Having Additional Gate Electrode Surrounded By Dielectric (i.e., Floating Gate) Patents (Class 438/257)
  • Patent number: 9553025
    Abstract: A method of forming a fin field-effect transistor (FinFET) includes forming a plurality of fins on a substrate. The method further includes forming an oxide layer on the substrate, wherein a bottom portion of each fin of the plurality of fins is embedded in the oxide layer, and the bottom portion of each fin of the plurality of fins has substantially a same shape. The method further includes shaping at least one fin of the plurality of fins, wherein a top portion of the at least one fin has a different shape from a top portion of another fin of the plurality of fins.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: January 24, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Yi-Tang Lin, Chih-Sheng Chang, Chi-Wen Liu
  • Patent number: 9553103
    Abstract: Examples of the present disclosure provide devices and methods for processing a memory cell. A method embodiment includes removing a key-hole shaped column from a material, to define a profile for the memory cell. The method also includes partially filling the key-hole shaped column with a first number of materials. The method further includes filling the remaining portion of the key-hole shaped column with a second number of materials.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: January 24, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Koji Sakui
  • Patent number: 9548110
    Abstract: A memory device for thermoelectric heat confinement and method for producing same. The memory device includes a plurality of phase-change memory cells, wherein each of the phase-change memory cells has a first electrode, a second electrode and a phase-change material. The first electrode and the phase-change material are arranged such that a surface normal of a dominating interface for a current flow between the first electrode and the phase-change material points on one side to the phase-change material of the phase-change memory cell and on an opposite side to a phase-change material of a neighboring phase-change memory cell. A method for producing a memory device for thermoelectric heat confinement is also provided.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: January 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: Aravinthan Athmanathan, Daniel Krebs
  • Patent number: 9525128
    Abstract: A method of manufacturing a semiconductor device may include forming a material layer on a substrate, performing a selective oxidation process to form a capping oxide layer on a first surface of the material layer, wherein a second surface of the material layer is not oxidized, and etching the material layer through the second surface to form a material pattern. An etch rate of the capping oxide layer is less than an etch rate of the material layer. A semiconductor device may include a lower electrode on a substrate, a data storage part on a top surface of the lower electrode, an upper electrode on the data storage part, and a capping oxide layer arranged on at least a portion of a top surface of the upper electrode. The capping oxide layer may include an oxide formed by oxidation of an upper surface of the upper electrode.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: December 20, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sungyoon Chung, Jinhye Bae, Hyungjoon Kwon, Jongchul Park, Wonjun Lee
  • Patent number: 9523632
    Abstract: A particulate matter sensor comprises an insulating body and a pair of electrodes disposed apart form each other on a main surface of the insulating body. The insulating body includes an insulating portion being equal to or higher than the height of the pair of the electrodes in a direction perpendicular to the main surface, formed on the part where the pair of the electrodes are. In one of the methods for manufacturing the particulate matter sensor, first, an electrode pattern composed of a material for the pair of the electrodes is formed on a body material composing the insulating body, and a mask, having identical pattern of the electrode pattern and composed of material which vaporizes at a temperature equal to or lower than a temperature that the electrode pattern is sintered, is formed on the electrode pattern. A thin film of the material composing the insulating portion is formed, and the electrode pattern and the thin film is sintered to form the electrodes and the insulating portion.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: December 20, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroki Nishijima, Tatsuhiro Hashida
  • Patent number: 9508817
    Abstract: A semiconductor structure, a semiconductor device, and a method for forming the semiconductor device are provided. In various embodiments, the method for forming the semiconductor device includes forming transistors on a substrate. Forming each transistor includes forming a doped region on the substrate. A nanowire is formed protruding from the doped region. An interlayer dielectric layer is deposited over the doped region. A dielectric layer is deposited over the interlayer dielectric layer and surrounding each of the nanowires. A first gate layer is deposited over the dielectric layer. The dielectric layer and first gate layer are etched to expose portions of the nanowires and the interlayer dielectric layer. A second gate layer is formed over the exposed interlayer dielectric layer and surrounding the first gate layer. Then, the second gate layer was patterned to remove the second gate layer on the interlayer dielectric layer between the transistors.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: November 29, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yung-Sung Yen, Huan-Just Lin, Chun-Hsiung Lin, Chi-Cheng Hung
  • Patent number: 9502257
    Abstract: A non-volatile memory device and a method of manufacturing the non-volatile memory device, where the non-volatile memory device includes a floating gate insulating layer and a floating gate disposed on a substrate, a dielectric layer formed perpendicular to the floating gate insulating layer and at two sides of the floating gate, and a first control gate at a first side of the dielectric layer distal from the floating gate and a second control gate at a second side of the dielectric layer distal from the floating gate, wherein the first control gate and the second control gate are connected to each other, and a second width of the second control gate is wider than a first width of the first control gate. A length of a control gate of a non-volatile memory device may be extended to effectively preventing the generation of leakage current when a control gate is off.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: November 22, 2016
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jeong Ho Cho, Se Woon Kim, Kyung Min Kim, Jung Goo Park
  • Patent number: 9502448
    Abstract: A method for fabricating an array substrate includes sequentially forming a bottom gate, a first gate insulating layer, an active layer and a second gate insulating layer on a base substrate, a gate line being formed at the same time as forming the bottom gate; forming a top gate on the second gate insulating layer; sequentially forming a gate isolation layer, a source electrode, a drain electrode and a pixel electrode on the top gate. Before forming the top gate on the second gate insulating layer, the method includes forming a nickel layer at an area on the active layer where the source electrode is to be formed and/or an area on the active layer where the drain electrode is to be formed, and then performing a heat treatment on the active layer at a temperature in the range of 500° C.-570° C. for 2 hours in an atmosphere of H2.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: November 22, 2016
    Assignee: BOE Technology Group Co., Ltd.
    Inventor: Lei Shi
  • Patent number: 9502471
    Abstract: A multi-tier memory device is formed over a substrate such that memory stack structures extend through an alternating stack of insulating layers and electrically conductive layers within each tier. Bit lines are formed between an underlying tier having drain regions over semiconductor channels and an overlying tier having drain regions under semiconductor channel, such that the bit lines are shared between the underlying tier and the overlying tier. Source lines can be formed over each tier in which source regions overlie semiconductor channels and drain regions. If another tier is present above the source lines, the source lines can be shared between two vertically neighboring tiers.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: November 22, 2016
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Zhenyu Lu, Henry Chien, Johann Alsmeier, Koji Miyata, Tong Zhang, Man Mui, James Kai, Wenguang Shi, Wei Zhao, Xiaolong Hu, Jiyin Xu, Gerrit Jan Hemink, Christopher Petti
  • Patent number: 9496270
    Abstract: Various methods and devices that involve single transistor diode connected anti-fuse memory cells are disclosed. An exemplary memory cell comprises a thin gate insulator. The memory cell also comprises a bulk region of a first conductivity type in contact with a first side of the thin gate insulator. The memory cell also comprises a polysilicon gate electrode of the first conductivity type in contact with a second side of the thin gate insulator. The memory cell also comprises a source region of a second conductivity type in contact with the bulk region at a junction. The polysilicon gate electrode and the source region are operatively coupled to a programming voltage source that addresses the memory cell by blowing the thin gate insulator. The junction forms a diode for the memory cell. The bulk region can be in an active layer of a semiconductor on insulator structure.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: November 15, 2016
    Assignee: QUALCOMM Incorporated
    Inventor: Paul A. Nygaard
  • Patent number: 9496276
    Abstract: A semiconductor device includes a substrate, at least one logic device and a split gate memory device. The at least one logic device is located on the substrate. The split gate memory device is located on the substrate and comprises a memory gate and a select gate. The memory gate and the select gate are adjacent to and electrically isolated with each other. A top of the select gate is higher than a top of the memory gate.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: November 15, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Harry Hak-Lay Chuang, Wei-Cheng Wu, Chang-Ming Wu, Shih-Chang Liu
  • Patent number: 9484107
    Abstract: The present disclosure relates to a non-volatile memory cell on a semiconductor substrate, comprising a first transistor comprising a control gate, a floating gate and a drain region, a second transistor comprising a control gate, a floating gate and a drain region, in which the floating gates of the first and second transistors are electrically coupled, and the second transistor comprises a conducting region electrically coupled to its drain region and extending opposite its floating gate through a tunnel dielectric layer.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: November 1, 2016
    Assignee: STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Francesco La Rosa, Stephan Niel, Arnaud Regnier
  • Patent number: 9484261
    Abstract: A memory device having a pair of conductive floating gates with inner sidewalls facing each other, and disposed over and insulated from a substrate of first conductivity type. A pair of spaced apart conductive control gates each disposed over and insulated from one of the floating gates, and each including inner sidewalls facing each other. A pair of first spacers of insulation material extending along control gate inner sidewalls and over the floating gates. The floating gate inner sidewalls are aligned with side surfaces of the first spacers. A pair of second spacers of insulation material each extend along one of the first spacers and along one of the floating gate inner sidewalls. A trench formed into the substrate having sidewalls aligned with side surfaces of the second spacers. Silicon carbon disposed in the trench. Material implanted into the silicon carbon forming a first region having a second conductivity type.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: November 1, 2016
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Chien-Sheng Su, Jeng-Wei Yang, Yueh-Hsin Chen
  • Patent number: 9461175
    Abstract: A memory structure comprises a semiconductor strip having a multi-gate channel region, the p-type terminal region adjacent a first side of the channel region and an n-type terminal region adjacent the second side of the channel region. A plurality of word lines is arranged to cross the semiconductor strip at cross points in the channel region. The bit line is coupled to a first end of the semiconductor strip, and a reference line is coupled to a second end of the semiconductor strip. Charge storage structures are disposed between the word lines in the plurality word lines and the channel region of the semiconductor strip, whereby memory cells are disposed in series along the semiconductor strip between the bit line and the reference line. Biasing unselected word lines can be used to select n-channel or p-channel modes in a single selected cell for read, program or erase.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 4, 2016
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Hang-Ting Lue, Wei-Chen Chen
  • Patent number: 9460929
    Abstract: Provided is a semiconductor device having improved performance. Over a semiconductor substrate, a dummy control gate electrode is formed via a first insulating film. Over the semiconductor substrate, a memory gate electrode for a memory cell is formed via a second insulating film having an internal charge storage portion so as to be adjacent to the dummy control gate electrode. At this time, the height of the memory gate electrode is adjusted to be lower than the height of the dummy control gate electrode. Then, a third insulating film is formed so as to cover the dummy control gate electrode and the memory gate electrode. Then, the third insulating film is polished to expose the dummy control gate electrode. At this time, the memory gate electrode is not exposed. Then, the dummy control gate electrode is removed and replaced with a metal gate electrode.
    Type: Grant
    Filed: February 28, 2015
    Date of Patent: October 4, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Hiromasa Yoshimori, Hirofumi Tokita
  • Patent number: 9443856
    Abstract: The present disclosure provides a method for fabricating an integrated circuit device. The method includes providing a precursor including a substrate having first and second metal-oxide-semiconductor (MOS) regions. The first and second MOS regions include first and second gate regions, semiconductor layer stacks, and source/drain regions respectively. The method further includes laterally exposing and oxidizing the semiconductor layer stack in the first gate region to form first outer oxide layer and inner nanowire set, and exposing the first inner nanowire set. A first high-k/metal gate (HK/MG) stack wraps around the first inner nanowire set. The method further includes laterally exposing and oxidizing the semiconductor layer stack in the second gate region to form second outer oxide layer and inner nanowire set, and exposing the second inner nanowire set. A second HK/MG stack wraps around the second inner nanowire set.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: September 13, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ting-Hung Hsu
  • Patent number: 9437715
    Abstract: A manufacturing method of a non-volatile memory is provided. A tunneling dielectric layer, a first conductive pattern, and isolation structures are formed on a substrate. Using a first photoresist layer as a mask, the first conductive pattern is partially removed to form a first opening exposing the substrate. An insulating layer is formed to fill the first opening and cover the first conductive pattern and the isolation structures. Using a second photoresist layer shielding a portion of the first conductive pattern as a mask, the insulating layer surrounding the first conductive pattern is removed to form a patterned insulating layer having a second opening exposing a portion of the first conductive pattern. An inter-gate dielectric layer and a second conductive pattern are formed on the first conductive pattern to fill the second opening, the first conductive pattern forms a floating gate, and the second conductive pattern forms a control gate.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 6, 2016
    Assignee: Powerchip Technology Corporation
    Inventors: Chih-Ping Chung, Ming-Yu Ho, Ming-Feng Chang, Hung-Kwei Liao
  • Patent number: 9437444
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of first hard mask patterns separated by a plurality of trenches on a target layer, forming a plurality of second hard mask patterns filling the plurality of trenches, forming a plurality of first opening units in the plurality of second hard mask patterns, forming a plurality of second opening units in the plurality of first hard mask patterns and forming a plurality of patterns using the plurality of first opening units and the plurality of second opening units, which are transferred by etching the target layer.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: September 6, 2016
    Assignee: SK HYNIX INC.
    Inventors: Sung-Kwon Lee, Jun-Hyeub Sun, Ho-Jin Jung, Chun-Hee Lee
  • Patent number: 9437604
    Abstract: Methods for forming a string of memory cells, an apparatus having a string of memory cells, and a system are disclosed. A method for forming the string of memory cells comprises forming a metal silicide source material over a substrate. The metal silicide source material is doped. A vertical string of memory cells is formed over the metal silicide source material. A semiconductor material is formed vertically and adjacent to the vertical string of memory cells and coupled to the metal silicide source material.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 6, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Zhenyu Lu, Roger W. Lindsay, Andrew Bicksler, Yongjun J Hu, Haitao Liu
  • Patent number: 9431414
    Abstract: Nonvolatile memory devices include at least four cylindrical-shaped channel regions, which extend vertically from portions of a substrate located at respective vertices of at least one rhomboid when viewed in a vertical direction relative to a surface of the substrate. A charge storage layer (e.g., ONO layer) is provided on an outer sidewall of each of the cylindrical-shaped channel regions. In addition, to achieve a high degree of integration, a plurality of vertically-stacked gate electrodes are provided, which extend adjacent each of the cylindrical-shaped channel regions.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: August 30, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byong-Hyun Jang, Dong-Chul Yoo, Ki-Hyun Hwang, Phil-Ouk Nam, Jae-Young Ahn
  • Patent number: 9419095
    Abstract: A method for manufacturing a dummy gate in a gate-last process and a dummy gate in a gate-last process are provided. The method includes: providing a semiconductor substrate; growing a gate oxide layer on the semiconductor substrate; depositing bottom-layer amorphous silicon on the gate oxide layer; depositing an ONO structured hard mask on the bottom-layer amorphous silicon; depositing top-layer amorphous silicon on the ONO structured hard mask; depositing a hard mask layer on the top-layer amorphous silicon; forming photoresist lines on the hard mask layer, and trimming the formed photoresist lines so that the trimmed photoresist lines a width less than or equal to 22 nm; and etching the hard mask layer, the top-layer amorphous silicon, the ONO structured hard mask and the bottom-layer amorphous silicon in accordance with the trimmed photoresist lines, and removing the photoresist lines, the hard mask layer and the top-layer amorphous silicon.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: August 16, 2016
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Chunlong Li, Junfeng Li, Jiang Yan, Chao Zhao
  • Patent number: 9412814
    Abstract: Structures and formation methods of a semiconductor device are provided. The semiconductor device structure includes a semiconductor substrate and a fin structure over the semiconductor substrate. The semiconductor device structure also includes a gate stack covering a portion of the fin structure and a source/drain structure over the fin structure and adjacent to the gate stack. The semiconductor device structure further includes an isolation layer between the source/drain structure and the semiconductor substrate.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: August 9, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tung-Ying Lee, Yu-Lien Huang
  • Patent number: 9412459
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: March 16, 2014
    Date of Patent: August 9, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Patent number: 9390931
    Abstract: A manufacturing method of floating gate is disclosed. A substrate having a plurality of isolation structures is provided, and top surfaces of the isolation structures are higher than a top surface of the substrate. A first conductive layer is formed on the substrate. A sacrificial layer is formed on the first conductive layer. Parts of the sacrificial layer are removed while parts of the sacrificial layer on the first conductive layer between the isolation structures are remained. Parts of the first conductive layer are removed by using the remaining parts of the sacrificial layer as masks to form conductive structures between the adjacent isolation structures. The remaining parts of the sacrificial layer are removed. A second conductive layer is formed on the substrate and the second conductive layer electrically connects with the conductive structures. The second conductive layer and the conductive structures are patterned to form floating gates.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: July 12, 2016
    Assignee: Powerchip Technology Corporation
    Inventors: Kai-Yao Shih, Ssu-Ting Wang, Chi-Kai Feng, Te-Yuan Yin
  • Patent number: 9390927
    Abstract: An integrated circuit structure includes a plurality of flash memory cells forming a memory array, wherein each of the plurality of flash memory cells includes a select gate and a memory gate. A select gate electrode includes a first portion including polysilicon, wherein the first portion forms select gates of a column of the memory array, and a second portion electrically connected to the first portion, wherein the second portion includes a metal. A memory gate electrode has a portion forming memory gates of the column of the memory array.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: July 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Wei-Cheng Wu, Ya-Chen Kao, Chin-Yi Huang
  • Patent number: 9378960
    Abstract: Methods for forming floating gate transistors provide for using a self-aligned plug formed over a floating gate electrode without use of an additional photolithography operation. The plug is centrally disposed and is formed and aligned using spacers. The spacers are formed alongside edges of a patterned sacrificial, oxidation resistant layer that includes an opening that defines the floating gate region. The plug may be formed of a silicon material and which becomes oxidized along with the floating gate such that the plug eventually forms part of the floating gate electrode or the plug may be formed of a nitride or other oxidation resistant material to retard or prevent oxidation in the central portion of the floating gate in which the plug is aligned.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: June 28, 2016
    Assignee: WAFERTECH, LLC
    Inventor: Yihguei Wey
  • Patent number: 9379256
    Abstract: A nonvolatile semiconductor memory device includes a charge storage layer on a first insulating film, a second insulating film which is provided on the charge storage layer, formed of layers, and a control gate electrode on the second insulating film. The second insulating film includes a bottom layer (A) provided just above the charge storage layer, a top layer (C) provided just below the control gate electrode, and a middle layer (B) provided between the bottom layer (A) and the top layer (C). The middle layer (B) has higher barrier height and lower dielectric constant than both the bottom layer (A) and the top layer (C). The average coordination number of the middle layer (B) is smaller than both the average coordination number of the top layer (C) and the average coordination number of the bottom layer (A).
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: June 28, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Naoki Yasuda
  • Patent number: 9368579
    Abstract: A robust fabrication process for selective area growth of semiconductors in growth windows is provided. Sidewall growth is eliminated by the presence of a spacer layer which covers the sidewalls. Undesirable exposure of the top corners of the growth windows is prevented by undercutting the growth window prior to deposition of the dielectric spacer layer. The effectiveness of this process has been demonstrated by selective-area growth of Ge and Ge/SiGe quantum wells on a silicon substrate. Integration of active optoelectronic devices with waveguide layers via end-coupling through the dielectric spacer layer can be reliably accomplished in this manner.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: June 14, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Krishna Coimbatore Balram, Stephanie A. Claussen, David A. B. Miller
  • Patent number: 9349453
    Abstract: The present disclosure provides for semiconductor structures and methods for making semiconductor structures. In one embodiment, isolation regions are formed in a substrate, and wells are formed between the isolation regions. The wells include a first low voltage well and a second low voltage well in a logic region of the substrate, and a memory array well in an NVM region of the substrate. A first layer of oxide is formed over the first low voltage well and the memory array well, and a second layer of oxide is formed over the second low voltage well, the second layer being thinner than the first layer. Gates are formed over the wells, including a first gate over the first low voltage well, a second gate over the second low voltage well, and a memory cell gate over the memory array well. Source/drain extension regions are formed around the gates.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: May 24, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong Min Hong, Tahmina Akhter, Gilles J. Muller
  • Patent number: 9349737
    Abstract: A method for memory device fabrication includes forming a plurality of continuous fins on a substrate. An insulator material is formed around the fins. The continuous fins are etched into segmented fins to form exposed areas between the segmented fins. An insulator material is formed in the exposed areas wherein the insulator material in the exposed areas is formed higher than the insulator material around the fins. A metal is formed over the fins and the insulator material. The metal formed over the exposed areas is formed to a shallower depth than over the fins.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 24, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Srinivas Pulugurtha, Sourabh Dhir, Rajesh N. Gupta, Sanh D. Tang, Si-Woo Lee, Haitao Liu
  • Patent number: 9343551
    Abstract: Semiconductor devices and methods of manufacturing the same are disclosed. In some embodiments, a method of manufacturing a semiconductor device comprises forming a fin structure over a substrate. The fin structure may comprise a lower portion protruding from a major surface of the substrate, an upper portion, and a middle portion between the lower portion and the upper portion, wherein the lower portion and the middle portion differ in composition. The method may further include forming an isolation structure surrounding the fin structure and oxidizing the fin structure. The oxidizing may form a pair of notches extending from sidewalls of the fin structure into the middle portion of the fin structure.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: May 17, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Chih-Hao Wang, Zhiqiang Wu, Carlos H. Diaz, Jean-Pierre Colinge
  • Patent number: 9343472
    Abstract: A device having a substrate prepared with a memory cell region having a memory cell is disclosed. The memory cell includes an access transistor and a storage transistor. The access transistor includes first and second source/drain (S/D) regions and the storage transistor includes first and second storage S/D regions. The access and storage transistors are coupled in series and the second S/D regions being a common S/D region. An erase gate is disposed over the common S/D region. A program gate is disposed over the first storage S/D region. Such an arrangement of the memory cell decouples a program channel and an erase channel.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: May 17, 2016
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Shyue Seng Tan, Eng Huat Toh, Elgin Quek, Yanzhe Tang
  • Patent number: 9337295
    Abstract: Semiconductor devices and methods of manufacturing the same are disclosed. The semiconductor device a gate dielectric pattern on a substrate and a gate electrode on the gate dielectric pattern opposite the substrate. The gate electrode includes a first conductive pattern disposed on the gate dielectric pattern and including aluminum, and a second conductive pattern disposed between the first conductive pattern and the gate dielectric pattern. The second conductive pattern has an aluminum concentration that is higher than an aluminum concentration of the first conductive pattern. The second conductive pattern may be thicker than the first conductive pattern.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: May 10, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Junehee Lee, Sangjin Hyun, Jaeyeol Song, Hye-Lan Lee
  • Patent number: 9331089
    Abstract: The semiconductor device includes a semiconductor substrate having a first active area defined by a first isolation layer; a gate insulating layer formed on the semiconductor substrate; a first conductive layer formed on the gate insulating layer; a dielectric layer formed on the first conductive layer; at least one first contact hole passing through the dielectric layer; a second conductive layer, formed on the dielectric layer, the second conductive layer filling the at least one first contact hole to contact the first conductive layer; and at least one first contact plug connected to the second conductive layer in the first active area, wherein the at least one first contact plug is offset from the at least one first contact hole to overlap the dielectric layer.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: May 3, 2016
    Assignee: SK Hynix Inc.
    Inventor: Min Gyu Koo
  • Patent number: 9318200
    Abstract: Generally discussed herein are apparatuses and methods. One such apparatus includes a data line, a first memory cell and a first select transistor. The first transistor has a gate and is coupled between the data line and the first memory cell. The apparatus can include a second memory cell and a second select transistor having a gate. The apparatus can include a third select transistor having a gate. The second select transistor is coupled between the second memory cell and the third select transistor. The third select transistor is coupled between the second select transistor and a source. The apparatus can include a drive transistor coupled to both the gate of the first select transistor and the gate of the second select transistor or the gate of the third select transistor.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: April 19, 2016
    Assignee: Micron Technology, Inc.
    Inventor: Koji Sakui
  • Patent number: 9318328
    Abstract: A method of forming a silicon film includes a first film forming process, an etching process, a doping process, and a second film forming process. In the first film forming process, a silicon film doped with impurities containing boron is formed so as to embed a groove provided on an object to be processed. In the etching process, the silicon film formed in the first film forming process is etched. In the doping process, the silicon film etched in the etching process is doped with impurities containing boron. In the second film forming process, a silicon film doped with impurities containing boron is formed so as to embed the silicon film that is doped in the doping process.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: April 19, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Katsuhiko Komori, Akinobu Kakimoto, Mitsuhiro Okada, Nobuhiro Takahashi
  • Patent number: 9318496
    Abstract: A memory device can include an array of NOR memory cells, each memory cell including a floating gate, a source on a source side of the floating gate, a drain on a drain side of the floating gate, a drain contact on the drain, and a source contact on the source. The source contacts are connected to a common source line. A plurality of bit lines are connected to respective drains in a column of the memory cells. A plurality of word lines, each word line coupled to respective floating gates in a row of the memory cells. Spacing between the word lines on the drain side is greater than spacing between the word lines on the source side.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: April 19, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Anirban Roy
  • Patent number: 9312481
    Abstract: Some embodiments include memory arrays having a plurality of memory cells vertically between bitlines and wordlines. The memory cells contain phase change material. Heat shields are laterally between immediately adjacent memory cells along a bitline direction. The heat shields contain electrically conductive material and are electrically connected with the bitlines. Some embodiments include memory arrays having a plurality of memory cells arranged in a first grid. The first grid has columns along a first direction and has rows along a second direction substantially orthogonal to the first direction. First heat shields are between adjacent memory cells along the first direction and are arranged in a second grid offset from the first grid along the first direction. Second heat shields are between adjacent memory cells along the second direction, and are arranged lines in lines extending along the first direction. Some embodiments include methods for forming memory arrays.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: April 12, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Mattia Boniardi, Andrea Redaelli
  • Patent number: 9299667
    Abstract: A method is described that facilitates inter-layer dielectric fill-in among transistors in a densely-configured array of an integrated circuit. An etch process that exploits a micro-loading effect to create a T-shaped profile between transistors is disclosed. The micro-loading has a negligible effect on transistors in a peripheral region of the integrated circuit.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: March 29, 2016
    Assignee: MACRONICS INTERNATIONAL COMPANY, LTD.
    Inventors: Fang-Hao Hsu, Shih-Ping Hong, Hong-Ji Lee
  • Patent number: 9299954
    Abstract: An organic light-emitting apparatus including: a substrate; an organic light-emitting device disposed on the substrate and including a first electrode, a second electrode, and an intermediate layer disposed between the first electrode and the second electrode; and an encapsulation layer provided to cover the organic light-emitting device. The encapsulation layer includes a first inorganic layer including a first fracture point, and a first fracture control layer provided on the first inorganic layer to seal the first fracture point.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: March 29, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Myung-Soo Huh, Jae-Hyun Kim, Jin-Kwang Kim, Cheol-Lae Roh, Suk-Won Jung, Cheol-Min Jang
  • Patent number: 9299740
    Abstract: A CMOS image sensor and a method of forming are provided. The CMOS image sensor may include a device wafer. A conductive feature may be formed on a back-side surface of the device wafer. The device wafer may include a pixel formed therein. A passivation layer may be formed over the back-side surface of the device wafer and the conductive feature. A grid film may be formed over the passivation layer. The grid film may be patterned to accommodate a color filter. The grid film pattern may align the color filter to corresponding pixel in the device wafer. A portion of the grid film formed over the conductive feature may be reduced to be substantially planar with portions of the grid film adjacent to the conductive feature. The patterning and reducing may be performed according to etching processes, chemical mechanical processes, and combinations thereof.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: March 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hsien Tseng, Nai-Wen Cheng, Shou-Gwo Wuu, Ming-Tsong Wang, Tung-Ting Wu
  • Patent number: 9284245
    Abstract: A monomer for a hardmask composition represented by the following Chemical Formula 1,
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: March 15, 2016
    Assignee: CHEIL INDUSTRIES, INC.
    Inventors: Sung-Jae Lee, Hwan-Sung Cheon, Youn-Jin Cho, Chul-Ho Lee, Chung-Heon Lee
  • Patent number: 9276090
    Abstract: A self-rectified device is provided, comprising a bottom electrode, a patterned dielectric layer with a contact hole formed on the bottom electrode, a memory formed at the bottom electrode and substantially aligned with the contact hole, and a top electrode formed on the bottom electrode and filling into the contact hole to contact with the memory, wherein the top electrode comprises a N+ type semiconductor material or a P+ type semiconductor material, and the memory and the top electrode produce a self-rectified property.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: March 1, 2016
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Wei-Chih Chien, Dai-Ying Lee, Erh-Kun Lai, Ming-Hsiu Lee
  • Patent number: 9269893
    Abstract: A multi-step etch technique for fabricating a magnetic tunnel junction (MTJ) apparatus includes forming a first conductive hard mask on a first electrode of the MTJ apparatus for etching the first electrode during a first etching step. The method also includes forming a second conductive hard mask on the first conductive hard mask for etching magnetic layers of the MTJ apparatus during a second etching step. A spacer layer is conformally deposited on sidewalls of the first conductive hard mask. The second conductive hard mask is deposited on the first conductive hard mask and aligned with the spacer layer on the sidewalls of the first conductive hard mask.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: February 23, 2016
    Assignee: QUALCOMM INCORPORATED
    Inventors: Yu Lu, Chando Park, Wei-Chuan Chen
  • Patent number: 9263396
    Abstract: A semiconductor device is provided which includes a semiconductor substrate having a first region and a second region, the first and second regions being isolated from each other, a plurality of transistors formed in the first region, an alignment mark formed in the second region, the alignment mark having a plurality of active regions in a first direction, and a dummy gate structure formed over the alignment mark, the dummy gate structure having a plurality of lines in a second direction different from the first direction.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: February 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Liang Shen, Ming-Yuan Wu, Chiung-Han Yeh, Kong-Beng Thei, Harry-Hak-Lay Chuang
  • Patent number: 9263458
    Abstract: According to one embodiment, a non-volatile memory includes a first non-volatile memory cell and a first selected transistor. A first cell block is formed by connecting a plurality of first non-volatile memory cells in series. An area S1 of the first insulating film at which the first floating gate is in contact with the first silicon channel is larger than an area S2 of the second insulating film at which the first floating gate is in contact with the first gate electrode.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: February 16, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Daisaburo Takashima
  • Patent number: 9257436
    Abstract: A semiconductor device includes a substrate having a cell region and a peripheral region, a buried gate formed over the substrate of the cell region, a peripheral gate formed over the substrate of the peripheral region and comprising a conductive layer, an inter-layer dielectric layer that covers the substrate, and a peripheral bit line formed inside the inter-layer dielectric layer and contacting the conductive layer.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: February 9, 2016
    Assignee: SK Hynix Inc.
    Inventor: Jong-Han Shin
  • Patent number: 9257445
    Abstract: Semiconductor structures and methods for making semiconductor structures include a split gate non-volatile memory (NVM) cell in an NVM region. A charge storage layer, a first conductive layer, and a capping layer are formed over the substrate, which are patterned to form a control gate stack in the NVM region of the substrate. A high-k dielectric layer, a metal layer, and a second conductive layer are formed over the substrate. The second conductive layer and the metal layer are patterned to form remaining portions of the second conductive layer and the metal layer over and adjacent to a first side of the control gate stack. The remaining portion of the second conductive layer is removed to form a select gate stack, which includes the remaining portion of the metal layer. A stressor layer is formed over the substrate.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: February 9, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Konstantin V. Loiko, Brian A. Winstead
  • Patent number: 9257568
    Abstract: A flash memory cell structure is provided. A semiconductor structure includes a semiconductor substrate, a floating gate overlying the semiconductor substrate, a word-line adjacent to the floating gate, an erase gate adjacent to a side of the floating gate opposite the word-line, a first sidewall disposed between the floating gate and the word-line, and a second sidewall disposed between the floating gate and the erase gate. The first sidewall has a first characteristic and the second sidewall has a second characteristic. The first characteristic is different from the second characteristic.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hui Shen, Shih-Chang Liu, Chi-Hsin Lo, Chia-Shiung Tsai, Tsun Kai Tsao
  • Patent number: 9236482
    Abstract: The present disclosure provides for semiconductor device structures and methods for forming semiconductor device structures, wherein a field-inducing structure is provided lower than an active portion of a fin along a height dimension of that fin, the height dimension extending in parallel to a normal direction of a semiconductor substrate surface in which the fin is formed. The field-inducing structure hereby implements a permanent field effect below the active portion. The active portion of the fin is to be understood as a portion of the fin covered by a gate dielectric.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Matthias Goldbach, Martin Trentzsch