Source Or Drain Doping Patents (Class 438/301)
  • Patent number: 9035305
    Abstract: Reducing hydrogen concentration in a channel formation region of an oxide semiconductor is important in stabilizing threshold voltage of a transistor including an oxide semiconductor and improving reliability. Hence, hydrogen is attracted from the oxide semiconductor and trapped in a region of an insulating film which overlaps with a source region and a drain region of the oxide semiconductor. Impurities such as argon, nitrogen, carbon, phosphorus, or boron are added to the region of the insulating film which overlaps with the source region and the drain region of the oxide semiconductor, thereby generating a defect. Hydrogen in the oxide semiconductor is attracted to the defect in the insulating film. The defect in the insulating film is stabilized by the presence of hydrogen.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: May 19, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Tsubuku, Yusuke Nonaka, Noritaka Ishihara, Masashi Oota, Hideyuki Kishida
  • Patent number: 9029226
    Abstract: The embodiments of mechanisms for doping lightly doped drain (LDD) regions by driving dopants from highly doped source and drain regions by annealing for finFET devices are provided. The mechanisms overcome the limitation by shadowing effects of ion implantation for advanced finFET devices. The highly doped source and drain regions are formed by epitaxial growing one or more doped silicon-containing materials from recesses formed in the fins. The dopants are then driven into the LDD regions by advanced annealing process, which can achieve targeted dopant levels and profiles in the LDD regions.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: May 12, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Tsan-Chun Wang, Su-Hao Liu
  • Patent number: 9023694
    Abstract: A portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate is patterned into a semiconductor fin having substantially vertical sidewalls. A portion of a body region of the semiconductor fin is exposed on a top surface of the semiconductor fin between two source regions having a doping of a conductivity type opposite to the body region of the semiconductor fin. A metal semiconductor alloy portion is formed directly on the two source regions and the top surface of the exposed body region between the two source regions. The doping concentration of the exposed top portion of the body region may be increased by ion implantation to provide a low-resistance contact to the body region, or a recombination region having a high-density of crystalline defects may be formed. A hybrid surface semiconductor-on-insulator (HSSOI) metal-oxide-semiconductor-field-effect-transistor (MOSFET) thus formed has a body region that is electrically tied to the source region.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 5, 2015
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 9023709
    Abstract: When forming metallization layers of advanced semiconductor devices, one often has to fill apertures with a high aspect ratio with a metal, such as copper. The present disclosure provides a convenient method for forming apertures with a high aspect ratio in an insulating layer. This insulating layer may have been deposited on the surface of a semiconductor device. The proposed method relies on an ion implantation step performed on the insulating layer, followed by an etch, which is preferably a wet etch.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: May 5, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hans-Peter Moll, Marco Lepper, Werner Graf
  • Publication number: 20150111359
    Abstract: An embodiment method of forming a source/drain region for a transistor includes forming a recess in a substrate, epitaxially growing a semiconductor material in the recess, amorphizing the semiconductor material, and doping the semiconductor material to form a source/drain region. In an embodiment, the doping utilizes either phosphorus or boron as the dopant. Also, the amorphizing and the doping may be performed simultaneously. The amorphizing may be performed at least in part by doping with helium.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 9012328
    Abstract: Embodiments of the present invention generally relate to methods of forming epitaxial layers and devices having epitaxial layers. The methods generally include forming a first epitaxial layer including phosphorus and carbon on a substrate, and then forming a second epitaxial layer including phosphorus and carbon on the first epitaxial layer. The second epitaxial layer has a lower phosphorus concentration than the first epitaxial layer, which allows for selective etching of the second epitaxial layer and undesired amorphous silicon or polysilicon deposited during the depositions. The substrate is then exposed to an etchant to remove the second epitaxial layer and undesired amorphous silicon or polysilicon. The carbon present in the first and second epitaxial layers reduces phosphorus diffusion, which allows for higher phosphorus doping concentrations. The increased phosphorus concentrations reduce the resistivity of the final device.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: April 21, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Zhiyuan Ye, Xuebin Li, Saurabh Chopra, Yihwan Kim
  • Patent number: 9012276
    Abstract: Variation resistant metal-oxide-semiconductor field effect transistors (MOSFET) are manufactured using a high-K, metal-gate ‘channel-last’ process. Between spacers formed over a well area having separate drain and source areas, a recess in the underlying is formed using a crystallographic etch to provide [111] boundaries adjacent the source and drain regions. An ion implant step localized by the cavity results in a localized increase in well-doping directly beneath the recess. Within the recess, an active region is formed using an un-doped or lightly doped epitaxial layer, deposited at a very low temperature. A high-K dielectric stack is formed over the lightly doped epitaxial layer, over which a metal gate is formed within the cavity boundaries.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: April 21, 2015
    Assignee: Gold Standard Simulations Ltd.
    Inventors: Ashok K. Kapoor, Asen Asenov
  • Patent number: 9006072
    Abstract: A method of forming a metal silicide layer includes the following steps. At first, at least a gate structure, at least a source/drain region and a first dielectric layer are formed on a substrate, and the gate structure is aligned with the first dielectric layer. Subsequently, a cap layer covering the gate structure is formed, and the cap layer does not overlap the first dielectric layer and the source/drain region. Afterwards, the first dielectric layer is removed to expose the source/drain region, and a metal silicide layer totally covering the source/drain region is formed.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 14, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Po-Chao Tsao, Chien-Ting Lin
  • Patent number: 9006802
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 9006799
    Abstract: Radio frequency and microwave devices and methods of use are provided herein. According to some embodiments, the present technology may comprise an ohmic layer for use in a field effect transistor that includes a plurality of strips disposed on a substrate, the plurality of strips comprising alternating source strips and drain strips, with adjacent strips being spaced apart from one another to form a series of channels, a gate finger segment disposed in each of the series of channels, and a plurality of gate finger pads disposed in an alternating pattern around a periphery of the plurality of strips such that each gate finger segment is associated with two gate finger pads.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: April 14, 2015
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8999800
    Abstract: In one embodiment a method of forming low contact resistance in a substrate includes forming a silicide layer on the substrate, the silicide layer and substrate defining an interface therebetween in a source/drain region, and performing a hot implant of a dopant species into the silicide layer while the substrate is at a substrate temperature greater than 150° C., where the hot implant is effective to generate an activated dopant layer containing the dopant species, and the activated dopant layer extends from the interface into the source/drain region.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: April 7, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Fareen Adeni Khaja, Benjamin Colombeau
  • Patent number: 8994107
    Abstract: Semiconductor devices and methods of forming semiconductor devices are provided herein. In an embodiment, a semiconductor device includes a semiconductor substrate. A source region and a drain region are disposed in the semiconductor substrate. A channel region is defined in the semiconductor substrate between the source region and the drain region. A gate dielectric layer overlies the channel region of the semiconductor substrate, and a gate electrode overlies the gate dielectric layer. The channel region includes a first carbon-containing layer, a doped layer overlying the first carbon-containing layer, a second carbon-containing layer overlying the doped layer, and an intrinsic semiconductor layer overlying the second carbon-containing layer. The doped layer includes a dopant that is different than carbon.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 31, 2015
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: El Mehdi Bazizi, Francis Benistant
  • Publication number: 20150087127
    Abstract: An integrated circuit contains a transistor with a stress enhancement region on the source side only. In a DeMOS transistor, forming the stress enhancement region on the source side only and not forming a stress enhancement region in the drain extension increases the resistance of the drain extension region enabling formation of a DeMOS transistor with reduced area. In a MOS transistor, by forming the stress enhancement region on the source side only and eliminating the stress enhancement region from the drain side, transistor leakage is reduced and CHC reliability improved.
    Type: Application
    Filed: December 3, 2014
    Publication date: March 26, 2015
    Inventors: Samuel Zafar Nawaz, Shaofeng YU, Jeffrey E. BRIGHTON, Song ZHAO
  • Patent number: 8987102
    Abstract: Methods of forming a metal silicide region in an integrated circuit are provided herein. In some embodiments, a method of forming a metal silicide region in an integrated circuit includes forming a silicide-resistive region in a first region of a substrate, the substrate having the first region and a second region, wherein a mask layer is deposited atop the substrate and patterned to expose the first region; removing the mask layer after the silicide-resistive region is formed in the first region of the substrate; depositing a metal-containing layer on a first surface of the first region and a second surface of the second region; and annealing the deposited metal-containing layer to form a first metal silicide region in the second region.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: March 24, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Michael G. Ward, Igor V. Peidous
  • Publication number: 20150076622
    Abstract: A semiconductor structure includes a semiconductor substrate, an active region and a dummy gate structure disposed over the active region. A sacrificial conformal layer, including a bottom oxide layer and a top nitride layer are provided over the dummy gate structure and active region to protect the dummy gate during source and drain implantation. The active region is implanted using dopants such as, a n-type dopant or a p-type dopant to create a source region and a drain region in the active region, after which the sacrificial conformal layer is removed.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Inventors: Bharat Krishnan, Jinping Liu, Zhao Lun, Hui Zhan, Bongki Lee
  • Patent number: 8980719
    Abstract: An embodiment of the disclosure includes doping a FinFET. A dopant-rich layer comprising an dopant is formed on a top surface and sidewalls of a semiconductor fin of a substrate. A cap layer is formed to cover the dopant-rich layer. The substrate is annealed to drives the dopant from the dopant-rich layer into the semiconductor fin.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 17, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Yu-Lien Huang, De-Wei Yu
  • Patent number: 8980718
    Abstract: A method is provided for fabricating a PMOS transistor. The method includes providing a semiconductor substrate, and forming a dummy gate structure at least having a dummy gate, a high-K dielectric layer, and a sidewall spacer surrounding the high-K dielectric layer and the dummy gate on the semiconductor substrate. The method also includes forming a source region and a drain region in the semiconductor substrate at both sides of the dummy gate structure by an ion implantation process, and performing a first annealing process to enhance the ion diffusion. Further, the method includes forming an interlayer dielectric layer leveling with the surface of the dummy gate, and forming a trench by removing the dummy gate. Further, the method also includes performing a second annealing process, and forming a metal gate in the trench.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Semiconductor Manufacturing International Corp.
    Inventor: Yong Chen
  • Patent number: 8981421
    Abstract: The present invention discloses a strip-shaped gate-modulated tunneling field effect transistor and a preparation method thereof, belonging to a field of field effect transistor logic device and the circuit in CMOS ultra large scale integrated circuit (ULSI). The tunneling field effect transistor includes a control gate, a gate dielectric layer, a semiconductor substrate, a highly-doped source region and a highly-doped drain region, where the highly-doped source region and the highly-doped drain region lie on both sides of the control gate, respectively, the control gate has a strip-shaped structure with a gate length greater than a gate width, and at one side thereof is connected to the highly-doped drain region and at the other side thereof extends laterally into the highly-doped source region; a region located below the control gate is a channel region; and the gate width of the control gate is less than twice width of a source depletion layer.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: March 17, 2015
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Yingxin Qiu, Zhan Zhan, Yangyuan Wang
  • Patent number: 8975703
    Abstract: Various embodiments provide an MOS transistor, a formation method thereof, and an SRAM memory cell circuit. An exemplary MOS transistor can include a semiconductor substrate including a first groove on one side of a gate structure and a second groove on the other side of the gate structure. The first groove can have a sidewall perpendicular to a surface of the semiconductor substrate. The second groove can have a sidewall protruding toward a channel region under the gate structure. A stressing material can be disposed in the first groove to form a drain region and in the second groove to form a source region. Stress generated in the channel region of the MOS transistor can be asymmetric. The MOS transistor can be used as a transfer transistor in an SRAM memory cell circuit to increase both read and write margins of the SRAM memory.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 10, 2015
    Assignee: Semiconductor Manufacturing International Corp.
    Inventors: Zhenghao Gan, Junhong Feng
  • Publication number: 20150064863
    Abstract: Embodiments of present invention provide a method of forming silicide contacts of transistors. The method includes forming a first set of epitaxial source/drain regions of a first set of transistors; forming a sacrificial epitaxial layer on top of the first set of epitaxial source/drain regions; forming a second set of epitaxial source/drain regions of a second set of transistors; converting a top portion of the second set of epitaxial source/drain regions into a metal silicide and the sacrificial epitaxial layer into a sacrificial silicide layer in a silicidation process wherein the first set of epitaxial source/drain regions underneath the sacrificial epitaxial layer is not affected by the silicidation process; removing selectively the sacrificial silicide layer; and converting a top portion of the first set of epitaxial source/drain regions into another metal silicide.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Praneet Adusumilli, Emre Alptekin, Kangguo Cheng, Shom Ponoth, Balasubramanian Pranatharthiharan
  • Publication number: 20150064872
    Abstract: When forming metallization layers of advanced semiconductor devices, one often has to fill apertures with a high aspect ratio with a metal, such as copper. The present disclosure provides a convenient method for forming apertures with a high aspect ratio in an insulating layer. This insulating layer may have been deposited on the surface of a semiconductor device. The proposed method relies on an ion implantation step performed on the insulating layer, followed by an etch, which is preferably a wet etch.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Hans-Peter Moll, Marco Lepper, Werner Graf
  • Patent number: 8969166
    Abstract: An apparatus for selectively improving integrated circuit performance is provided. In an example, an integrated circuit is fabricated according to an integrated circuit layout. A critical portion of the integrated circuit layout determines a speed of the integrated circuit, where at least a part of the critical portion includes at least one of a halo implant region, lightly doped drain (LDD) implant region, and source drain extension (SDE) implant region. A marker layer comprises the part of the critical portion that includes the at least one of the halo implant region, the lightly doped drain (LDD) implant region, and the source drain extension (SDE) implant region, and includes at least one transistor formed therefrom.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: March 3, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Zhongze Wang, Choh fei Yeap, Ping Liu
  • Patent number: 8962433
    Abstract: A MOS transistor process includes the following steps. A gate structure is formed on a substrate. A source/drain is formed in the substrate beside the gate structure. After the source/drain is formed, (1) at least a recess is formed in the substrate beside the gate structure. An epitaxial structure is formed in the recess. (2) A cleaning process may be performed to clean the surface of the substrate beside the gate structure. An epitaxial structure is formed in the substrate beside the gate structure.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: February 24, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Chin-Cheng Chien
  • Patent number: 8962435
    Abstract: A semiconductor device can include an active region having a fin portion providing a channel region between opposing source and drain regions. A gate electrode can cross over the channel region between the opposing source and drain regions and first and second strain inducing structures can be on opposing sides of the gate electrode and can be configured to induce strain on the channel region, where each of the first and second strain inducing structures including a respective facing side having a pair of {111} crystallographically oriented facets.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: February 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shigenobu Maeda, Hidenobu Fukutome, Young-Gun Ko, Joo-Hyun Jeong
  • Publication number: 20150044842
    Abstract: A method includes forming a gate stack over a semiconductor region, depositing an impurity layer over the semiconductor region, and depositing a metal layer over the impurity layer. An annealing is then performed, wherein the elements in the impurity layer are diffused into a portion of the semiconductor region by the annealing to form a source/drain region, and wherein the metal layer reacts with a surface layer of the portion of the semiconductor region to form a source/drain silicide region over the source/drain region.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Ting Wang, Teng-Chun Tsai, Chun-Hsiung Lin, Cheng-Tung Lin, Chi-Yuan Chen, Hong-Mao Lee, Huicheng Chang
  • Patent number: 8951875
    Abstract: A semiconductor structure includes a substrate, a gate structure, and two silicon-containing structures. The substrate includes two recesses defined therein and two doping regions of a first dopant type. Each of the two doping regions extends along a bottom surface and at least portion of a sidewall of a corresponding one of the two recesses. The gate structure is over the substrate and between the two recesses. The two silicon-containing structures are of a second dopant type different from the first dopant type. Each of the two silicon-containing structures fills a corresponding one of the two recesses, and an upper portion of each of the two silicon-containing structures has a dopant concentration higher than that of a lower portion of each of the two silicon-containing structures.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: King-Yuen Wong, Ming-Lung Cheng, Chien-Tai Chan, Da-Wen Lin, Chung-Cheng Wu
  • Patent number: 8951857
    Abstract: The present invention provides various methods for implanting ions in a semiconductor device that substantially compensate for a difference in threshold voltages between a central portion and edge portions of a substrate generated while performing uniform ion implantation to entire surfaces of a substrate. Other methods for fabricating a semiconductor device improve distribution of transistor parameters across a substrate by forming a nonuniform channel doping layer or by forming a nonuniform junction profile, across the substrate.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 10, 2015
    Assignee: Sk hynix Inc.
    Inventors: Young-Sun Sohn, Seung-Woo Jin, Min-Yong Lee, Kyoung-Bong Rouh
  • Patent number: 8952462
    Abstract: The present disclosure provides an apparatus that includes a semiconductor device. The semiconductor device includes a substrate. The semiconductor device also includes a first gate dielectric layer that is disposed over the substrate. The first gate dielectric layer includes a first material. The first gate dielectric layer has a first thickness that is less than a threshold thickness at which a portion of the first material of the first gate dielectric layer begins to crystallize. The semiconductor device also includes a second gate dielectric layer that is disposed over the first gate dielectric layer. The second gate dielectric layer includes a second material that is different from the first material. The second gate dielectric layer has a second thickness that is less than a threshold thickness at which a portion of the second material of the second gate dielectric layer begins to crystallize.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jian-Hao Chen, Da-Yuan Lee, Kuang-Yuan Hsu
  • Publication number: 20150035024
    Abstract: A transistor includes a substrate, a gate structure and impurity regions. The substrate is divided into a field region and an active region by an isolation layer pattern. The field region has the isolation layer pattern thereon, and the active region has no isolation layer pattern thereon. The gate structure includes a central portion and an edge portion. The central portion is on a middle portion of the active region along a first direction and has a first width in a second direction substantially perpendicular to the first direction. The edge portion is on at least one end portion of the active region in the first direction and connected to the central portion and has a second width smaller than the first width in the second direction. The impurity regions are at upper portions of the active region adjacent to both end portions of the gate structure in the second direction.
    Type: Application
    Filed: April 29, 2014
    Publication date: February 5, 2015
    Inventor: Dae-Shik KIM
  • Patent number: 8946035
    Abstract: A replacement channel and a method for forming the same in a semiconductor device are provided. A channel area is defined in a substrate which is a surface of a semiconductor wafer or a structure such as a fin formed over the wafer. Portions of the channel region are removed and are replaced with a replacement channel material formed by an epitaxial growth/deposition process to include a first dopant concentration level less than a first dopant concentration level. A subsequent doping operation or operations is then used to boost the average dopant concentration to a level greater than the first dopant concentration level. The replacement channel material is formed to include a gradient in which the upper portion of the replacement channel material has a greater dopant concentration than the lower portion of replacement channel material.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Ming-Huan Tsai, Clement Hsingjen Wann
  • Patent number: 8936980
    Abstract: Method and apparatus for providing a lateral double-diffused MOSFET (LDMOS) transistor having a dual gate. The dual gate includes a first gate and a second gate. The first gate includes a first oxide layer formed over a substrate, and the second gate includes a second oxide layer formed over the substrate. The first gate is located a pre-determined distance from the second gate. A digitally implemented voltage regulator is also provided that includes a switching circuit having a dual gate LDMOS transistor.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: January 20, 2015
    Assignee: Volterra Semiconductor LLC
    Inventors: Marco A. Zuniga, Budong You
  • Patent number: 8936989
    Abstract: A method for fabricating a semiconductor integrated circuit having a self-aligned structure, the method comprises the steps of: providing a semiconductor substrate; forming a gate dielectric layer, a first polysilicon layer, and a first capping layer on top of the semiconductor substrate; patterning the first capping layer, the first polysilicon layer and stopping on the gate dielectric layer to form a gate structure; forming and patterning a composite dielectric layer, a second polysilicon layer, and a second capping layer to form an interconnect structure; forming a composite spacer; removing the photo-resist layer; forming a third polysilicon layer; making blanket removal of the third polysilicon layer to leave a remain third polysilicon layer; removing the first and the second capping layer; forming a source and a drain; and forming a silicide layer overlying the gate structure, source, drain and the interconnect structure to form the self-aligned structure.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: January 20, 2015
    Inventor: Tzu-Yin Chiu
  • Patent number: 8936990
    Abstract: The present invention provides a power transistor device with a super junction including a substrate, a first epitaxial layer, a second epitaxial layer, and a third epitaxial layer. The first epitaxial layer is disposed on the substrate, and has a plurality of trenches. The trenches are filled up with the second epitaxial layer, and a top surface of the second epitaxial layer is higher than a top surface of the first epitaxial layer. The second epitaxial layer has a plurality of through holes penetrating through the second epitaxial layer and disposed on the first epitaxial layer. The second epitaxial layer and the first epitaxial layer have different conductivity types. The through holes are filled up with the third epitaxial layer, and the third epitaxial layer is in contact with the first epitaxial layer. The third epitaxial layer and the first epitaxial layer have the same conductivity type.
    Type: Grant
    Filed: July 4, 2012
    Date of Patent: January 20, 2015
    Assignee: Anpec Electronics Corporation
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Chia-Hao Chang
  • Patent number: 8927406
    Abstract: A method for fabricating a dual damascene metal gate includes forming a dummy gate onto a substrate, disposing a protective layer on the substrate and the dummy gate, and growing an expanding layer on sides of the dummy gate. The method further includes removing the protective layer, forming a spacer around the dummy gate, and depositing and planarizing a dielectric layer. The method further includes selectively removing the expanding layer, and removing the dummy gate.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Wang, Wen-Chu Hsiao, Ying-Min Chou, Hsiang-Hsiang Ko
  • Patent number: 8927356
    Abstract: Methods for opening polysilicon NFET and PFET gates for a replacement gate process are disclosed. Embodiments include providing a polysilicon gate with a nitride cap; defining PFET and NFET regions of the polysilicon gate, creating a nitride bump on the nitride cap; covering the nitride cap to a top of the nitride bump with a PMD; performing a 1:1 dry etch of the PMD and the nitride bump; and performing a second dry etch, selective to the nitride cap, down to the top surface of the polysilicon gate. Other embodiments include, after creating a nitride bump on the nitride cap, recessing the PMD to expose the nitride cap; covering the nitride cap and the nitride bump with a nitride fill, forming a planar nitride surface; and removing the nitride fill, nitride bump, and nitride cap down to the polysilicon gate.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: January 6, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tsung-Liang Chen, Hsin-Neng Tai, Huey-Ming Wang, Puneet Khanna
  • Patent number: 8927376
    Abstract: A method for forming epitaxial layer is disclosed. The method includes the steps of providing a semiconductor substrate, and forming an undoped first epitaxial layer in the semiconductor substrate. Preferably, the semiconductor substrate includes at least a recess, the undoped first epitaxial layer has a lattice constant, a bottom thickness, and a side thickness, in which the lattice constant is different from a lattice constant of the semiconductor substrate and the bottom thickness is substantially larger than or equal to the side thickness.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: January 6, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Teng-Chun Hsuan, Chin-Cheng Chien
  • Patent number: 8927377
    Abstract: A method includes forming a gate stack to cover a middle portion of a semiconductor fin, and doping an exposed portion of the semiconductor fin with an n-type impurity to form an n-type doped region. At least a portion of the middle portion is protected by the gate stack from receiving the n-type impurity. The method further includes etching the n-type doped region using chlorine radicals to form a recess, and performing an epitaxy to re-grow a semiconductor region in the recess.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeffrey Junhao Xu, Ziwei Fang, Ying Zhang
  • Patent number: 8921190
    Abstract: A semiconductor structure and method of manufacture and, more particularly, a field effect transistor that has a body contact and method of manufacturing the same is provided. The structure includes a device having a raised source region of a first conductivity type and an active region below the raised source region extending to a body of the device. The active region has a second conductivity type different than the first conductivity type. A contact region is in electric contact with the active region. The method includes forming a raised source region over an active region of a device and forming a contact region of a same conductivity type as the active region, wherein the active region forms a contact body between the contact region and a body of the device.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Stephen E. Luce, John J. Pekarik, Yun Shi
  • Patent number: 8921192
    Abstract: A MOS transistor includes a pair of impurity regions formed in a substrate as spaced apart from each other, and a gate electrode formed on a region of the substrate located between the pair of impurity regions. Each of the impurity regions is formed of a first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and a third epitaxial layer on the second epitaxial layer. The first epitaxial layer is formed of at least one first sub-epitaxial layer and a respective second sub-epitaxial layer stacked on each first sub-epitaxial layer. An impurity concentration of the first sub-epitaxial layer is less than that of the second sub-epitaxial layer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Hyuk Kim, Hoi Sung Chung, Myungsun Kim, Dongsuk Shin
  • Patent number: 8916429
    Abstract: Some embodiments relate to a manufacturing method for a semiconductor device. In this method, a semiconductor workpiece, which includes a metal gate electrode thereon, is provided. An opening is formed in the semiconductor workpiece to expose a surface of the metal gate. Formation of the opening leaves a polymeric residue on the workpiece. To remove the polymeric residue from the workpiece, a cleaning solution that includes an organic alkali component is used.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: December 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Li Chou, Shao-Yen Ku, Pei-Hung Chen, Jui-Ping Chuang
  • Publication number: 20140370680
    Abstract: A method of fabricating a high voltage device includes the step of forming a patterned photoresist layer on a conductive layer and a dielectric below the conductive. The conductive layer and the dielectric layer are patterned by taking the patterned photoresist layer as a mask. Subsequently the patterned photoresist layer is shrunk. The conductive layer and the dielectric layer are then patterned by taking the shrunk photoresist layer as a mask.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Yi-Hao Chen, Wen-Yu Lee, Hsiao-Wen Liu, Jung-Ching Chen
  • Patent number: 8912070
    Abstract: The present invention discloses a method for manufacturing a semiconductor device, comprising: forming a gate stack structure on a substrate; forming a drain region in the substrate on one side of the gate stack structure; and forming a source region made of GeSn in the substrate on the other side of the gate stack structure; wherein the forming the source region made of GeSn comprises: implanting precursors in the substrate on the other side of the gate stack structure; and performing a laser rapid annealing such that the precursors react to produce GeSn alloy, thereby to constitute a source region; and wherein the step of implanting precursors further comprises: performing a pre-amorphization ion implantation, so as to form an amorphized region in the substrate; and implanting Sn in the amorphized region.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 16, 2014
    Assignee: The Institute of Microelectronics Chinese Academy of Science
    Inventors: Xiaolong Ma, Huaxiang Yin, Zuozhen Fu
  • Patent number: 8900961
    Abstract: A method of selectively forming a germanium structure within semiconductor manufacturing processes removes the native oxide from a nitride surface in a chemical oxide removal (COR) process and then exposes the heated nitride and oxide surface to a heated germanium containing gas to selectively form germanium only on the nitride surface but not the oxide surface.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ashima B. Chakravarti, Anthony I. Chou, Toshiharu Furukawa, Steven J. Holmes, Wesley C. Natzle
  • Patent number: 8900954
    Abstract: A method that forms a structure implants a well implant into a substrate, patterns a mask on the substrate (to have at least one opening that exposes a channel region of the substrate) and forms a conformal dielectric layer on the mask and to line the opening. The conformal dielectric layer covers the channel region of the substrate. The method also forms a conformal gate metal layer on the conformal dielectric layer, implants a compensating implant through the conformal gate metal layer and the conformal dielectric layer into the channel region of the substrate, and forms a gate conductor on the conformal gate metal layer. Additionally, the method removes the mask to leave a gate stack on the substrate, forms sidewall spacers on the gate stack, and then forms source/drain regions in the substrate partially below the sidewall spacers.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Patent number: 8896048
    Abstract: The present invention provides an apparatus and method for a metal oxide semiconductor field effect transistor (MOSFET) fabricated to reduce short channel effects. The MOSFET includes a semiconductor substrate, a gate stack formed above the semiconductor substrate, a drain side sidewall spacer formed on a drain side of the gate stack, a source side sidewall spacer formed on a source side of the gate stack, and source and drain regions. The source region is formed in the semiconductor substrate on the source side, and is aligned by the source side sidewall spacer to extend an effective channel length between the source region and drain region. The drain region is formed on the drain side in the semiconductor substrate, and is aligned by drain side sidewall spacer to further extend the effective channel length.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: November 25, 2014
    Assignee: Spansion LLC
    Inventors: Richard Fastow, Zhigang Wang, Yue-Song He, Kazuhiro Mizutani, Pavel Fastenko
  • Patent number: 8896034
    Abstract: Radio frequency and microwave devices and methods of use are provided herein. According to some embodiments, the present technology may comprise an ohmic layer for use in a field effect transistor that includes a plurality of strips disposed on a substrate, the plurality of strips comprising alternating source strips and drain strips, with adjacent strips being spaced apart from one another to form a series of channels, a gate finger segment disposed in each of the series of channels, and a plurality of gate finger pads disposed in an alternating pattern around a periphery of the plurality of strips such that each gate finger segment is associated with two gate finger pads.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: November 25, 2014
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8889519
    Abstract: The present invention discloses a semiconductor device, comprising: a substrate, a gate stack structure on the substrate, source and drain regions in the substrate on both sides of the gate stack structure, and a channel region between the source and drain regions in the substrate, characterized in that at least one of the source and drain regions comprises a GeSn alloy. In accordance with the semiconductor device and method for manufacturing the same of the present invention, GeSn stressed source and drain regions with high concentration of Sn is formed by implanting precursors and performing a laser rapid annealing, thus the device carrier mobility of the channel region is effectively enhanced and the device drive capability is further improved.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: November 18, 2014
    Assignee: The institute of Microelectronics Chinese Academy of Science
    Inventors: Xiaolong Ma, Huaxiang Yin, Zuozhen Fu
  • Patent number: 8883556
    Abstract: A semiconductor device capable of high speed operation is provided. Further, a semiconductor device in which change in electric characteristics due to a short channel effect is hardly caused is provided. An oxide semiconductor having crystallinity is used for a semiconductor layer of a transistor. A channel formation region, a source region, and a drain region are formed in the semiconductor layer. The source region and the drain region are formed by self-aligned process in which one or more elements selected from Group 15 elements are added to the semiconductor layer with the use of a gate electrode as a mask. The source region and the drain region can have a wurtzite crystal structure.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8884298
    Abstract: A semiconductor device can include an active region having a fin portion providing a channel region between opposing source and drain regions. A gate electrode can cross over the channel region between the opposing source and drain regions and first and second strain inducing structures can be on opposing sides of the gate electrode and can be configured to induce strain on the channel region, where each of the first and second strain inducing structures including a respective facing side having a pair of {111} crystallographically oriented facets.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shigenobu Maeda, Hidenobu Fukutome, Young-Gun Ko, Joo-Hyun Jeong
  • Patent number: 8883600
    Abstract: A transistor and method of fabrication thereof includes a screening layer formed at least in part in the semiconductor substrate beneath a channel layer and a gate stack, the gate stack including spacer structures on either side of the gate stack. The transistor includes a shallow lightly doped drain region in the channel layer and a deeply lightly doped drain region at the depth relative to the bottom of the screening layer for reducing junction leakage current. A compensation layer may also be included to prevent loss of back gate control.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: November 11, 2014
    Assignee: SuVolta, Inc.
    Inventors: Scott E. Thompson, Lucian Shifren, Pushkar Ranade, Yujie Liu, Sung Hwan Kim, Lingquan Wang, Dalong Zhao, Teymur Bakhishev, Thomas Hoffmann, Sameer Pradhan, Michael Duane