Bump Electrode Patents (Class 438/613)
  • Publication number: 20150072515
    Abstract: A method including introducing a passivation material over contact pads on a surface of an integrated circuit substrate; patterning a sacrificial material on the passivation material to define openings in the sacrificial material to the contact pads; introducing solder to the contact pads; and after introducing the solder, removing the sacrificial material with the proviso that, where the sacrificial material is a photosensitive material, removing comprises using temporally coherent electromagnetic radiation. A method including introducing a passivation material over contact pads; exposing the contact pads; patterning a photosensitive material on the passivation material; introducing solder to the contact pads; and after introducing the solder, removing the photosensitive material using temporally coherent electromagnetic radiation.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 12, 2015
    Inventors: Rajendra C. Dias, Lars D. Skoglund, Anil R. Indluru, Edward R. Prack, Danish Faruqui, Tyler N. Osborn
  • Patent number: 8975739
    Abstract: The invention provides an electronic device package and method for manufacturing thereof. The electronic device package includes a substrate, an electronic chip, a bonding pad, a first passivation layer, a conductive layer, a second passivation layer, and a solder ball. The conductive layer has a first side end and a second side end, and the solder ball is positioned on the first side end of the conductive layer. The second passivation layer contacts with both the upper surface and the sidewall of the second side end of the conductive layer, and the first passivation layer contacts with the lower surface of the second side end of the conductive layer, so as to completely encapsulate the second end of the conductive layer. The electronic device package accordingly prevents the moisture penetration and to enhance the reliability of the electronic device.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 10, 2015
    Assignee: Xintec Inc.
    Inventor: Ming-Chung Chung
  • Publication number: 20150061116
    Abstract: A semiconductor device includes a carrier, an under bump metallurgy (UBM) pad on the carrier, and a post on a surface of the UBM pad. In some embodiments, a height of the post to a longest length of the UBM pad is between about 0.25 and about 0.7. A method of manufacturing a semiconductor device includes providing a carrier, disposing a UBM pad on the carrier and forming a post on the UBM pad.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: CHUN-LIN LU, KAI-CHIANG WU, MING-KAI LIU, YEN-PING WANG, SHIH-WEI LIANG, CHING-FENG YANG, CHIA-CHUN MIAO, HAO-YI TSAI
  • Publication number: 20150061158
    Abstract: A method including forming a first solder bump on a chip, the first solder bump made of a first alloy, and forming a second solder bump on a chip, the second solder bump made of a second alloy, where the first alloy has a different alloy concentration and is different from the second alloy.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventor: Sylvain Pharand
  • Publication number: 20150061122
    Abstract: A manufacturing method of a semiconductor device includes placing a mask having an opening on an external region of a top face of a substrate to locate an end portion of the opening of the mask just above a concave portion formed on the top face of the substrate, the external region being located outside the concave portion. The manufacturing method further includes: growing a conductive film on part of the top face of the substrate through the mask after the mask is placed on the substrate, the part of the top face containing the concave portion; and removing the mask from the substrate after the conductive film is grown.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Inventors: Takashi USHIJIMA, Atsushi IMAI, Jiro NOHARA
  • Patent number: 8970012
    Abstract: A semiconductor device is provided, including a semiconductor substrate that includes a semiconductor; an electrode layer formed above a first surface side inside the semiconductor substrate; a conductor layer formed above the electrode layer and above the first surface of the semiconductor substrate; a hole formed through the semiconductor substrate from a second surface of the semiconductor substrate to the conductor layer; and a wiring layer that is electrically connected to the electrode layer via the conductor layer at an end portion of the vertical hole, and that extends to the second surface of the semiconductor substrate, the wiring layer being physically separated from the electrode layer by an insulating layer disposed therebetween.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: March 3, 2015
    Assignee: Sony Corporation
    Inventor: Masaya Nagata
  • Patent number: 8969191
    Abstract: Embodiments of mechanisms for forming a package structure are provided. A method for forming a package structure includes providing a semiconductor die and forming a first bump structure and a second bump structure over the semiconductor die. The second bump structure is thinner and wider than the first bump structure. The method also includes providing a substrate having a first contact pad and a second contact pad formed on the substrate. The method further includes forming a first solder paste structure and a second solder paste structure over the first contact pad and the second contact pad, respectively. The second solder paste structure is thicker than the first solder paste structure. In addition, the method includes reflowing the first bump structure and the second bump structure with the first solder paste structure and the second solder paste structure, respectively, to bond the semiconductor die to the substrate.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Hsien-Wei Chen
  • Patent number: 8969192
    Abstract: A bumped substrate is optimized to be flat post reflow. By producing the bumped substrate to be flat post reflow, device reliability is assured. More particularly, the transistor shift associated with warped substrates is avoided. Further, by producing a flat bumped substrate post reflow, reliability in the flip chip interconnections is assured as compared to the undesirable open circuits associated with warped substrates.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 3, 2015
    Assignee: Amkor Technology, Inc.
    Inventor: Robert Lanzone
  • Patent number: 8969176
    Abstract: A package for a plurality of semiconductor devices having: an electrical interconnect structure, comprising: an electrical interconnect structure; and an active device structure, comprising the plurality of semiconductor devices on an active device substrate. The electrical interconnect structure is bonded to the active device structure and the electrical interconnect structure provides electrical interconnection among the semiconductor devices.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 3, 2015
    Assignee: Raytheon Company
    Inventors: Ward G. Fillmore, William J. Davis
  • Publication number: 20150054151
    Abstract: A semiconductor device has a semiconductor die with a first conductive layer formed over the die. A first insulating layer is formed over the die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is constructed by forming a second insulating layer over the first insulating layer with a second opening having a width less than the first opening and depositing a conductive material into the second opening. The interconnect structure can be a conductive pillar or conductive pad. The interconnect structure has a width less than a width of the first opening. The second conductive layer over the first insulating layer outside the first opening is removed while leaving the second conductive layer under the interconnect structure.
    Type: Application
    Filed: October 1, 2014
    Publication date: February 26, 2015
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Won Kyoung Choi, Pandi C. Marimuthu
  • Publication number: 20150056755
    Abstract: An electronic device package includes a bump having a post disposed on a contact portion of a semiconductor chip and an enlarged portion laterally protruded from an upper portion of the post; an interconnection portion having a locking portion that substantially surrounds the enlarged portion and an upper sidewall of the post; and a dielectric layer substantially surrounding the bump and the locking portion to separate the interconnection portion from the semiconductor chip.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Inventors: Seung Jee KIM, Qwan Ho CHUNG, Jong Hyun NAM, Si Han KIM, Sang Yong LEE, Seong Cheol SHIN
  • Patent number: 8962471
    Abstract: A two-layer structure bump including a first bump layer of a bulk body of a first conductive metal, which is any of gold, copper, and nickel, formed on a substrate and a second bump layer of a sintered body of a powder of a second conductive metal, which is any of gold and silver, formed on the first bump layer. The bulk body composing the first bump layer is formed through any of plating, sputtering, or CVD. The sintered body composing the second bump layer is formed by sintering the powder of the second conductive metal having a purity of not lower than 99.9 wt % and an average particle diameter of 0.005 ?m to 1.0 ?m. The second bump layer has a Young's modulus 0.1 to 0.4 times that of the first bump layer.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: February 24, 2015
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Toshinori Ogashiwa, Masayuki Miyairi
  • Patent number: 8963342
    Abstract: Structures, architectures, systems, an integrated circuit, methods and software for configuring an integrated circuit for multiple packaging types and/or selecting one of a plurality of packaging types for an integrated circuit. The structure generally comprises a bump pad, a plurality of bond pads configured for independent electrical connection to the bump pad, and a plurality of conductive traces, each adapted to electrically connect one of the bond pads to the bump pad. The method of configuring generally includes the steps of forming the bump pad, the bond pads, and the conductive traces from an uppermost metal layer, and forming an insulation layer thereover. The method of selecting generally comprises the uppermost metal layer-forming step, and forming either (i) a wire bond to at least one of the bond pads, or (ii) a bumping metal configured to electrically connect at least one of the bond pads to the bump pad.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: February 24, 2015
    Assignee: Marvell International Ltd.
    Inventors: Tyson Leistiko, Huahung Kao
  • Patent number: 8962470
    Abstract: A semiconductor substrate is secured by suction to a rear face of a supporting face of a substrate supporting table. In this event, the thickness of the semiconductor substrate is made fixed by planarization on the rear face, and the rear face is forcibly brought into a state free from undulation by the suction to the supporting face, so that the rear face becomes a reference face for planarization of a front face. In this state, a tool is used to cut surface layers of Au projections and a resist mask on the front face, thereby planarizing the Au projections and the resist mask so that their surfaces become continuously flat. This can planarize the surfaces of fine bumps formed on the substrate at a low cost and a high speed in place of CMP.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: February 24, 2015
    Assignee: Fujitsu Limited
    Inventors: Masataka Mizukoshi, Yoshikatsu Ishizuki, Kanae Nakagawa, Keishiro Okamoto, Kazuo Teshirogi, Taiji Sakai
  • Publication number: 20150048480
    Abstract: Some novel features pertain to a semiconductor device that includes a substrate, a first cavity that traverses the substrate. The first cavity is configured to be occupied by a interconnect material (e.g., solder ball). The substrate also includes a first metal layer coupled to a first side wall of the first cavity. The substrate further includes a first integrated passive device (IPD) on a first surface of the substrate, the first IPD coupled to the first metal layer. In some implementations, the substrate is a glass substrate. In some implementations, the first IPD is one of at least a capacitor, an inductor and/or a resistor. In some implementations, the semiconductor device further includes a second integrated passive device (IPD) on a second surface of the substrate. The second IPD is coupled to the first metal layer.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 19, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Daeik Daniel Kim, Young Kyu Song, Changhan Hobie Yun, Mario Francisco Velez, Chengjie Zuo, Jonghae Kim, Xiaonan Zhang, Ryan David Lane
  • Publication number: 20150048496
    Abstract: Disclosed is a fabrication process of fabricating bumps aligned on TSVs on chip backside. A plurality of TSV pillars are embedded inside the semiconductor layer of an IC substrate where the sidewalls the bottom of the TSV pillars toward the chip backside are covered by a dielectric liner. Then, the thickness of the semiconductor layer is reduced from the chip backside to make the bottom portion of the dielectric liner to be exposed from the chip backside by including a first selectively etching. Then, a backside passivation is disposed on the chip backside without disposing on the bottoms of the TSV pillars. Then, the bottom portion of the dielectric liner is removed by a second selectively etching. An UBM layer is disposed on the backside passivation. A plurality of bumps are disposed on the UBM layer where the interface between each bump and each TSV pillar is a central protrusion lumped toward the corresponding bump.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Applicants: MACROTECH TECHNOLOGY INC., POWERTECH TECHNOLOGY INC.
    Inventors: Chao-Shun CHIU, Yen-Chu CHEN
  • Publication number: 20150044864
    Abstract: Structures and methods of making a flip chip package that employ polyimide pads of varying heights at a radial distance from a center of an integrated circuit (IC) chip for a flip chip package. The polyimide pads may be formed under electrical connectors, which connect the IC chip to a chip carrier of the flip chip package, so that electrical connectors formed on polyimide pads of greater height are disposed at a greater radial distance from the center of the IC chip, while electrical connectors formed on polyimide pads of a lesser height are disposed more proximately to the center of the IC chip. Electrical connectors of a greater relative height to the IC chip's surface may compensate for a gap, produced by heat-induced warpage during the making of the flip chip package, that separates the electrical connectors on the IC chip from flip chip attaches on the chip carrier.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8951840
    Abstract: A manufacturing method for Flip Chip on Chip (FCoC) package based on multi-row Quad Flat No-lead (QFN) package is provided wherein the lower surface of plate metallic base material are half-etched to form grooves. Insulation filling material is filled in the half-etched grooves. The upper surface of plate metallic base material is half-etched to form chip pad and multi-row of leads. Encapsulating first IC chip, second IC chip, solder bumps, underfill material, and metal wire to form an array of FCoC package based on the type of multi-row QFN package. Sawing and separating the FCoC package array, and forming FCoC package unit.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: February 10, 2015
    Assignee: Beijing University of Technology
    Inventors: Fei Qin, Guofeng Xia, Tong An, Chengyan Liu, Wei Wu, Wenhui Zhu
  • Publication number: 20150035143
    Abstract: A chip package is disclosed. The package includes a semiconductor chip having a first surface and a second surface opposite thereto, at least one conductive pad adjacent to the first surface, and an opening extending toward the first surface from the second surface to expose the conductive pad. The caliber adjacent to the first surface is greater than that of the opening adjacent to the second surface. An insulating layer and a redistribution layer (RDL) are successively disposed on the second surface and extend to a sidewall and a bottom of the opening, in which the RDL is electrically connected to the conductive pad through the opening. A passivation layer covers the RDL and partially fills the opening to form a void between the passivation layer and the conductive pad in the opening. A fabrication method of the chip package is also disclosed.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 5, 2015
    Inventor: Chia-Sheng LIN
  • Publication number: 20150035139
    Abstract: In a method for forming a packaging structure, a metal pad is formed on a semiconductor substrate, and a first polymer insulating layer is formed over the semiconductor substrate. An opening passing through the first polymer insulating layer is formed to expose a portion of the metal pad. A copper-containing material is deposited in the opening and over the first polymer insulating layer, thereby forming a copper-containing layer having a first thickness and a first width over the first polymer insulating layer. A conductive bump having a second width is formed over the copper-containing layer, in which the second width is smaller than the first width. An exposed portion of the copper-containing layer is etched using the conductive bump as a mask until the exposed portion is reduced to a second thickness, thereby forming a monolithic copper-containing structure.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., LTD.
    Inventors: Chao-Wen Shih, Yung-Ping Chiang, Chen-Chih Hsieh, Hao-Yi Tsai
  • Publication number: 20150035140
    Abstract: A method for handling and supporting a device wafer during a wafer thinning process and the resulting device are provided. Embodiments include forming a plurality of solder bumps on a first surface of a substrate having a first and a second surface; removing a portion from a periphery of the first surface of the substrate; forming a temporary bonding material on a first carrier; bonding the first surface of the substrate with the temporary bonding material of the first carrier; affixing the second surface of the substrate to a second carrier; and removing the temporary bonding material.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Applicant: GLOBAL FOUNDRIES Inc.
    Inventor: Rahul AGARWAL
  • Patent number: 8946072
    Abstract: Mechanisms of forming a package on package (PoP) package by using an interposer and an no-reflow underfill (NUF) layer are provided. The interposer frame improves the form factor of the package, enables the reduction in the pitch of the bonding structures. The NUF layer enables a semiconductor die and an interposer frame be bonded to a substrate by utilizing the heat on the connectors of the semiconductor die and on the connectors of the interposer frame for bonding. The heat provided by the semiconductor die and the interposer frame also transforms the NUF layer into an underfill. PoP structures formed by using the interposer frame and the NUF layer improve yield and have better reliability performance.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jiun Yi Wu
  • Patent number: 8946891
    Abstract: Systems, methods and/or techniques for mushroom shaped bump on repassivation are described. A method of forming a chip scale package may include applying a first photoresist layer over a semiconductor wafer, developing away a portion of the first photoresist layer to define a cylindrically shaped template with substantially vertical side walls, and plating metal at least partially within the template to form a bump. The bump may include a first cylindrical base portion, a cap, and a lip formed by a portion of the cap that extends horizontally outward beyond the first cylindrical base portion. The cap and lip may be formed such that a vertical distance exists between the lip and the semiconductor wafer, defining an intrusion area. The method may include removing excess portions of the first photoresist layer, including portions residing in the intrusion area, to isolate the bump.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: February 3, 2015
    Assignee: Amkor Technology, Inc.
    Inventors: Sundeep Nand Nangalia, Karthikeyan Dhandapani
  • Patent number: 8946079
    Abstract: A semiconductor construct includes a semiconductor substrate and connection pads provided on the semiconductor substrate. Some of the connection pads are connected to a common wiring and at least one of the remaining of the connection pads are connected to a wiring. The construct also includes a first columnar electrode provided to be connected to the common wiring and a second columnar electrode provided to be connected to a connection pad portion of the wiring.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: February 3, 2015
    Assignee: Tera Probe, Inc.
    Inventors: Shinji Wakisaka, Takeshi Wakabayashi
  • Patent number: 8945993
    Abstract: A method of manufacturing a ball grid array substrate includes: forming a first circuit pattern and a second circuit pattern on a first metal carrier and a second metal carrier, respectively; stacking a first insulating layer and a second insulating layer with a separable material interposed therebetween, wherein each of the first and second insulating layers has first and second surfaces opposing each other, and the first surface contacts the separable material; burying the first and second circuit patterns in the second surfaces of the first and second insulating layers, respectively; removing the first and second metal carriers; removing the separable material to separate the first and second insulating layers from each other; and forming an opening in each of the first and second insulating layers to connect the first and second surfaces with each other. The method may also be part of a process for manufacturing a semiconductor package.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: February 3, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jung Hyun Park, Nam Keun Oh, Sang Duck Kim, Jong Gyu Choi, Young Ji Kim, Ji Eun Kim, Myung Sam Kang
  • Patent number: 8946913
    Abstract: A multi-die package includes a first semiconductor die and a second semiconductor die each having an upper surface with a plurality of bond pads disposed thereon. The upper surface of the second semiconductor die may be substantially coextensive with the upper surface of the first semiconductor die and extend substantially along a plane. The multi-die package also includes a plurality of bonding wires each coupling one of the bond pads on the upper surface of the first semiconductor die to a corresponding one of the bond pads on the upper surface of the second semiconductor die. A bonding wire of the plurality of bonding wires has a kink disposed at a height above the plane, a first hump disposed between the first semiconductor die and the kink, and a second hump disposed between the second semiconductor die and the kink.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: February 3, 2015
    Assignee: Carsem (M) SDN. BHD.
    Inventors: Liew Siew Har, Law Wai Ling
  • Publication number: 20150028479
    Abstract: The invention relates to a semiconductor structure, comprising a substrate of a semiconductor material having a first side (FS) and an opposite second side (BS). There is at least one conductive wafer-through via (V) comprising metal, and at least one recess (RDL) provided in the first side of the substrate and in the semiconductor material of the substrate. The recess is filled with metal and seamlessly connected with the wafer-through via. The exposed surfaces of the metal filled via and the metal filled recess are essentially flush with the substrate surface on the first side of the substrate. There is also provide an interposer comprising the above structure, further comprising contacts for attaching circuit boards and integrated circuits on opposite sides of the interposer. A method of making the structure is also provided.
    Type: Application
    Filed: March 12, 2013
    Publication date: January 29, 2015
    Inventors: Thorbjörn Ebefors, Daniel Perttu
  • Publication number: 20150028455
    Abstract: A device includes sidewalls formed in a wafer surface, where the sidewalls descend to a recessed surface. The recessed surface generally promotes resist coverage on the wafer surface, including corners (e.g., junctions between the wafer surface and various surface topographies, such as cavities, the recessed surface, and so forth) on the wafer. In one or more implementations, a wet etching procedure is used to form the sidewalls and recessed surface. A resist material (e.g., a photoresist material) is deposited onto the wafer surface, where the photoresist fully covers one or more of the top corners of the wafer surface. In one or more implementations, the recessed surface is positioned adjacent a trench formed in the wafer to promote resist coverage on the top surface of the wafer.
    Type: Application
    Filed: December 27, 2013
    Publication date: January 29, 2015
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Xuejun Ying, Li Li, Amit S. Kelkar, Brian S. Poarch
  • Patent number: 8939346
    Abstract: A method includes applying solder to conductive pads of a semiconductor device, applying solder to conductive pads of a substrate, aligning the solder on the semiconductor device with the solder on the substrate such that portions of the solder on the semiconductor device contact corresponding portions of the solder on the substrate, heating the semiconductor device and the substrate to liquefy the solder, and exerting an oscillating force operative to oscillate the semiconductor device relative to the substrate at a frequency.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventor: Julien Sylvestre
  • Patent number: 8940586
    Abstract: The present disclosure relates to a bump processing method and/or resulting MEMS-CMOS structure, in which one or more anti-stiction bumps are formed within a substrate prior to the formation of a cavity in which the one or more anti-stiction bumps reside. By forming the one or more anti-stiction bumps prior to a cavity, the sidewall angle and the top critical dimension (i.e., surface area) of the one or more anti-stiction bumps are reduced. The reduction in sidewall angle and critical dimension reduces stiction between a substrate and a moveable part of a MEMS device. By reducing the size of the anti-stiction bumps through a processing sequence change, lithographic problems such as reduction of the lithographic processing window and bump photoresist collapse are avoided.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chris Kuo, Lee-Chuan Tseng
  • Patent number: 8937009
    Abstract: Disclosed are a method for metallization during semiconductor wafer processing and the resulting structures. In this method, a passivation layer is patterned with first openings aligned above and extending vertically to metal structures below. A mask layer is formed and patterned with second openings aligned above the first openings, thereby forming two-tier openings extending vertically through the mask layer and passivation layer to the metal structures below. An electrodeposition process forms, in the two-tier openings, both under-bump pad(s) and additional metal feature(s), which are different from the under-bump pad(s) (e.g., a wirebond pad; a final vertical section of a crackstop structure; and/or a probe pad). Each under-bump pad and additional metal feature initially comprises copper with metal cap layers thereon.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Karen P. McLaughlin, Ekta Misra, Christopher D. Muzzy, Eric D. Perfecto, Wolfgang Sauter
  • Patent number: 8937008
    Abstract: A system and process for forming a ball grid array on a substrate includes defining a plurality of openings in a resist layer on the substrate, and forming a plurality of openings in the resist layer, each positioned over a contact pad of the substrate. Flux is then deposited in the openings, and solder balls are positioned in each opening with the flux. Solder bumps are formed by reflowing the solder balls in the respective openings. The resist layer is then removed, leaving an array of solder bumps on the substrate. The flux can be deposited by depositing a layer of flux, then removing the flux, except a portion that remains in each opening. Solder balls can be positioned by moving a ball feeder across the resist layer and dropping a solder ball each time an aperture in the ball feeder aligns with an opening in the resist layer.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: January 20, 2015
    Assignee: STMicroelectronics Pte Ltd.
    Inventor: Yonggang Jin
  • Publication number: 20150014848
    Abstract: A semiconductor device is disclosed, which includes: a substrate having a substrate body and a plurality of conductive pads formed on the substrate body, wherein each of the conductive pads has at least an opening formed in a first surface thereof; a semiconductor component having a plurality of bonding pads; a plurality of conductive elements formed between the bonding pads and the conductive pads and in the openings of the conductive pads; and an encapsulant formed between the substrate and the semiconductor component for encapsulating the conductive elements, thereby strengthening the bonding between the conductive elements and the conductive pads and consequently increasing the product yield.
    Type: Application
    Filed: April 22, 2014
    Publication date: January 15, 2015
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Ming-Chin Chuang, Fu-Tang Huang
  • Publication number: 20150014843
    Abstract: When forming sophisticated semiconductor devices including metal pillars arranged on contact pads, which may comprise aluminum, device performance and reliability may be improved by avoiding exposure of the contact pad material to the ambient atmosphere, in particular during and between dicing and packaging processes. To this end, the contact pad material may be covered by a protection layer or may be protected by the metal pillars itself, thereby concurrently improving mechanical stress distribution in the device.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 15, 2015
    Inventors: Matthias Lehr, Marcel Wieland, Martin O'Toole
  • Publication number: 20150014846
    Abstract: A packaged semiconductor device includes a semiconductor substrate, a metal pad, a metal base, a polymer insulating layer, a copper-containing structure and a conductive bump. The metal pad and the metal base are disposed on the semiconductor substrate. The polymer insulating layer overlies the metal base and the semiconductor substrate. The copper-containing structure is disposed over the polymer insulating layer, and includes a support structure and a post-passivation interconnect (PPI) line. The support structure is aligned with the metal base. The PPI line is located partially within the support structure, and extends out through an opening of the support structure, in which a top of the support structure is elevated higher than a top of the PPI line. The conductive bump is held by the support structure.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Yu-Chia Lai, Hsien-Ming Tu, Tung-Liang Shao, Hsien-Wei Chen, Chang-Pin Huang, Ching-Jung Yang
  • Patent number: 8933551
    Abstract: A package includes an interposer, which includes a first substrate free from through-vias therein, redistribution lines over the first substrate, and a first plurality of connectors over and electrically coupled to the redistribution lines. A first die is over and bonded to the first plurality of connectors. The first die includes a second substrate, and through-vias in the second substrate. A second die is over and bonded to the plurality of connectors. The first die and the second die are electrically coupled to each other through the redistribution lines. A second plurality of connectors is over the first die and the second die. The second plurality of connectors is electrically coupled to the first plurality of connectors through the through-vias in the second substrate.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chuan Chang, Jing-Cheng Lin, Chen-Hua Yu
  • Patent number: 8927412
    Abstract: A device comprises a first semiconductor die embedded in a molding compound layer, a surface-mount device embedded in the molding compound layer, a plurality of interconnect structures formed on the molding compound layer, wherein the first semiconductor die is electrically coupled to the interconnect structures and the surface-mount device is electrically coupled to the interconnect structures through at least a metal pillar and a plurality of bumps formed on and electrically coupled to the interconnect structures.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Chen-Hua Yu, Jui-Pin Hung, Der-Chyang Yeh
  • Patent number: 8927344
    Abstract: Various semiconductor chip package substrates with reinforcement and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes providing a package substrate that has a first side and a second side opposite to the first side. The first side has a central area adapted to receive a semiconductor chip. A solder reinforcement structure is formed on the first side of the package substrate outside of the central area to resist bending of the package substrate.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: January 6, 2015
    Assignee: ATI Technologies ULC
    Inventors: Roden Topacio, Adam Zbrzezny
  • Publication number: 20150001706
    Abstract: A method includes positioning a solder mask on an integrated circuit (IC) package substrate with the solder mask having cavities that extend to the IC package substrate, applying molten solder to the flexible solder mask to fill the cavities of the solder mask with solder, and removing the solder mask to expose solder bumps on the IC package substrate. The molten solder includes silver and an additive to reduce formation of a silver compound that causes deformation of solder bumps.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Kabirkumar Mirpuri, Yoshihiro Tomita
  • Patent number: 8921221
    Abstract: A photoresist layer is applied over a solder resist layer on a substrate such as a wafer. Openings in the solder resist and photoresist layers are filled with flux-free molten solder using IMS. The process is applicable to fine pitch applications and chip size packaging substrates. A protection layer may be employed to facilitate removal of the photoresist layer from the substrate. An oversized substrate including an adhesive layer on a peripheral area may be employed for providing greater adhesion of a dry film layer to the peripheral area of the substrate than the central portion thereof. The peripheral area is removed following IMS.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mark H. McLeod, Jae-Woong Nah
  • Patent number: 8921222
    Abstract: A conductive pillar for a semiconductor device is provided. The conductive pillar is formed such that a top surface is non-planar. In embodiments, the top surface may be concave, convex, or wave shaped. An optional capping layer may be formed over the conductive pillar to allow for a stronger inter-metallic compound (IMC) layer. The IMC layer is a layer formed between solder material and an underlying layer, such as the conductive pillar or the optional capping layer.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tin-Hao Kuo, Chen-Shien Chen, Ching-Wen Hsiao
  • Patent number: 8921158
    Abstract: Semiconductor devices are described that are configured to have a state of operation defined by a connection between at least one inner bump assembly and a selected outer bump assembly. In an implementation, the semiconductor device, which may be a wafer-level (chip-scale) package semiconductor device, includes an integrated circuit chip, a plurality of outer bump assemblies disposed on the chip, and one or more inner bump assemblies disposed on the chip so that the inner bump assemblies are at least partially surrounded by the outer bump assemblies. At least one of the inner bump assemblies is configured to be connected to a selected outer bump assembly to cause the integrated circuit chip to have a desired state of operation.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: December 30, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Kymberly T. Christman, Roderick B. Hogan, Anand Chamakura
  • Patent number: 8921168
    Abstract: An integrated circuit assembly includes an insulating layer having a having a first surface and a second surface, where the first surface of the insulating layer is less than 10 microns below an upper plane of the integrated circuit assembly. An active layer contacts the first surface of the insulating layer. A metal bond pad is electrically connected to the active layer and formed on the second surface of the insulating layer, and is also electrically connected to a printed circuit board. A method of fabricating an integrated circuit assembly includes coupling a handle wafer to the active layer of a semiconductor-on-insulator wafer, removing the substrate of the semiconductor-on-insulator, forming a bond pad connecting to the active layer on the exposed insulator surface, bonding the bond pad to a printed circuit board using a solder bump, and removing the handle wafer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 30, 2014
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Mark Drucker, Peter Fowler
  • Publication number: 20140374856
    Abstract: One or more stopper features (e.g., bump structures) are formed in a standard ASIC wafer top passivation layer for preventing MEMS device stiction vertically in integrated devices having a MEMS device capped directly by an ASIC wafer. A TiN coating may be used on the stopper feature(s) for anti-stiction. An electrical potential may be applied to the TiN anti-stiction coating of one or more stopper features.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventors: Li Chen, Thomas Kieran Nunan, Kuang L. Yang
  • Publication number: 20140374899
    Abstract: A method includes forming a passivation layer over a portion of a metal pad, forming a polymer layer over the passivation layer, and exposing the polymer layer using a photolithography mask. The photolithography mask has an opaque portion, a transparent portion, and a partial transparent portion. The exposed polymer layer is developed to form an opening, wherein the metal pad is exposed through the opening. A Post-Passivation Interconnect (PPI) is formed over the polymer layer, wherein the PPI includes a portion extending into the opening to connect to the metal pad.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventors: Ching-Jung Yang, Hsien-Wei Chen, Hsien-Ming Tu, Chang-Pin Huang, Yu-Chia Lai, Tung-Liang Shao
  • Publication number: 20140377946
    Abstract: The embodiments described provide elongated bonded structures near edges of packaged structures free of solder wetting on sides of copper posts substantially facing the center of the packaged structures. Solder wetting occurs on other sides of copper posts of these bonded structures. The elongated bonded structures are arranged in different arrangements and reduce the chance of shorting between neighboring bonded structures. In addition, the elongated bonded structures improve the reliability performance.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Inventors: Ming-Hong Cha, Chita Chuang, Yao-Chun Chuang, Hao-Juin Liu, Tsung-Hsien Chiang, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 8916465
    Abstract: A wafer level chip scale semiconductor device comprises a semiconductor die, a first under bump metal structure and a second under bump metal structure. The first under bump metal structure having a first enclosure is formed on a corner region or an edge region of the semiconductor die. A second under bump metal structure having a second enclosure is formed on an inner region of the semiconductor die. The first enclosure is greater than the second enclosure.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: December 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Yuan Yu, Hsien-Wei Chen, Ying-Ju Chen, Shih-Wei Liang
  • Patent number: 8916464
    Abstract: Structures with improved solder bump connections and methods of fabricating such structures are provided herein. The structure includes a via formed in a dielectric layer to expose a contact pad and a capture pad formed in the via and over the dielectric layer. The capture pad has openings over the dielectric layer to form segmented features. The solder bump is deposited on the capture pad and the openings over the dielectric layer.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter, Timothy D. Sullivan
  • Publication number: 20140367849
    Abstract: A method of manufacturing an interposer is provided, including forming a plurality of first openings on one surface side of a substrate, forming a first metal layer in the first openings, forming on the other surface side of the substrate a plurality of second openings that are in communication with the first openings, forming a second metal layer in the second openings, and electrically connecting the first metal layer to the second metal layer, so as to form conductive through holes. The conductive through holes are formed stage by stage, such that the fabrication time in forming the metal layers is reduced, and a metal material will not be accumulated too thick on a surface of the substrate. Therefore, the metal material has a smoother surface, and no overburden will be formed around end surfaces of the through holes. An interposer is also provided.
    Type: Application
    Filed: August 29, 2013
    Publication date: December 18, 2014
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Ching-Wen Chiang, Kuang-Hsin Chen, Wei-Jen Chang, Hsien-Wen Chen
  • Patent number: 8912649
    Abstract: A device includes a metal pad over a substrate. A passivation layer includes a portion over the metal pad. A post-passivation interconnect (PPI) is electrically coupled to the metal pad, wherein the PPI comprises a portion over the metal pad and the passivation layer. A polymer layer is over the PPI. A dummy bump is over the polymer layer, wherein the dummy bump is electrically insulated from conductive features underlying the polymer layer.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: December 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Yu Wu, Tin-Hao Kuo, Chita Chuang, Chen-Shien Chen