yong Kim, Beom Seok Kim, Yong-Suk Tak, Kyuho Cho, Ohseong Kwon
  • Patent number: 8343829
    Abstract: A recessed-gate transistor device includes a gate electrode embedded in a gate trench formed in a semiconductor substrate, wherein the gate trench includes a vertical sidewall and a U-shaped bottom. A source region is provided at one side of the gate trench within the semiconductor substrate. A drain region is provided at the other side thereof. An asymmetric gate dielectric layer is formed between the gate electrode and the semiconductor substrate. The asymmetric gate dielectric layer has a first thickness between the gate electrode and the drain region and a second thickness between the gate electrode and the source region, wherein the first thickness is thicker than the second thickness.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: January 1, 2013
    Assignee: Nanya Technology Corp.
    Inventors: Jer-Chyi Wang, Tieh-Chiang Wu, Chung-Yuan Lee, Jeng-Ping Lin
  • Publication number: 20120302020
    Abstract: In one exemplary embodiment, a semiconductor structure including: a SOI substrate having a top silicon layer overlying an insulation layer, the insulation layer overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, the device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, at least a first portion of the backside strap underlies the doped portion, the backside strap is coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, the second epitaxially-deposited material further at least partially overlies the first portion.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. DORIS, Kangguo CHENG, Ali KHAKIFIROOZ, Pranita KULKARNI, Ghavam G. SHAHIDI
  • Patent number: 8318576
    Abstract: A semiconductor process and apparatus provide a shallow trench isolation capacitor structure that is integrated in an integrated circuit and includes a bottom capacitor plate that is formed in a substrate layer below a trench opening, a capacitor dielectric layer and a recessed top capacitor plate that is covered by an STI region and isolated from cross talk by a sidewall dielectric layer.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 27, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Mark D. Hall
  • Publication number: 20120295408
    Abstract: The method for manufacturing a memory device is provided. The method includes: implanting a first impurity into the substrate adjacent to the gate conductor structure to form a source region on a first side of the gate conductor structure and a drain region on a second side of the gate conductor structure; implanting a second impurity into the substrate to form a halo implantation region disposed adjacent to the source region, wherein the halo implantation region has a doping concentration which does not degrade a data retention time of the memory device; and performing an annealing process to the drain region, forming a diffusion region under the drain region, wherein the process temperature of the annealing process is controlled to ensure that the diffusion region has a doping concentration substantially equal to a threshold concentration which maintains an electrical connection between the drain and the deep trench capacitor.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Ping Hsu, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8304829
    Abstract: Exemplary power semiconductor devices with features providing increased breakdown voltage and other benefits are disclosed.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: November 6, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joseph A. Yedinak, Ashok Challa
  • Patent number: 8299517
    Abstract: A semiconductor device employing a transistor having a recessed channel region and a method of fabricating the same is disclosed. A semiconductor substrate has an active region. A trench structure is defined within the active region. The trench structure includes an upper trench region adjacent to a surface of the active region, a lower trench region and a buffer trench region interposed between the upper trench region and the lower trench region. A width of the lower trench region may be greater than a width of the upper trench region. An inner wall of the trench structure may include a convex region interposed between the upper trench region and the buffer trench region and another convex region interposed between the buffer trench region and the lower trench region. A gate electrode is disposed in the trench structure. A gate dielectric layer is interposed between the gate electrode and the trench structure.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: October 30, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Ho Jang, Yong-Jin Choi, Min-Sung Kang, Kwang-Woo Lee
  • Patent number: 8294246
    Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The substrate is exposed to a buffered fluoride etch solution which undercuts the silicon to provide lateral shelves when patterned in the <100> direction. The resulting structure includes an undercut feature when patterned in the <100> direction.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: October 23, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Janos Fucsko, David H. Wells
  • Patent number: 8283715
    Abstract: An integrated circuit with a memory cell is disclosed. The integrated circuit with a memory cell includes: a word line disposed in a word line trench of a substrate; a bit line disposed below the word line in a bit line trench and extending orthogonal to the word line; and, a separating layer disposed above the bit line in the bit line trench that separates the word line from the bit line; wherein an etching rate of the separating layer approaches that of the substrate.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: October 9, 2012
    Assignee: Rexchip Electronics Corporation
    Inventors: Yung-Chang Lin, Sheng-Chang Liang
  • Patent number: 8273624
    Abstract: Methods for implanting ions into a substrate by a plasma immersion ion implanting process are provided. In one embodiment, a method for implanting ions into a substrate includes providing a substrate into a processing chamber, generating a plasma from a gas mixture including a reacting gas and a etching gas in the chamber, adjusting the ratio between the reacting gas and the etching gas in the supplied gas mixture and implanting ions from the plasma into the substrate. In another embodiment, the method includes providing a substrate into a processing chamber, supplying a gas mixture including reacting gas and a halogen containing reducing gas into the chamber, forming a plasma from the gas mixture, gradually increasing the ratio of the etching gas in the gas mixture, and implanting ions from the gas mixture into the substrate.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: September 25, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Peter Porshnev, Majeed A. Foad
  • Patent number: 8273261
    Abstract: The invention includes methods in which silicon is removed from titanium-containing container structures with an etching composition having a phosphorus-and-oxygen-containing compound therein. The etching composition can, for example, include one or both of ammonium hydroxide and tetra-methyl ammonium hydroxide. The invention also includes methods in which titanium-containing whiskers are removed from between titanium-containing capacitor electrodes. Such removal can be, for example, accomplished with an etch utilizing one or more of hydrofluoric acid, ammonium fluoride, nitric acid and hydrogen peroxide.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: September 25, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Prashant Raghu
  • Patent number: 8268684
    Abstract: Embodiments of the present invention generally relates to an apparatus and a method for processing semiconductor substrates. Particularly, embodiments of the present invention relates to methods and apparatus for profile modification prior to filling a structure, such as a trench or a via. One embodiment of the present invention comprises forming a sacrifice layer to pinch off a top opening of a structure by exposing the structure to an etchant. In one embodiment, the etchant is configured to remove the first material by reacting with the first material and generating a by-product, which forms the sacrifice layer.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: September 18, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mei Chang, Chien-Teh Kao, Xinliang Lu, Zhenbin Ge
  • Patent number: 8252646
    Abstract: Methods are provided for simultaneously processing transistors in two different regions of an integrated circuit. Planar transistors are provided in a logic region while recessed access devices (RADs) are provided in an array region for a memory device. During gate stack patterning in the periphery, word lines are recessed within the trenches for the array RADs. Side wall spacer formation in the periphery simultaneously provides an insulating cap layer burying the word lines within the trenches of the array.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: August 28, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Thomas Arthur Figura, Gordon A. Haller
  • Patent number: 8253191
    Abstract: A vertical semiconductor material mesa upstanding from a semiconductor base that forms a conductive channel between first and second doped regions. The first doped region is electrically coupled to one or more first silicide layers on the surface of the base. The second doped region is electrically coupled to a second silicide layer on the upper surface of the mesa. A gate conductor is provided on one or more sidewalls of the mesa.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: August 28, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Chandra Mouli, John K. Zahurak
  • Patent number: 8247305
    Abstract: A method of forming a capacitor structure includes forming a pad oxide layer overlying a substrate, a nitride layer overlying the pad oxide layer, an interlayer dielectric layer overlying the nitride layer, and a patterned polysilicon mask layer overlying the interlayer dielectric layer. The method then applies a first RIE process to form a trench region through a portion of the interlayer dielectric layer using the patterned polysilicon mask layer and maintaining the first RIE to etch through a portion of the nitride layer and through a portion of the pad oxide layer. The method stops the first RIE when a portion of the substrate has been exposed. The method then forms an oxide layer overlying the exposed portion of the substrate and applies a second RIE process to continue to form the trench region by removing the oxide layer and removing a portion of the substrate to a predetermined depth.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 21, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Kuo-Chang Liao, Weijun Song, Dang Quan Liao
  • Patent number: 8247304
    Abstract: Provided is a method of manufacturing a semiconductor device having a capacitor under bit line (CUB) structure capable of increasing a gap between a bit line in a cell area and an upper plate of a capacitor, reducing coupling capacitance therebetween, and forming deep contacts in a logic area. A capacitor including a lower electrode, a dielectric material layer, and an upper electrode is formed in an opening of a first insulating layer for exposing a first part of a semiconductor substrate in a cell area. A second insulating layer is formed on the first insulating layer. The first and second insulating layers are etched. First and second contact plugs are formed in first and second contact holes for exposing second and third parts in the cell area and the logic area. A third insulating layer including first through third conductive studs is formed on the second insulating layer.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: August 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kwan-young Youn
  • Patent number: 8241981
    Abstract: A method includes providing an SOI substrate including a layer of silicon disposed atop a layer of an oxide, the layer of an oxide being disposed atop the semiconductor substrate; forming a deep trench having a sidewall extending through the layer of silicon and the layer of an oxide and into the substrate; depositing a continuous spacer on the sidewall to cover the layer of silicon, the layer of an oxide and a part of the substrate; depositing a first conformal layer of a conductive material throughout the inside of the deep trench; creating a silicide within the deep trench in regions extending through the sidewall into an uncovered part of the substrate; removing the first conformal layer from the continuous spacer; removing the continuous spacer; depositing a layer of a high k dielectric material throughout the inside of the deep trench, and depositing a second conformal layer of a conductive material onto the layer of a high-k dielectric material.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Rishikesh Krishnan, Joseph F. Shepard, Jr., Michael P. Chudzik, Christian Lavoie, Dong-Ick Lee, Oh-Jung Kwon, Unoh Kwon, Youngjin Choi
  • Patent number: 8236644
    Abstract: Disclosed are embodiments of an improved deep trench capacitor structure and memory device that incorporates this deep trench capacitor structure. The deep trench capacitor and memory device embodiments are formed on a semiconductor-on-insulator (SOI) wafer such that the insulator layer remains intact during subsequent deep trench etch processes and, optionally, such that the deep trench of the deep trench capacitor has different shapes and sizes at different depths. By forming the deep trench with different shapes and sizes at different depths the capacitance of the capacitor can be selectively varied and the resistance of the buried conductive strap which connects the capacitor to a transistor in a memory device can be reduced.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng
  • Patent number: 8232163
    Abstract: Deep trench capacitor structures and methods of manufacture are disclosed. The method includes forming a deep trench structure in a wafer comprising a substrate, buried oxide layer (BOX) and silicon (SOI) film. The method further includes forming a plate on a sidewall of the deep trench structure in the substrate by an implant process. The implant processes contaminate exposed edges of the SOI film in the deep trench structure. The method further includes removing the contaminated exposed edges of the SOI film by an etching process to form a void in the SOI film. The method further includes growing epitaxial Si in the void, prior to completing a capacitor structure.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Joseph Ervin, Brian Messenger, Karen A. Nummy, Ravi M. Todi
  • Patent number: 8232162
    Abstract: A method of forming a deep trench structure for a semiconductor device includes forming a mask layer over a semiconductor substrate. An opening in the mask layer is formed by patterning the mask layer, and a deep trench is formed in the semiconductor substrate using the patterned opening in the mask layer. A sacrificial fill material is formed over the mask layer and into the deep trench. A first portion of the sacrificial fill material is recessed from the deep trench and a first dopant implant forms a first doped region in the semiconductor substrate. A second portion of the sacrificial fill material is recessed from the deep trench and a second dopant implant forms a second doped region in the semiconductor substrate, wherein the second doped region is formed underneath the first doped region such that the second doped region and the first doped region are contiguous with each other.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang, Yanli Zhang
  • Patent number: 8232165
    Abstract: A semiconductor structure includes an n-channel field effect transistor (NFET) nanowire, the NFET nanowire comprising a film wrapping around a core of the NFET nanowire, the film wrapping configured to provide tensile stress in the NFET nanowire. A method of making a semiconductor structure includes growing a film wrapping around a core of an n-channel field effect transistor (NFET) nanowire of the semiconductor structure, the film wrapping being configured to provide tensile stress in the NFET nanowire.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Lidija Sekaric
  • Patent number: 8227311
    Abstract: A method of fabricating a trench capacitor is provided in which a material composition of a semiconductor region of a substrate varies in a quantity of at least one component therein such that the quantity alternates with depth a plurality of times between at least two different values. For example, a concentration of a dopant or a weight percentage of a second semiconductor material in a semiconductor alloy can alternate between with depth a plurality of times between higher and lower values. In such method, the semiconductor region can be etched in a manner dependent upon the material composition to form a trench having an interior surface which undulates in a direction of depth from the major surface of the semiconductor region. Such method can further include forming a trench capacitor having an undulating capacitor dielectric layer, wherein the undulations of the capacitor dielectric layer are at least partly determined by the undulating interior surface of the trench.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Byeong Y. Kim, Munir D. Naeem, James P. Norum
  • Patent number: 8227310
    Abstract: A method of forming an integrated circuit comprises: providing a semiconductor topography comprising an active transistor laterally adjacent to a trench capacitor formed in a semiconductor substrate, the active transistor comprising a source junction and a drain junction, wherein a barrier layer is disposed along a periphery of the trench capacitor for isolating the trench capacitor; forming an interlevel dielectric across the semiconductor topography; concurrently etching (i) a first opening through the interlevel dielectric to the drain junction of the active transistor and the trench capacitor, and (ii) a second opening through the interlevel dielectric to the source junction of the active transistor; and filling the first opening and the second opening with a conductive material to form a strap for electrically connecting the trench capacitor to the drain junction of the active transistor and to also form a contact for electrically connecting the source junction to an overlying level of the integrated cir
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: John E. Barth, Jr., Kangguo Cheng, Michael Sperling, Geng Wang
  • Patent number: 8222104
    Abstract: A method of forming an integrated circuit device includes forming a plurality of deep trench decoupling capacitors on a first substrate; forming a plurality of active circuit devices on a second substrate; bonding the second substrate to the first substrate; and forming electrical connections between the deep trench capacitors and the second substrate.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: July 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Ravi M. Todi, Geng Wang
  • Patent number: 8222109
    Abstract: A method of fabricating a semiconductor device according to the present invention includes forming a first trench and a second trench by etching the first trench further, in an epitaxial layer formed over a substrate, extending a width of the second trench, forming an oxidize film by oxidizing the extended second trench, and filling an electrode material in the first trench and the second trench including the oxidized film formed therein. The method of fabricating a semiconductor device according to the present invention enables to fabricate a semiconductor device that improves the withstand voltage between a drain and a source and reduce the on-resistance.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: July 17, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Hideo Yamamoto, Kei Takehara
  • Patent number: 8222103
    Abstract: Generally, the subject matter disclosed herein relates to a semiconductor device with embedded low-k metallization. A method is disclosed that includes forming a plurality of copper metallization layers that are coupled to a plurality of logic devices in a logic area of a semiconductor device and, after forming the plurality of copper metallization layers, forming a plurality of capacitors in a memory array of the semiconductor device. The capacitors are formed using a non-low-k dielectric material (k value greater than 3), while the copper metallization layers are formed in layers of low-k dielectric material (k value less than 3).
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: July 17, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Baars, Till Schloesser
  • Publication number: 20120171827
    Abstract: A memory device is provided that in one embodiment includes a trench capacitor located in a semiconductor substrate including an outer electrode provided by the semiconductor substrate, an inner electrode provided by a conductive fill material, and a node dielectric layer located between the outer electrode and the inner electrode; and a semiconductor device positioned centrally over the trench capacitor. The semiconductor device includes a source region, a drain region, and a gate structure, in which the semiconductor device is formed on a semiconductor layer that is separated from the semiconductor substrate by a dielectric layer. A first contact is present extending from an upper surface of the semiconductor layer into electrical contact with the semiconductor substrate, and a second contact from the drain region of the semiconductor device in electrical contact to the conductive material within the at least one trench.
    Type: Application
    Filed: March 12, 2012
    Publication date: July 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Herbert L. Ho, Subramanian S. Iyer, Byeong Y. Kim, Geng Wang, Huilong Zhu
  • Patent number: 8207029
    Abstract: A method for manufacturing a semiconductor device includes: forming a stacked body of a dielectric layer including a silicon oxide and a conductive layer including silicon above a substrate; and forming a hole penetrating through the dielectric layer and the conductive layer in the stacked body, the forming the hole including: forming a first mask layer including a silicon oxide above the stacked body; etching the conductive layer while using the first mask layer as a mask; and forming a second mask layer having more silicon content than the dielectric layer above the first mask layer to etch the dielectric layer while using the second mask layer as a mask.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: June 26, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masao Ishikawa
  • Patent number: 8193570
    Abstract: A synchronous buck converter includes a high-side switch and a low-side switch serially coupled to one another. The low-side switch includes a field effect transistor that comprises: a trench extending into a drift region of the field effect transistor; a shield electrode in a lower portion of the trench, wherein the shield electrode is insulated from the drift region by a shield dielectric; a gate electrode in the trench over the shield electrode, wherein the gate electrode is insulated from the shield electrode by an inter-electrode dielectric; source regions adjacent the trench; a source metal contacting the source regions; and a resistive element having one end contacting the shield electrode and another end contacting the source metal in the field effect transistor.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: June 5, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven Sapp, Ashok Challa, Christopher B. Kocon
  • Patent number: 8188528
    Abstract: A memory device is provided that in one embodiment includes a trench capacitor located in a semiconductor substrate including an outer electrode provided by the semiconductor substrate, an inner electrode provided by a conductive fill material, and a node dielectric layer located between the outer electrode and the inner electrode; and a semiconductor device positioned centrally over the trench capacitor. The semiconductor device includes a source region, a drain region, and a gate structure, in which the semiconductor device is formed on a semiconductor layer that is separated from the semiconductor substrate by a dielectric layer. A first contact is present extending from an upper surface of the semiconductor layer into electrical contact with the semiconductor substrate, and a second contact from the drain region of the semiconductor device in electrical contact to the conductive material within the at least one trench.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: May 29, 2012
    Assignee: International Buiness Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Herbert L. Ho, Subramanian S. Iyer, Byeong Y. Kim, Geng Wang, Huilong Zhu
  • Patent number: 8183101
    Abstract: The drain and source regions of a multiple gate transistor may be formed without an epitaxial growth process by using a placeholder structure for forming the drain and source dopant profiles and subsequently masking the drain and source areas and removing the placeholder structures so as to expose the channel area of the transistor. Thereafter, corresponding fins may be patterned and a gate electrode structure may be formed. Consequently, reduced cycle times may be accomplished due to the avoidance of the epitaxial growth process.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: May 22, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert Mulfinger, Andy Wei, Jan Hoentschel, Andrew Waite
  • Patent number: 8169074
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes a first interconnection disposed on a substrate. The interconnection includes a first silicon interconnection region and a first metal interconnection region sequentially stacked on the substrate. A second interconnection includes a second silicon interconnection region and a second metal interconnection region that are stacked sequentially. The second silicon interconnection region has a lower resistivity than the first silicon interconnection region.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 1, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Man Park, Santoru Yamada
  • Patent number: 8159015
    Abstract: A device is provided that includes memory, logic and capacitor structures on a semiconductor-on-insulator (SOI) substrate. In one embodiment, the device includes a semiconductor-on-insulator (SOI) substrate having a memory region and a logic region. Trench capacitors are present in the memory region and the logic region, wherein each of the trench capacitors is structurally identical. A first transistor is present in the memory region in electrical communication with a first electrode of at least one trench capacitor that is present in the memory region. A second transistor is present in the logic region that is physically separated from the trench capacitors by insulating material. In some embodiments, the trench capacitors that are present in the logic region include decoupling capacitors and inactive capacitors. A method for forming the aforementioned device is also provided.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni
  • Patent number: 8143135
    Abstract: Trench capacitors and methods of manufacturing the trench capacitors are provided. The trench capacitors are very dense series capacitor structures with independent electrode contacts. In the method, a series of capacitors are formed by forming a plurality of insulator layers and a plurality of electrodes in a trench structure, where each electrode is formed in an alternating manner with each insulator layer. The method further includes planarizing the electrodes to form contact regions for a plurality of capacitors.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: March 27, 2012
    Assignee: International Business Machines Corporation
    Inventors: Timothy W. Kemerer, James S. Nakos, Steven M. Shank
  • Patent number: 8143659
    Abstract: A capacitor is described which includes a substrate with a doped area of the substrate forming a first electrode of the capacitor. A plurality of trenches is arranged in the doped area of the substrate, the plurality of trenches forming a second electrode of the capacitor. An electrically insulating layer is arranged between each of the plurality of trenches and the doped area for electrically insulating the trenches from the doped area. The doped area includes first open areas and at least one second open area arranged between neighboring trenches of the plurality of trenches, wherein the at least one open area is arranged below the at least one substrate contact. A shortest first distance between neighboring trenches is separated by the first open areas and is shorter than a shortest second distance between neighboring trenches separated by the at least one second open area.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: March 27, 2012
    Assignee: Infineon Technologies AG
    Inventor: Stefan Pompl
  • Patent number: 8133781
    Abstract: A mask layer formed over a semiconductor substrate is lithographically patterned to form an opening therein. Ions are implanted at an angle that is normal to the surface of the semiconductor substrate through the opening and into an upper portion of the semiconductor substrate. Straggle of the implanted ions form a doped region that laterally extends beyond a horizontal cross-sectional area of the opening. A deep trench is formed by performing an anisotropic etch of a semiconductor material underneath the opening to a depth above a deep end of an implanted region. Ion implantation steps and anisotropic etch steps are alternately employed to extend the depth of the doped region and the depth of the deep trench, thereby forming a doped region around a deep trench that has narrow lateral dimensions. The doped region can be employed as a buried plate for a deep trench capacitor.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: March 13, 2012
    Assignee: International Business Machines Corporation
    Inventors: Joseph Ervin, Geng Wang
  • Patent number: 8129238
    Abstract: A semiconductor device having a dual trench and methods of fabricating the same, a semiconductor module, an electronic circuit board, and an electronic system are provided. The semiconductor device includes a semiconductor substrate having a cell region including a cell trench and a peripheral region including a peripheral trench. The cell trench is filled with a core insulating material layer, and the peripheral trench is filled with a padding insulating material layer conformably formed on an inner surface thereof and a core insulating material layer formed on an inner surface of the padding insulating material layer. The core insulating material layer has a greater fluidity than the padding insulating material layer.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: March 6, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Won Kim, Jae-Hwang Sim, Keon-Soo Kim, Young-Ho Lee
  • Patent number: 8129239
    Abstract: A semiconductor device is disclosed that stably ensures an area of a storage node contact connected to a junction region in an active region of the semiconductor device and is thus able to improve the electrical properties of the semiconductor device and enhance a yield, and a method for fabricating the same. The semiconductor device includes a semiconductor substrate having an active region including a gate, a storage node contact region, and an isolation region that defines the active region. A passing gate and an isolation structure surrounding the passing gate are formed in the isolation region. A silicon epitaxial layer is selectively formed over an upper portion of the passing gate to expand the storage node contact region.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Tae O Jung