From Di- Or Higher Ester Of A Polycarboxylic Acid As Sole Reactant, Or From A Polycarboxylic Acid Or Derivative With A Compound Containing Two Or More Hydroxyl Groups Or Salts Thereof Patents (Class 528/272)
  • Patent number: 8481788
    Abstract: The present invention aims to provide a method for producing a polyalkylene oxide, which is capable of improving reduction in reactivity of a double metal cyanide complex catalyst in the case that a low molecular weight initiator is used, and producing the polyalkylene oxide with high productivity at low cost. The method for producing a polyalkylene oxide comprises carrying out a ring-opening addition reaction of an alkylene oxide with an initiator having at least one hydroxy group and having a molecular weight of not more than 300 per hydroxy group in the presence of a double metal cyanide complex catalyst in an organic solvent, wherein the organic solvent is used in an amount of 500 to 1,500 parts by weight relative to 100 parts by weight of the alkylene oxide used at the start of the reaction.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 9, 2013
    Assignee: Kaneka Corporation
    Inventors: Hidetoshi Odaka, Takuya Maeda, Kiyotaka Bito, Michihide Homma
  • Patent number: 8476378
    Abstract: Biodegradable aliphatic/aromatic copolyester comprising 50 to 60 mol % of an aromatic dicarboxylic acid and 40 to 50 mol % of an aliphatic acid, at least 90% of which is a long-chain dicarboxylic acid (LCDA) of natural origin selected from azelaic acid, sebacic acid, brassylic acid or mixtures thereof; and a diol component.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Novamont S.p.A.
    Inventors: Catia Bastioli, Tiziana Milizia, Giovanni Floridi, Andrea Scaffidi Lallaro, Giandomenico Cella, Maurizio Tosin
  • Patent number: 8476400
    Abstract: An oxygen-scavenging composition is provided that includes an oxygen-scavenging polymer and a catalyst. The oxygen-scavenging polymer, which in preferred embodiments is suitable for use in packaging articles, is a dendritic polymer having one or more oxygen-scavenging groups.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: July 2, 2013
    Assignee: Valspar Sourcing, Inc.
    Inventors: Richard D. Joslin, Jeffrey Niederst, Paul E. Share, Grant Schutte
  • Patent number: 8476364
    Abstract: Embodiments relate to a relatively rapid transesterification process including transesterifying condensation polymers such as polyethylene terephthalate (PET), or other polyesters used in commerce, with a modifying monomer mix containing other monomers to manufacture new polymers containing the pre-condensed moieties. The process preferably only involves transesterification as a reaction mechanism. The process preferably produces a rapid buildup of molecular weight and/or polymer uniformity by the high temperature transesterification of the condensation polymer with the modifying monomer mixture. The process can be performed in any suitable vessel including an extrusion line, and it has the advantage of greatly reduced cycle times over currently used condensation polymer utilization processes such as the recycling of PET into other materials.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: July 2, 2013
    Assignee: Beaulieu Group, LLC
    Inventor: Robert Keith Salsman
  • Patent number: 8470250
    Abstract: A polyester production process employing an esterification system that utilizes a horizontally elongated esterification vessel as an esterification reactor and/or a vapor-liquid disengagement vessel.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: June 25, 2013
    Assignee: Grupo Petrotemex, S.A. DE C.V.
    Inventor: Bruce Roger DeBruin
  • Patent number: 8470962
    Abstract: A method of preventing bubble formation during or after thermoforming polyester sheet comprising heating the polyester sheet to about 100-165° F. for at least about 1 hour prior to thermoforming the sheet.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: June 25, 2013
    Assignee: MYCONE Dental Supply Co., Inc.
    Inventor: David E. Nelson
  • Patent number: 8470926
    Abstract: The present invention relates to an unsaturated polyester resin comprising itaconate ester units as reactive unsaturation, wherein the resin comprises itaconate, citraconate and mesaconate ester units. Preferably, the resin comprises itaconate, citraconate and mesaconate ester units in an amount of from 40 to 90 mol % itaconate, from 2 to 30 mol % citraconate and from 5 to 40 mol % mesaconate in which 100 mol % is the total amount of itaconate, citraconate and mesaconate esters units.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: June 25, 2013
    Assignee: DSM IP Assets B.V.
    Inventors: Marian Henryk Szkudlarek, Johan Franz Gradus Antonius Jansen, Stefanus Jacobus Duyvestijn, Silvana Rensina Antonnietta Di Silvestre
  • Patent number: 8466237
    Abstract: Biodegradable aliphatic/aromatic copolyester comprising: A) an acid component comprising repeating units of: 1) 49 to 63 mol % of an aromatic carboxylic acid; 2) 51 to 37 mol % of an carboxylic acid, at least 50% of which is brassylic acid; B) a diol component; said copolyester being disintegrated according to the Standard ISO 20200 in 90 days.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: June 18, 2013
    Assignee: Novamont S.p.A.
    Inventors: Catia Bastioli, Tiziana Milizia, Giovanni Floridi, Andrea Scaffidi Lallaro, Giandomenico Cella, Maurizio Tosin
  • Patent number: 8461295
    Abstract: Methods for preparing active carbonate esters of water-soluble polymers are provided. Also provided are other methods related to the active carbonate esters of water-soluble polymers, as well as corresponding compositions.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: June 11, 2013
    Assignee: Nektar Therapeutics
    Inventors: Antoni Kozlowski, Jon McKannan, Samuel P. McManus
  • Patent number: 8461273
    Abstract: Biodegradable aliphatic/aromatic copolyester comprising 49 to 66 mol % of an aromatic polyfunctional acid; 51 to 34 mol % of an aliphatic acid, at least 70% of which is sebacic acid; and butandiol; and blends containing such copolyester.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: June 11, 2013
    Assignee: Novamont S.p.A.
    Inventors: Catia Bastioli, Tiziana Milizia, Giovanni Floridi, Andrea Scaffidi Lallaro, Giandomenico Cella, Maurizio Tosin
  • Patent number: 8450447
    Abstract: Polyesteramides prepared from decreased perfection diamide diester monomers. The polymers exhibit improved physical properties.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: May 28, 2013
    Inventors: William J. Harris, Peter S. Martin, Jerry E. White, Rene Broos
  • Patent number: 8450517
    Abstract: The invention is to provide a photosensitive compound suitable for a photoalignment method, a photosensitive polymer prepared from the compound, a photoaligning agent by using the compound and a liquid crystal alignment film prepared from the photoaligning agent. A photosensitive compound represented by formula (1): in formula (1), Y1 is a divalent group represented by formula (2-1) or (2-2); A1 is 1,4-phenylene or 1,4-cyclohexylene; Z1 is a single bond, —COO— or —OCO—; R1 and R2 are each independently hydrogen, fluorine or alkyl having 1 to 5 carbons; Q1 is independently a single bond or alkylene having 1 to 12 carbons; and n is 0 or 1. In formulas (2-1) and (2-2), W1 and W2 are each independently hydrogen, alkyl having 1 to 3 carbons or alkoxy having 1 to 3 carbons.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: May 28, 2013
    Assignees: JNC Corporation, JNC Petrochemical Corporation
    Inventors: Daisuke Ootsuki, Kazumi Nara, Junichi Inagaki, Mayumi Tanabe
  • Patent number: 8445625
    Abstract: A process for producing a polyether having at least one hydroxy group by subjecting a cyclic monomer to ring-opening addition polymerization to an initiator having a hydroxy group in the presence of a double metal cyanide complex catalyst, comprising the following steps: initial step: supplying the cyclic monomer in an amount of 5 to 20 mass percent of the initiator to a reaction system containing the initiator and the catalyst, to carry out reaction, wherein the reaction system temperature when supply of the cyclic monomer is started is from 120 to 165° C., and the maximum temperature of the reaction system after supply of the cyclic monomer is higher by from 15 to 50° C. than the temperature when supply of the cyclic monomer is started; and polymerization step: supplying the cyclic monomer to the reaction system after the initial step to carry out ring-opening addition polymerization.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: May 21, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Chitoshi Suzuki, Takeaki Arai, Masahito Furumi, Hideaki Tanaka, Takayuki Sasaki, Akio Horie
  • Patent number: 8440780
    Abstract: A wholly aromatic liquid crystalline polyester contains 2.0 to 15.0 mole percent of a hydroquinone-derived structural unit relative to a total amount of structural units. The wholly aromatic liquid crystalline polyester has sum of an amount (a) of terminal hydroxyl group and an amount (b) of terminal acetyl group in a range of 50 to 350 equivalents/(g·10?6), and has a ratio [(a)+(b)]/(c) of the sum of the amount (a) of terminal hydroxyl group and the amount (b) of terminal acetyl group to an amount (c) of terminal carboxyl group in a range of 1.05 to 2.00.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 14, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Mitsushige Hamaguchi, Kohei Miyamoto, Hideyuki Umetsu
  • Patent number: 8440215
    Abstract: A co-polyester which includes the reaction product of a polycondensation polyester and epsilon-caprolactone, wherein the polycondensation polyester comprises the reaction product of diglycolic acid and/or a derivative thereof and a diol. The co-polyester is injectable and absorbable into animal, such as human, tissue and can be used for facial cosmetic or reconstructive surgery of soft tissue. Another embodiment is directed to a method for preventing adhesion using a co-polyester comprising the reaction product of a polycondensation polyester and epsilon-caprolactone, wherein the polycondensation polyester comprises the reaction product of diglycolic acid and/or a derivative thereof and a diol, and the co-polyester comprises about 40 to 50% by weight of the polycondensation polyester based on the total weight of the co-polyester.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 14, 2013
    Assignee: Ethicon, Inc.
    Inventors: Sasa Andjelic, Tara Zabrosky
  • Patent number: 8440782
    Abstract: Method for producing polyesters using titanium atrane catalysts is disclosed. Also disclosed are methods for making the titanium atrane catalysts. The titanium atrane catalysts are useful as esterification and/or polycondensation catalysts, have similar activity, color and byproduct formation as conventional catalyst systems, but with reduced toxicity and regulatory concerns.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: May 14, 2013
    Assignee: Equipolymers GmbH
    Inventors: Jens-Peter Wiegner, Volkmar Voerckel, Dietmar Runkel, Rolf Eckert
  • Patent number: 8436131
    Abstract: Disclosed are phosphinic acid compounds of formula I, II or III where R1 and R1? are for instance straight or branched C1-C50alkyl, R2 is for instance straight or branched C22-C50alkyl, R3 and R3? are for instance straight or branched C1-C50alkyl, R4 is for instance straight or branched C1-C50alkylene and m is from 2 t 100. Also disclosed are polyester compositions comprising the compounds of formula I, II and III.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: May 7, 2013
    Assignee: BASF SE
    Inventors: Paul Odorisio, Stephen M. Andrews, Thomas F. Thompson, Si Wu, Paragkumar Thanki, Deepak M. Rane, Delina Joseph, Jianzhao Wang
  • Patent number: 8426533
    Abstract: The present invention provides a process for measuring and controlling chemical reactions that produce thermoplastic polymers by utilizing a stoichiometry correction during a reaction cycle to produce thermoplastic resins with desired properties. The thermoplastic polymer is made from at least one first monomer having a first reactive end group and at least one second monomer having a second reactive end group by reaction of the first reactive end group with the second reactive end group and has a glass transition temperature of greater than 130° C.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 23, 2013
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Roy Ray Odle, Vijay Gopalakrishnan, Narayan Ramesh, Albert Santo Stella, Lioba Maria Kloppenburg, David Bruce Hall
  • Publication number: 20130095422
    Abstract: A toner, including a crystalline resin as a binder resin, wherein the toner comprises a THF-soluble component in a weight-average molecular weight not less than 20,000, and has a 50% wettability not less than 20% by volume when subjected to a methanol wettability test.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 18, 2013
    Inventors: Atsushi YAMAMOTO, Shinya Nakayama, Masahide Yamada, Hideyuki Santo, Daiki Yamashita, Ryota Inoue
  • Patent number: 8420768
    Abstract: Higher diamondoid derivatives capable of taking part in polymerization reactions are disclosed as well as intermediates to these derivatives, polymers formed from these derivatives and methods for preparing the polymers.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 16, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jeremy E. Dahl, Robert M. Carlson, Shenggao Liu
  • Patent number: 8420769
    Abstract: Provide are a novel polyester resin that can be used for producing a molded article excellent in impact resistance, and a method of producing the polyester resin. The polyester resin has structural units represented by the following general formulae (1) and (2), and contains the structural unit represented by the general formula (2) at a content of 50.1 mol % or more to 99.9 mol % or less with respect to the total of the structural units represented by the general formulae (1) and (2). The method of producing a polyester resin, includes copolymerizing a furandicarboxylic acid or an ester thereof with ethylene glycol and diethylene glycol. In the formula, R1 represents an aromatic hydrocarbon group which may be substituted, or an aliphatic hydrocarbon group which may be substituted.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: April 16, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shinji Eritate
  • Publication number: 20130090451
    Abstract: The present invention relates to a polylactide resin having excellent heat resistance, a preparation method thereof, and a polylactide resin composition including the same. The polylactide resin is characterized by high polymerization activity owing to an organic coordinated metal catalyst even though it has a low catalyst content, and a molecular weight reduction due to thermal decomposition at high temperature and a rate of thermal decomposition including depolymerization are greatly suppressed by a low catalyst content and a low resin acidity, and thus provided is the polylactide resin having superior heat resistance.
    Type: Application
    Filed: June 21, 2011
    Publication date: April 11, 2013
    Applicant: LG Chem, Ltd.
    Inventors: Sung-Cheol Yoon, Seong-Woo Kim, Seung-Young Park, In-Su Lee
  • Patent number: 8414906
    Abstract: The present invention relates to oligoesters and their use for the creation of additives. Oligoester containing additives and/or oligoesters themselves may be used for formulating pharmaceutical preparations, cosmetics or personal care products such as shampoos and conditioners. These oligoesters are particularly useful for the creation of multi-purpose additives that can impart conditioning, long substantivity and/or UV protection. Individual oligoesters and oligoester mixtures are described.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 9, 2013
    Assignee: Croda, Inc.
    Inventors: Abel G. Pereira, Helena S. Barinova, Christopher Westergom
  • Patent number: 8415011
    Abstract: A breathable, heat-sealable composite film comprising first and second layers of polymeric material wherein (i) the polymeric material of the first layer comprises copolyester comprising monomeric units derived from one or more diol(s); one or more dicarboxylic acid(s); and one or more poly(alkylene oxide) glycol(s); and (ii) the second layer is a heat-sealable polymeric layer, and a process for the production thereof.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: April 9, 2013
    Assignee: DuPont Teijin Films U.S. Limited Partnership
    Inventors: Stephen William Sankey, Dominic Hoy, David Turner
  • Patent number: 8415510
    Abstract: The present invention provides novel synthesis's for obtaining a protecting group aminoxy PEG-6 linker from cost effective, and readily available starting materials and chemicals or modified polyethylene glycols. More specifically, a novel synthesis of obtaining a modified Boc-protected aminoxy PEG-6 linker was achieved so that said linker may be attached to a vector such as a peptide based fragment.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: April 9, 2013
    Assignee: GE Healthcare Limited
    Inventor: Torgrim Engell
  • Patent number: 8415496
    Abstract: The present invention relates to polyesters prepared from benzene, cyclohexene and cyclohexane compounds having carboxylic acid groups at the 1 and 4, and optionally the 2, positions, such as terephthalic acid or dimethyl terephthalates, and alkylene glycols, such ethylene glycol or 1,4-butane diol. The invention also relates to processes for preparing such polyesters. The invention also relates to such polyesters derived from starting materials derived from renewable resources.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: April 9, 2013
    Assignee: Amyris, Inc.
    Inventors: John W. Frost, Adeline Miermont, Dirk Schweitzer, Vu Bui, Edward Paschke, Douglas A. Wicks
  • Patent number: 8409596
    Abstract: This invention relates to deodorant compositions containing polytrimethylene ether glycol homo- and copolymers and/or polytrimethylene glycol ester(s) in a variety of physical forms. In at least one embodiment, the polytrimethylene ether glycol homo- and copolymers and/or polytrimethylene glycol ester(s) can be made from monomers (e.g., 1,3-propanediol) obtained from renewable resources, and can thus be more environmentally friendly than conventional deodorant compositions in terms of manufacture, use and disposal.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: April 2, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Hari Babu Sunkara, Raja Hari Poladi
  • Patent number: 8410245
    Abstract: Solid-state shear pulverization of semi-crystalline polymers and copolymers thereof and related methods for enhanced crystallization kinetics and physical/mechanical properties.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: April 2, 2013
    Assignee: Northwestern University
    Inventors: John M. Torkelson, Cynthia Pierre, Amanda Flores
  • Publication number: 20130078431
    Abstract: The present invention relates to: a composition for label base containing a polyester resin having a repeating unit formed by condensation of an aliphatic dicarboxylic acid and an aliphatic diol; a method for producing a label base containing developing the composition for label base to form a solid image having a label shape, transferring the solid image onto a pressure-sensitive adhesive layer side of a release paper, and fixing the transferred solid image on the pressure-sensitive adhesive layer by heat and pressure application into a film shape; and a label containing the label base and a label image provided thereon obtained by transferring a toner image to the label base and fixing the transferred toner image to the label base by heat and pressure application
    Type: Application
    Filed: September 12, 2012
    Publication date: March 28, 2013
    Applicants: CASIO COMPUTER CO., LTD., CASIO ELECTRONICS MANUFACTURING CO., LTD.
    Inventors: Tomohumi SANO, Toshiaki KANAMURA
  • Patent number: 8404754
    Abstract: A process for recycling a coloured thermoplastic material comprising an absorbed disperse dye comprises contacting the optionally comminuted coloured thermoplastic material with a caustic wash and recovering an at least partly colour-modified thermoplastic composition from the caustic wash.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: March 26, 2013
    Assignee: Colormatrix Europe Limited
    Inventors: Mark Frost, Fuquan Zeng, Victoria Sayer
  • Patent number: 8404755
    Abstract: Polyester compositions described herein have properties which are particularly suitable for extrusion blow molding (EBM). These properties relate primarily to the rate of crystallization and melt strength or melt viscosity. Articles prepared from the polyester compositions exhibit good clarity, aesthetics, and other physical properties. The polyester compositions also exhibit broad molecular weight distribution (MWD), resulting in improved processability and melt strength. The crystallization rate allows for good drying characteristics while also enabling the use of regrind. In addition, the compositions exhibit improved recyclability, such as in existing PET recycling streams. In one aspect, articles are prepared in an extrusion blow molding method by combining a dry first polyester copolymer component, a dry second polyester component, and a chain extender to form a feed material suitable for extrusion blow molding.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: March 26, 2013
    Assignee: PepsiCo, Inc.
    Inventor: Clarence Sequeira
  • Patent number: 8399598
    Abstract: The object of this invention is to provide a copolycarbonate that is excellent in heat resistance, thermal stability and moldability and that uses a renewable resource as a raw material. This invention is a copolycarbonate including 50 to 99 mol % of a carbonate constituent unit (1) of the following formula and 50 to 1 mol% of a carbonate constituent unit (2) derived from an aliphatic diol having a boiling point of 180° C. or higher under reduced pressure of 4×10?3 MPa.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: March 19, 2013
    Assignee: Teijin Limited
    Inventors: Toshiyuki Miyake, Masami Kinoshita
  • Publication number: 20130066031
    Abstract: A method of making such is carried out by (a) providing a reverse template for said article, said template comprising an elastomeric polymer such as PDMS; (b) providing a solution comprising a polymer dissolved in a first solvent; wherein said polymer is selected from the group consisting of polystyrene, poly(methyl methacrylate), epoxy, and aliphatic polyesters; and wherein said solvent comprises a lactone; (c) depositing said solution on said template; (e) removing said solvent from said template to form said article from said polymer on said template; and then (f) separating said template from said article.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 14, 2013
    Inventors: Nancy Allbritton, Christopher Sims, Yuli Wang
  • Patent number: 8389667
    Abstract: The invention relates to a partially crystalline polyethylene terephthalate having a degree of polymerization which is greater than 80, particularly greater than 100, produced from a diol component and a dicarboxylic acid component, wherein according to the invention the DSC melting point, when measured with a heating rate of 10° C./Min during the first passage and second passage, is less than the melting temperature (Tm) of a comparable standard polyethylene terephthalate which is dependent upon the comonomer content.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: March 5, 2013
    Assignee: Buhler AG
    Inventors: Andreas Christel, Brent Allan Culbert, Theodor Jürgens
  • Patent number: 8389666
    Abstract: The disclosed is a copolymer having a formula as: R1 is a combination of naphthalene, phenylene, butyl, and hexyl. R2 is a combination of ethylene, cyclohexlene, 2-methylpropyl, and neopentyl. n is a number of 1500 to 3000. The copolymer has a transparency greater than 80%, a thermal resistance greater than 100° C., a moisture absorption less than 0.5 wt %, and yellowing under UV/climate resistance greater than 1000 hours.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: March 5, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Hsiang Lin, Ya-Lan Chuang, Pei-Jung Tsat, Shu-Ling Yeh, Chin-Lang Wu, Cing-Jiuh Kang, Hsin-Ching Kao
  • Publication number: 20130053534
    Abstract: A process for distilling an aqueous NPG mixture comprising NPG, a tertiary amine, water and the adduct of tertiary amine and formic acid (amine formate), said distillation being performed in a distillation column, which comprises drawing off a gaseous stream in the upper region of the column and feeding it to two condensers connected in series, the first condenser being operated in such a way that a portion of the gaseous stream is condensed in the first condenser and the second condenser being operated in such a way that the uncondensed portion of the gaseous stream is essentially fully condensed in the second condenser, the condensed stream from the first condenser being recycled fully or partly as reflux into the column.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 28, 2013
    Applicant: BASF SE
    Inventors: Helmut Kronemayer, Kai Stehmeier, Ralf Edinger, Stefan Rittinger, Michael Steiniger
  • Patent number: 8378057
    Abstract: To provide a polyether ester block copolymer which has surface hardness suitable to be applied to a structural member and excellent in sound deadening quality and tribological property, a polyether ester block copolymer of the present invention comprises (a) aromatic dicarboxylic acid unit, (b) 1,3-propanediol and/or 1,4-butanediol unit and (c) long chain diol unit mainly including polyoxytrimethylene glycol, wherein the durometer hardness (type D), measured according to the principle of the method described in JIS K6253, is 40 or larger and 78 or smaller.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: February 19, 2013
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Katsushi Yamaoka
  • Patent number: 8378056
    Abstract: New polyols; oligomers, and polymers made from the polyols; and binders made from the new polyols, oligomers, or polymers that can be used in binders, where the binders typically include one or more polyols, and a polyfunctional acid or a polyfunctional nitrile.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: February 19, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Herman P. Benecke, Daniel B. Garbark, Alex W. Kawczak, Michael C. Clingerman
  • Patent number: 8372943
    Abstract: Provided herein are isosorbide-based bisphenol polymer structural units and methods of making the same. These structural units may be polymerized with one or more other types of structural units to form polymers, such as polycarbonates.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: February 12, 2013
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventor: Jean Francois Morizur
  • Publication number: 20130030075
    Abstract: Polycondensates with long-chain linear methylene sequences, their production, a method for producing linear odd-numbered C>20 ?,?-dicarboxylic acids and derivatives thereof and applications of the polycondensates are described.
    Type: Application
    Filed: January 24, 2011
    Publication date: January 31, 2013
    Inventors: Stefan Mecking, Dorothee Quinzler
  • Patent number: 8362198
    Abstract: There is provided a method for producing a resin particle capable of unprecedentedly realizing both excellent heat resistant keeping property and melting property. The present invention is a method for producing a resin particle (X) comprising the step of treating a resin particle (B) containing a resin (A) composed of a crystalline part (a) containing, as an essential constitutional component, a polyester (p1) not containing an aromatic ring or a polyester (p2) containing an aromatic ring, and produced by polycondensation of a polyol component and a polycarboxylic acid component, and a noncrystalline part (b), with liquid or supercritical carbon dioxide (C), and removing (C), wherein a heat of fusion measured by differential scanning calorimetry (DSC) of the obtained (X) satisfies the following relational formula (1): 0?H2/H1?0.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 29, 2013
    Assignee: Sanyo Chemical Industries, Ltd.
    Inventors: Yasuhiro Shindo, Sho Kim
  • Patent number: 8362197
    Abstract: There is provided a method for producing a resin particle capable of unprecedentedly realizing both excellent heat resistant keeping property and melting property. The present invention is a method for producing a resin particle (X) comprising the step of treating a resin particle (B) containing a resin (A) composed of a crystalline part (a) containing, as an essential constitutional component, a polyester (p1) not containing an aromatic ring or a polyester (p2) containing an aromatic ring, and produced by polycondensation of a polyol component and a polycarboxylic acid component, and a noncrystalline part (b), with liquid or supercritical carbon dioxide (C), and removing (C), wherein a heat of fusion measured by differential scanning calorimetry (DSC) of the obtained (X) satisfies the following relational formula (1): 0?H2/H1?0.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: January 29, 2013
    Assignee: Sanyo Chemical Industries, Ltd.
    Inventors: Yasuhiro Shindo, Sho Kim
  • Patent number: 8362189
    Abstract: Provided are a catalyst mixture and also a method for the production of a polyester melt with high viscosity, the granulate obtained therefrom having an intrinsic viscosity of >0.70 dl/g and an L* color >70 and the b* color being between ?5 and +5. The catalysts being used during the production are not based on heavy metals but on titanium compounds. Also no components of catalysts based on heavy metal are added. The granulate can be processed further in any way, e.g. to form bottles, containers, films, foils or fibers.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: January 29, 2013
    Assignee: Uhde Inventa-Fischer GmbH
    Inventor: Matthias Schoennagel
  • Patent number: 8354476
    Abstract: The present application is directed to biodegradable polymers, compositions, including microspheres and nanospheres, formed of such polymers, and methods of using such polymers and compositions. In certain embodiments, the subject polymer compositions include therapeutic agents, optionally providing sustained release of the encapsulated agent after administration to a patient.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 15, 2013
    Assignee: Kala Pharmaceuticals, Inc.
    Inventors: Justin Hanes, Jie Fu
  • Publication number: 20130011631
    Abstract: A laminate film including at least one bio-based polyester layer. The polyester layer has a radiocarbon (14C) content of at least 21.5 pMC. The laminate film may further have additional layers such as a second bio-based polyester resin-containing layer of at least about 21.5 pMC radiocarbon content, a metal layer, or combinations thereof.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Applicant: TORAY PLASTICS (AMERICA), INC.
    Inventors: Stefanos L. SAKELLARIDES, Keunsuk P. CHANG
  • Publication number: 20130012915
    Abstract: A connecting system for components through which fluid flows for medicine and medical technology, in particular infusion or transfusion tubes, selector valves, multi-way distributors, injection equipment such as needles, accesses or the like, and combinations thereof, comprising a female tubular receptacle, which comprises an inner receiving section and an outer first fixing section, and/or a male tubular plug element for reception in the female receiving section and an outer second fixing section, which cooperates with the first fixing section for fixing the connecting system. The surfaces of the connecting system that come in contact with the fluid are produced at least in some sections from amorphous copolyester. Use of amorphous copolyester for producing a corresponding connecting system.
    Type: Application
    Filed: January 24, 2011
    Publication date: January 10, 2013
    Inventors: Hans Juergen Hopf, Norbert Kassai, Alexander Hopf, Michael Hopf
  • Publication number: 20130012612
    Abstract: The present invention pertains to a process for producing three-dimensional, self-supporting and/or substrate-supported formed pieces or structures on surfaces by means of site-selective solidification of a liquid to pasty, organic or organically modified material within a bath consisting of this material by means of two- or multiphoton polymerization, whereby the material has at least one compound that has both an organic radical polymerizable via two-photon or multiphoton polymerization and a biocompatible, biodegradable or bioresorbable group, and/or wherein the bath material additionally contains groups or radicals, which are available for an inorganic crosslinking or which are already inorganically crosslinked, providing that both an organic radical polymerizable via two-photon or multiphoton polymerization and a biocompatible, biodegradable or bioresorbable group must be contained in the material.
    Type: Application
    Filed: February 8, 2011
    Publication date: January 10, 2013
    Inventors: Ruth Houbertz-Krauss, Matthias Beyer, Joern Probst, Thomas Stichel
  • Patent number: 8349354
    Abstract: The present invention is directed to a hemostatic composite structure having a bioabsorbable fabric or non-woven substrate having at least two major oppositely facing surface areas and a continuous non-porous polymer-based film that is laminated on one major surface of said substrate. The bioabsorbable fabric substrate can be an oxidized polysaccharide and/or the non-woven substrate can be made from bioabsorbable, non-cellulosic derived polymers. The continuous non-porous polymer based film can be a bioabsorbable polymer. The present invention also relates to a method for providing hemostasis by applying a composite structure described herein onto a wound site in need of a hemostatic device wherein a major surface of the substrate without the film layer is applied onto the wound site.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: January 8, 2013
    Assignee: Ethicon, Inc.
    Inventor: Sasa Andjelic
  • Patent number: 8349991
    Abstract: The present invention relates to amphiphilic polymers, and micelles and compositions comprising the same, and their use in a variety of biological settings, including imaging, targeting drugs, or a combination thereof for diagnostic and therapeutic purposes.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: January 8, 2013
    Assignees: Massachusetts Institute of Technology, University of Massachusetts Lowell
    Inventors: Clark K. Colton, Arthur Watterson, Rajesh Kumar, Virinder S. Parmar, Robert Fisher, Jayant Kumar
  • Patent number: 8349982
    Abstract: Macromonomers capable of both physical crosslinking and chemical crosslinking. The combination of chemical crosslinking and physical crosslinking provides the ability to generate rapidly gelling hydrogels for many different applications. Moreover, the macromonomers may incorporate functional groups that allow for two different gelation mechanisms—thermal gelation and ionic gelation—further improving mechanical stability of hydrogels formed from the disclosed macromonomers.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: January 8, 2013
    Assignee: William Marsh Rice University
    Inventors: Antonios G. Mikos, Michael C. Hacker