Solid Sorbent Patents (Class 502/400)
  • Patent number: 8801834
    Abstract: An article having a flow-through substrate having open channels defined by porous walls, wherein the flow-through substrate includes alumina; and a CO2 sorbent disposed on the flow-through substrate, wherein the CO2 sorbent impregnates the porous walls of the flow-through substrate. Methods of making the article, its use for CO2 capture, and methods for regenerating the article for further use are also disclosed.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 12, 2014
    Assignee: Corning Incorporated
    Inventors: William Peter Addiego, Michael John Bennett
  • Patent number: 8795410
    Abstract: The problem to be solved by the present invention is to provide a monolith adsorbent which can adsorb a target sample easily in a short time or regardless of whether the amount of the sample is small or large and extract the sample with a small amount of solvent, and easily secure the sample necessary for analysis, and a method and an apparatus for adsorption and retention using the same. The present invention is a monolith adsorbent formed by allowing a monolith structure body to contain an adsorbing material such as activated carbon or graphite, exposing the adsorbing material on the surface of the structure body and further surface-treating the surface of the monolith structure body with a hydrophobic or hydrophilic compound or a resin.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: August 5, 2014
    Assignee: GL Sciences Incorporated
    Inventors: Atsushi Sato, Hiroyuki Terashima, Yoshiyuki Takei
  • Patent number: 8796174
    Abstract: The present invention relates to a process for producing fluid-absorbent cores, comprising mixing a fibrous material and fluid-absorbent polymer particles having low moisture content and low apparent density and pressing the obtained mixture under specific conditions.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 5, 2014
    Assignee: BASF SE
    Inventors: Matthias Weismantel, Rüdiger Funk, Ulrich Schröder, Marco Krüger, Sylvia Bertha, John Joseph Louden
  • Patent number: 8791039
    Abstract: An agglomerated zeolite adsorbent which comprises 95-99.5 mass % of X zeolite and 0.5-5.0 mass % of binder, wherein the exchangeable cationic sites of said X zeolite are occupied by Group IIA metal and/or K, the total pore volume of said adsorbent is no less than 0.26 mL/g as measured by mercury porosimetry, the volume of pores with pore diameters from 100 to 500 nm is at least 60% based on the total pore volume. During shaping, a pore-forming agent is added to this adsorbent, and then the adsorbent is alkali treated for in-situ crystallization, followed by ion exchange. Said adsorbent has high adsorption capacity, fast mass transfer rate and good mechanical strength. Said adsorbent is suitable for liquid phase adsorptive separation of para-xylene from C8 aromatic hydrocarbons and is also suitable for adsorptive separation of other alkyl aromatic hydrocarbons isomers.
    Type: Grant
    Filed: January 24, 2009
    Date of Patent: July 29, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Huiguo Wang, Jianfeng Ma, Dehua Wang, Zhuo Yu
  • Patent number: 8785347
    Abstract: An underwater oleophilic hydrophobic oil-capturing water permeable drag-net with the porous oil-capturing water-repelling and water-permeable component positioned in the back of and connected to the drag-net that can be dragged vertically through the underwater oil spill area of the Gulf to remove oil is presented. The invention is made of various sizes depending on the area of the oil spill area; including 100 ft high (north to south), 100 ft wide (east to west) and 10 ft deep (front to back). The net mesh-like material is made from threads and wires knotted, twisted, and woven to form a regular pattern with fine spaces between the threads with each strand of a metal, plastic, wire and fiber net-type material made of and covered with organic and inorganic Oleophilic hydrophobic and superhydrophobic, oil attracting and oil bonding molecules, materials or sorbents including Superhydrophobic materials.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: July 22, 2014
    Inventor: William Redvers Belisle
  • Patent number: 8771633
    Abstract: A composition based on lime comprising at least one mineral agent consisting of slaked lime in the solid phase and of an organic polymer incorporated into said solid phase, a method for its making and the use for its application in the treatment of water and sludge, in particular for conditioning sludge before dewatering.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: July 8, 2014
    Assignees: S.A. Lhoist Recherche et Developpement, SNF S.A.S.
    Inventors: Laurent Biotteau, Gaetan Blandin
  • Patent number: 8765635
    Abstract: A manufacturing method of an absorption cell includes preparing a first absorption layer formed of a mixture of a first absorbent and a second absorbent having a higher density than the first absorbent; coating the surface of the first absorption layer with a protective layer formed of a low-carbonizing point material and the second absorbent so as to prevent generation of dust particles from the first absorption layer; and removing the low-carbonizing point material from the protective layer so as to form a second absorption layer including a plurality of pore parts through which a fluid flows to the first absorption layer.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jee Yong Kim, Rae Eun Park
  • Publication number: 20140174292
    Abstract: A carbon dioxide adsorbent may include a complex oxide including barium and titanium, wherein the complex oxide has a perovskite crystalline structure and is represented by the general formula BaxTiyOz, and an atomic ratio of Ba/Ti ranges from about 0.95 to about 1.7. The carbon dioxide adsorbent may be included in a carbon dioxide capture module. The carbon dioxide adsorbent may also be used in a method of separating carbon dioxide.
    Type: Application
    Filed: September 13, 2013
    Publication date: June 26, 2014
    Applicants: SAMSUNG FINE CHEMICALS CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Soon Chul KWON, Ji Ho PARK, Hyuk Jae KWON, Yun Jung PARK, Hyun Chul LEE, Youn-Kyu CHOI
  • Patent number: 8758626
    Abstract: A cartridge having at least one layer containing sodium zirconium phosphate and at least one layer containing a combination of acid zirconium phosphate and alkaline hydrous zirconium oxide is described. Methods of using the cartridge for water purification are also described.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: June 24, 2014
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventor: Raymond Wong
  • Patent number: 8759251
    Abstract: A treatment medium has a particulate natural substrate saturated, suffused and/or coated with hydrous iron oxide. The particulate substrate can be wood based, such as wood chips, bark, sawdust, wood waste or other plant material (such as straw, lucerne, hay, coconut husk or other bulk particulate plant material). The hydrous iron oxide is provided in aqueous suspension form. The substrate may be tumbled in aqueous hydrous iron suspension to achieve saturation/coating. The resulting hydrous iron oxide bearing medium is either placed loose directly into the target treatment site or contained in bags 18 before placing into the target site.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: June 24, 2014
    Inventor: Tom Long
  • Patent number: 8754004
    Abstract: A method of constructing a phosphorous adsorbing structure includes creating a design model that indicates a percentage of phosphorous removed from a water supply per an amount of a predetermined adsorbent exposed to the water supply based upon an original concentration of phosphorous in the water supply and a retention time of water in the adsorbing structure.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: June 17, 2014
    Assignee: The Board of Regents for Oklahoma State University
    Inventor: Chad J. Penn
  • Patent number: 8754001
    Abstract: A self sustained system for sorbent production includes a thermal reactor for pyrolytic decomposing organic waste material in order to generate synthetic gases and sorbents; sorbent and gas separation unit; gas cleaning unit and gas turbine, supplying energy back to the system. Rice husk is fed continuously into a thermal reactor at a controlled feed rate. The plasma torch is used to heat the reactor to a sufficient temperature, as to convert the rice husk ‘feed’ material to a synthetic gas and solid carbon rich sorbent. Oxygen and steam are added in control quantities to optimize efficiency of production of synthetic gas composition and sorbent quality. The synthetic gas is directed through a heat exchanger, where heat is extracted for producing the process steam. Cooled synthetic gas is used to power a gas turbine as a fuel to produce electricity. In one embodiment the waste material is a rice husk.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: June 17, 2014
    Assignee: Applied Energy Microsystem Asia PTE Ltd.
    Inventors: George Paskalov, Ildar Gafarov
  • Publication number: 20140158627
    Abstract: A cation adsorbent of an embodiment includes tungsten oxide particles having a BET specific surface area in a range of 0.82 m2/g or more and 820 m2/g or less. The cation adsorbent is added to a solution to be treated containing cations being recovery objects, and the cation adsorbent adsorbing the catious is precipitated. The generated precipitate is separated from the solution to recover the cations.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicants: Toshiba Materials Co., Ltd., Kabushiki Kaisha Toshiba
    Inventors: Akira SATO, Daisuke FUKUSHI, Takao KUSAKA, Kayo NAKANO, Yukiko INUI, Akito SASAKI
  • Patent number: 8741248
    Abstract: The present method describes the absorbing and desorbing of a gaseous reactant on a solid reactant. The solid reactant is an ammonia salt selected from the group consisting of alkali ammonium salts, alkali ammonium earth salts or a combination thereof.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: June 3, 2014
    Assignee: Phillips 66 Company
    Inventor: Roland Schmidt
  • Patent number: 8735319
    Abstract: Metal sorbent compositions for removing a metal contaminant from a fluid, such as removal of mercury from a coal-fired flue gas stream, and methods for making and using the same are provided. The subject metal sorbent compositions comprise an effective amount of an aqueous dispersion of microfine elemental sulfur particles on an adsorbent substrate, and optionally, a metal capture enhancing agent such as a halogen source and/or an oxidizing agent in an amount providing a metal capture enhancing effect on the metal sorbent composition. The subject metal sorbent compositions are prepared by drying an aqueous dispersion of microfine elemental sulfur particles on an adsorbent substrate, such as on a substrate of microfine particles of a refractory material and the like. Also provided are kits for use in preparing the subject compositions, and compositions produced by the methods. The subject compositions, kits and systems find use in a variety of different applications.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: May 27, 2014
    Assignees: St. Cloud Mining Company, Via Consulting, LLC
    Inventors: Francis A Via, William Ahrens, Daniel T Eyde
  • Patent number: 8734740
    Abstract: A process for removing one or more of arsenic and other contaminants from a synthetic gas feedstock comprising a sulfur compound. The synthetic gas feedstock is contacted with a composition having an active material. The active material includes one or more elements having an electronegativity from 1.6 to 2.0 on the Pauling scale. At least a portion of the active material is a sulfide phase.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Clariant Corporation
    Inventors: Justin X. Wang, Yeping Cai, William M. Faris
  • Patent number: 8733559
    Abstract: Zirconium phosphate particles are synthesized by providing a solution of zirconium oxychloride in an aqueous solvent, adding at least one low molecular weight, oxygen containing, monofunctional, organic additive to the solution, and combining this solution with heated phosphoric acid or a phosphoric acid salt to obtain zirconium phosphate particles by sol gel precipitation.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: May 27, 2014
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventor: Raymond June-Hin Wong
  • Patent number: 8728974
    Abstract: Sorbents for removal of mercury and other pollutants from gas streams, such as a flue gas stream from coal-fired utility plants, and methods for their manufacture and use are disclosed. Embodiments include brominated sorbent substrate particles having a carbon content of less than about 10%. Other embodiments include one or more oxidatively active halides of a nonoxidative metal dispersed on sorbent substrate particles mixed with activated carbon in an amount up to 30% by weight.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: May 20, 2014
    Assignee: BASF Corporation
    Inventors: Xiaolin David Yang, Pascaline Harrison Tran, Lawrence Shore
  • Publication number: 20140130410
    Abstract: A mineral wool batt for use as a plant growth medium, particularly in applications for growing vegetation (including plants) in which water retention and/or the avoidance of water run-off is of interest. The mineral wool batt has an absorbent layer which comprises needled mineral wool fibres; superabsorbent particles in the absorbent layer may be sandwiched between a denser upper and/or lower barrier layer(s) which assist in preventing their escape.
    Type: Application
    Filed: May 31, 2012
    Publication date: May 15, 2014
    Inventors: Jure Sumi, Gorazd Sebenik, Sasa Bavec, Gregor Kejzar
  • Patent number: 8715599
    Abstract: Methods and systems for reducing mercury emissions from fluid streams are provided herein. In embodiments, mercury is removed from flue gas streams by injecting a dry admixture of a porous mercury adsorptive material and at least one halide containing agent into the flue gas stream.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 6, 2014
    Assignee: Calgon Carbon Corporation
    Inventors: Nicholas R. Pollack, Richard A. Hayden
  • Patent number: 8709375
    Abstract: A method for preparing an oil extractor is provided. The method includes dissolving 0.1˜30% by weight of a potassium sulfate, 0.1˜30% by weight of a potassium persulfate, and 0.1˜30% by weight of a manganese sulfate in a solvent to form a solution; heating the solution to synthesize a compound by a microwave; cooling a temperature of the compound to a room temperature; and removing the solvent from the compound. An extractor prepared from the method is also provided.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 29, 2014
    Assignee: National Tsing Hua University
    Inventors: Yong-Chien Ling, Jen-Yu Liu
  • Publication number: 20140113811
    Abstract: Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 24, 2014
    Inventors: Nicholas P. STADIE, Brent T. FULTZ, Channing AHN, Maxwell MURIALDO
  • Publication number: 20140100296
    Abstract: A ceramic material, methods for adsorbing and converting carbon dioxide are provided. The ceramic material is represented by a chemical formula M1xM2yOz, wherein M1 is selected from a group consisting of Nd, Sm, Gd, Yb, Sc, Y, La, Ac, Al, Ga, In, Tl, V, Nb, Ta, Fe, Co, Ni, Cu, Ca, Sr, Na, Li and K; M2 is selected from a group consisting of Ce, Zn, Ti, Zr and Si; O represents oxygen atom; x<0.5, y>0.5, x+y=1.0, z<2.0; and the ceramic material has an adsorption capacity of not less than 20 ?mol/g for CO2 at 50° C.
    Type: Application
    Filed: January 16, 2013
    Publication date: April 10, 2014
    Applicant: National Taiwan University of Sciences and Technology
    Inventors: Sheng-Chiang Yang, Wei-Nien Su, Bing-Joe Hwang
  • Patent number: 8690991
    Abstract: Synthesis of a support material impregnated with silver sulfide provides a sorbent composition. Generating the silver sulfide relies on reaction of sulfur dioxide and one of hydrogen gas and hydrogen sulfide in presence of the support material following silver loading of the support material. Contacting a fluid stream with the sorbent composition removes heavy metal from the fluid stream.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 8, 2014
    Assignee: Phillips 66 Company
    Inventors: Roland Schmidt, Mark A. Hughes, John Michael Hays, Robert William Morton, Jon M. Nelson
  • Patent number: 8685351
    Abstract: Sorbents for removal of mercury and other pollutants from gas streams, such as a flue gas stream from coal-fired utility plants, and methods for their manufacture and use are disclosed. Embodiments include brominated sorbent substrate particles having a carbon content of less than about 10%. Other embodiments include one or more oxidatively active halides of a nonoxidative metal dispersed on sorbent substrate particles mixed with activated carbon in an amount up to 30% by weight. Further embodiments include physical blending of a flow modifier into the sorbent composition.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: April 1, 2014
    Assignee: BASF Corporation
    Inventors: Xiaolin D. Yang, Pascaline H. Tran, Lawrence Shore
  • Patent number: 8685157
    Abstract: A composition for binding environmentally-harmful substances in solid or semi-liquid state contains caustic magnesium oxide, non-ferrous metal salts as a hardener, non-ferrous metal oxides catalyzing formation of radial crystalline structures, and optionally water and other additives. A method of stabilization of environmentally-harmful substances binds these substances in the solid state or semi-liquid state in the composition containing caustic magnesium oxide, wherein the environmentally-harmful substances are supplemented by the composition containing caustic magnesium oxide, non-ferrous metal salts as hardener, non-ferrous metal oxides catalyzing formation of radial crystalline structures, and optionally water and other additives. A form of paste is obtained, followed by leaving the mixture for solidification and stabilization of the product.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: April 1, 2014
    Assignee: Ecotech Polska SP. Z O.O.
    Inventor: Emilia Bukala
  • Patent number: 8673811
    Abstract: A system for storing and retrieving elemental hydrogen. The system includes a housing, a hydrogen storage element enclosed within the housing and having a solid-state hydrogen storage material, and a control system for regulating storage of hydrogen into and retrieval of hydrogen from the storage material. At least a portion of the storage material is a porous matrix material having atoms of a first element capable of bonding with more than one hydrogen atom per atom of the first element, and atoms of a second element capable of molecularly bonding to atoms of the first element and hydrogen. Different atoms of the first element have bond sites available for different numbers of hydrogen atoms at different levels of bonding energy. The atoms of the second element are bonded to those atoms of the first element having bond sites for more than one hydrogen atom.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: March 18, 2014
    Inventor: Peter James Schubert
  • Patent number: 8668888
    Abstract: A composition containing titanium and iron compounds, in particular decomposition residue that accumulates as a production residue after the sulphate process during the production of titanium dioxide, is used as an adsorbing agent for inorganic and organic compounds, for example compounds containing phosphorus, arsenic, antimony, sulphur, selenium, tellurium, the cyano group or heavy metal. Toxic substances and pollutants may be removed from a fluid using the adsorbing agent.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: March 11, 2014
    Assignee: Sachtleben Pigment GmbH
    Inventors: Gerhard Auer, Holger Eickhaus, Horst Günnel, Werner Schuy, Bernd Proft, Maurits Van Den Berg
  • Patent number: 8664150
    Abstract: Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 4, 2014
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Nicholas R. Mann, Troy J. Tranter
  • Patent number: 8653239
    Abstract: The present invention relates to a method for isolating and/or purifying at least one polypeptide from a polypeptide-containing sample, characterized in that the sample is contacted with a boron carbide support material at a pH which allows the binding of the polypeptide to the boron carbide support material. Such isolating can, for example, be used to remove polypeptides from a sample or else to purify and/or to concentrate polypeptides. A matrix comprising a boron carbide support material for purification of polypeptides is further disclosed according to the invention.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: February 18, 2014
    Assignee: Qiagen GmbH
    Inventor: Christian Feckler
  • Patent number: 8652429
    Abstract: The invention provides an exhaust gas cleaning oxidation catalyst and in particular to an oxidation catalyst for cleaning the exhaust gas discharged from internal combustion engines of compression ignition type (particularly diesel engines). The invention further relates to a catalysed substrate monolith comprising an oxidizing catalyst on a substrate monolith for use in treating exhaust gas emitted from a lean-burn internal combustion engine. In particular, the invention relates to a catalysed substrate monolith comprising a first washcoat coating and a second washcoat coating, wherein the second washcoat coating is disposed in a layer above the first washcoat coating.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: February 18, 2014
    Assignees: Johnson Matthey Public Limited Company, Johnson Matthey Japan Godo Kaisha
    Inventors: Satoshi Sumiya, Lifeng Wang, Hanako Oyamada, Philip Gerald Blakeman, Michael Gavin Brown, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Andrew Peter Walker
  • Publication number: 20140045682
    Abstract: Filter media that includes activated carbon particulates and zinc oxide particles disposed on surfaces of the activated carbon particulates. The zinc oxide particles have an average crystallite dimension that is not greater than about 50 nm.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 13, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Lisa M. Croll, Jeffrey R. Dahn, Jock W.H. Smith, Jennifer V. Romero
  • Patent number: 8647506
    Abstract: A combination of acid zirconium phosphate and alkaline hydrous zirconium oxide are utilized as ion-exchange materials, for example, in sorbent dialysis. The combination provides for dialysate regeneration while maintaining constant and controlled levels of Na+, HCO3?, and pH.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: February 11, 2014
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventor: Raymond June-Hin Wong
  • Patent number: 8648008
    Abstract: In various embodiments, the present disclosure provides filtering compositions, their method of production, and methods for their use. In specific implementations, the filtering composition includes lanthanum and has a surface area of at least about 125 g/m2. In more specific examples, the filtering composition is free-flowing or has a moisture content between about 10 wt % about 30 wt %. Particular compositions include at least one of iron or magnesium. Some embodiments of the present disclosure provide filtering compositions that are resilient or leach-resistant.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: February 11, 2014
    Assignee: The Board of Regents of the Nevada System of Higher Education, on Behalf of the University of Nevada, Reno
    Inventors: Manoranjan Misra, Joseph Nanor
  • Publication number: 20140038816
    Abstract: Disclosed are methods for producing carbon, metal and/or metal oxide porous materials that have precisely controlled structures on the nanometer and micrometer scales. The methods involve the single or repeated infiltration of porous templates with metal salts at controlled temperatures, the controlled drying and decomposition of the metal salts under reducing conditions, and optionally the removal of the template. The carbon porous materials are involve the infiltration of a carbon precursor into a porous template, followed by polymerization and pyrolysis. These porous materials have utility in separations, catalysis, among others.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Applicant: Board of Trustees of the University of Alabama
    Inventors: Martin Bakker, Franchessa Maddox Sayler, Amy Grano, Jan-Henrik Smått
  • Patent number: 8640887
    Abstract: Zirconium phosphate particles are synthesized by providing a solution of zirconium oxychloride in an aqueous solvent, adding at least one low molecular weight, oxygen containing, monofunctional, organic additive to the solution, and combining this solution with heated phosphoric acid or a phosphoric acid salt to obtain zirconium phosphate particles by sol gel precipitation.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: February 4, 2014
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventor: Raymond June-Hin Wong
  • Patent number: 8637427
    Abstract: An adsorptive composition comprising a composition that contains at least one kind of fatty acid metal salt of any one of Ni, Cu or Co and ultrafine metal particles having a plasmon absorption over 300 to 700 nm. The adsorptive composition has an excellent effect of adsorbing both amine-type smelling components and sulfur-containing smelling components.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: January 28, 2014
    Assignee: Toyo Seikan Kaisha, Ltd.
    Inventors: Kazuaki Ohashi, Anzu Kasai, Daisuke Hiratsuka, Shigeru Suzuki
  • Publication number: 20140011034
    Abstract: A process for conversion of conventional sand granules (or other particulates) to a ‘core-shell’ adsorbent granules in which GO (or GO-f) coating imparts nano structural features on the surface of the sand granules (or other particulates). Such materials are useful in a variety of engineering applications such as water purification, catalysis, capacitors, proppants, casting, and magnetic shielding.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 9, 2014
    Applicants: William Marsh Rice University, NanoHoldings LLC
    Inventors: Mainak Majumder, Wei Gao, Pulickel Madhavapanicker Ajayan, Tharangattu Narayanan, Bhabendra K. Pradhan
  • Publication number: 20130340612
    Abstract: The present invention relates generally to compositions useful in adsorption and reactive processes comprising an adsorbent powder, such as a zeolite, and a binder mixed to form an agglomerate having a porosity of 0.30??p?0.42 and a N2 pore diffusivity Dp?3.5×10?6 m2/s and wherein the mean particle diameter of the crystalline zeolite powder is 10 ?m or less; the mean particle diameter of the binder is 0.10 dA or less, and the binder concentration is 10% or less expressed on a dry weight basis.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Inventors: MARK WILLIAM ACKLEY, Philip Alexander Barrett, Neil Andrew Stephenson, Eustathios S. Kikkinides
  • Patent number: 8598070
    Abstract: Improved CO2 sorbents comprised of a mesoporous silica functionalized with a polyamine are obtained by the in-situ polymerization of azetidine. Also included herein are processes utilizing the improved CO2 sorbents wherein CO2 is chemisorbed onto the polyamine portion of the sorbent and the process is thermally reversible.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: December 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lisa S. Baugh, David C. Calabro, Quanchang Li, Enock Berluche
  • Patent number: 8598071
    Abstract: Improved CO2 sorbents comprised of a mesoporous silica functionalized with a polyamine are obtained by the in-situ polymerization of azetidine. Also included herein are processes utilizing the improved CO2 sorbents wherein CO2 is chemisorbed onto the polyamine portion of the sorbent and the process is thermally reversible.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: December 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lisa S. Baugh, David C. Calabro, Quanchang Li, Enock Berluche
  • Patent number: 8598069
    Abstract: A composition which provides enhanced removal of aldehydes from the air of the building interior. The composition includes an amino silane and a multivalent metal carbonate and is especially suitable for adding to building product board substrates, such as acoustical ceiling panels and gypsum wallboards. The composition of the invention can be applied during manufacturing or can be post applied to already constructed room surfaces. The composition provides longevity of aldehyde removal heretofore unachieved.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: December 3, 2013
    Assignee: AWI Licensing Company
    Inventors: William Barrows, Gourish Sirdeshpande, Kenneth G. Caldwell, John R. Garrick, Michael Cook
  • Patent number: 8597407
    Abstract: The invention relates to adsorbents for removing impurities from water-comprising gas streams, in particular for use in fuel cell systems, wherein the adsorbents comprise oxides of elements selected from the group consisting of Cu, Fe, Zn, Ni, Co, Mn, Mg, Ba, Zr, Ce, La or combinations of these elements, have a copper oxide content of at least 30% by weight and have pore volumes of less than 0.175 ml·g?1 for pores having a radius of less than 20 nm.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: December 3, 2013
    Assignee: BASF SE
    Inventor: Stephan Hatscher
  • Publication number: 20130316018
    Abstract: The present invention relates to a new manufacture process for producing an iron containing phosphate adsorbent, in particular to a process for manufacturing and isolating an iron(III)-based phosphate adsorbent which exhibits valuable pharmacological properties.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Novartis AG
    Inventors: Daniel Kaufmann, Nicole Bieri, Ulrich Meier, Ranjit Thakur, Zdenek Zencak, Christa Hartmann, Andreas Meyer
  • Publication number: 20130316898
    Abstract: The invention relates to composite adsorbent materials, and in particular, to highly porous carbon-based composite materials for the adsorption and stabilisation of inorganic substances. The composite adsorbent material comprises a porous carbon carrier matrix and an adsorbent species, wherein the adsorbent species is precipitated within the pores of the carrier matrix. The invention extends to various uses of such adsorbent materials, for example in water purification, recovery of metals from waste streams and remediation applications, and where the adsorbant material is amended into soil, waste etc. for the purpose of breaking pollutant-receptor linkages.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicants: The Forestry Commission, The University of Surrey
    Inventors: Franciscus, Antonius, Anna, Maria De Leij, James Stratford, Helen Sneath, Tony Hutchings
  • Publication number: 20130303366
    Abstract: Metal sorbent compositions for removing a metal contaminant from a fluid, such as removal of mercury from a coal-fired flue gas stream, and methods for making and using the same are provided. The subject metal sorbent compositions comprise an effective amount of an aqueous dispersion of microfine elemental sulfur particles on an adsorbent substrate, and optionally, a metal capture enhancing agent such as a halogen source and/or an oxidizing agent in an amount providing a metal capture enhancing effect on the metal sorbent composition. The subject metal sorbent compositions are prepared by drying an aqueous dispersion of microfine elemental sulfur particles on an adsorbent substrate, such as on a substrate of microfine particles of a refractory material and the like. Also provided are kits for use in preparing the subject compositions, and compositions produced by the methods. The subject compositions, kits and systems find use in a variety of different applications.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Francis A. Via, William Ahrens, Daniel T. Eyde
  • Publication number: 20130298768
    Abstract: An improved air purification adsorbent is disclosed. The air purification adsorbent comprises titanium dioxide (TiO2) impregnated with zinc chloride (ZnCl2). The adsorbent may be used in air purification systems for removing ammonia from air streams. The nanocrystalline (amorphous) structure of the adsorbent results in a higher density of surface defects, higher surface area, and higher reactivity which, when combined with the synergistic effect of ZnCl2 and the nanocrystalline TiO2, provides a significantly longer breakthrough time of ammonia as compared with breakthrough time from unimpregnated nanocrystalline TiO2, the commercial (crystalline) TiO2 impregnated with ZnCl2, pure ZnCL2, and other commercially available adsorbents of ammonia. Other embodiments are described and claimed.
    Type: Application
    Filed: July 18, 2013
    Publication date: November 14, 2013
    Inventors: BRANDON W. WALKER, OLGA B. KOPER, SLAWOMIR WINECKI, CHRISTOPHER L. AIKENS, AMY ELIZABETH QUIRING, MACIEJ STANISLAW MATYJASZCZYK, MARTIN KELLER
  • Patent number: 8580381
    Abstract: An oxygen absorber for blending in a resin, comprising a mixed powder containing an iron powder, a metal halide and an alkaline substance, and having a half-peak width on a plane (110) of 0.20°/2? (Co—K?) or less as measured by a powder X-ray diffraction method, a specific surface area of 0.5 m2/g or more, and an average particle size of 1 to 40 ?m. The oxygen absorber effectively suppresses the generation of hydrogen, features excellent safety, exhibits excellent oxygen-absorbing capability and offers an advantage of high productivity due to the suppressed occurrence of coarse particles in the step of producing the oxygen absorber.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: November 12, 2013
    Assignees: Toyo Seikan Kaisha, Ltd, Dowa Electronics Materials Co., Ltd, Dowa IP Creation Co., Ltd
    Inventors: Youichi Ishizaki, Keiji Fukue, Kazuhiro Seno
  • Patent number: 8574890
    Abstract: The present disclosure describes an adsorbent and exemplary protocols for extracting nucleic acids, such as DNA and RNA, from complex matrices, such as stool samples and water samples. The adsorbent is activated charcoal coated with a material such as polyvinylpyrrolidone, dextran, or coconut flours. The adsorbent may be used in microcentrifuge spin columns, where it may be present as a slurry in a storage solution. The sample may be prepared by vortexing in a buffer solution, centrifuging, adding a protease to the supernatant, and passing the supernatant through a microcentrifuge spin column containing coated activated charcoal. The key components, including buffer, protease, and spin columns, may be packaged in a kit.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: November 5, 2013
    Assignee: Phthisis Diagnostics Corporation
    Inventors: Crystal R. Icenhour, Brian V. Loyal, Linh N. K. Nguyen
  • Publication number: 20130288055
    Abstract: Provided is a mesoporous particle having a flaky shape, having a single-layer structure, having a thickness of 0.1 ?m to 3 ?m, and having an average pore diameter of 10 nm or more. The mesoporous particle can be obtained by a production method including: feeding a metal oxide sol having a pH of 7 or higher and containing metal oxide colloidal particles as dispersoids and water as a dispersion medium, into a liquid containing a water-miscible solvent having a relative permittivity of 30 or lower (protic solvent) or of 40 or lower (aprotic solvent) at 20° C., and thereby forming a flaky aggregate of the metal oxide colloidal particles in the liquid; and subjecting the aggregate to treatment such as drying and heating, and thereby converting the aggregate into a flaky particle that is insoluble in water.
    Type: Application
    Filed: January 11, 2012
    Publication date: October 31, 2013
    Applicant: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Kazuhiro Doshita, Toshitaka Furuichi, Kosei Shimokawa