Reagent tube

- HandyLab, Inc.

A reagent tube configured with a stellated shaped pattern, on its bottom interior surface, configured to facilitate complete or near-complete withdrawal of fluid from the tube, via a pipette tip. The reagent tube may be used for transporting reagents and for carrying out processing operations on biological samples with the reagents, such as preparing polynucleotides extracted from the sample for amplification.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/178,557, filed on Jul. 23, 2008 which is a continuation-in-part of each of U.S. patent application Ser. No. 12/218,498, filed on Jul. 14, 2008, U.S. patent application Ser. No. 12/218,416, filed on Jul. 14, 2008, and U.S. patent application Ser. No. 12/173,023, filed Jul. 14, 2008, each of which claims the benefit of priority to U.S. provisional Patent Application Ser. No. 60/959,437, filed Jul. 13, 2007. All of the above patent applications are incorporated herein by reference in their entireties.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The technology described herein generally relates to reagent tubes designed to facilitate pipetting of small volumes of liquid from within, and more particularly to reagent tubes that are used in extracting microfluidic quantities of polynucleotides in solution following extraction from biological samples.

2. Description of the Related Art

The medical diagnostics industry is a critical element of today's healthcare infrastructure. At present, however, diagnostic analyses no matter how routine have become a bottleneck in patient care. There are several reasons for this. For example, many diagnostic analyses can only be done with highly specialist equipment that is both expensive and only operable by trained clinicians. Such equipment is found in only a few locations, and often there is just one in any given urban area. This means that most hospitals are required to send out samples for analyses to these locations, thereby incurring shipping costs and transportation delays, and possibly even sample loss or mishandling.

Understanding that sample flow breaks down into several key steps, it would be desirable to consider ways to automate or make efficient as many of these as possible. In one key step, a biological sample, once extracted from a patient, must be put in a form suitable for a processing and detection regime that typically involves using PCR to amplify a vector of interest. Once amplified, the presence or absence of the vector in the sample needs to be determined unambiguously. Preparing samples for PCR is currently a time-consuming and labor intensive step, though not one requiring specialist skills, and could usefully be automated. By contrast, steps such as PCR and nucleotide detection have customarily only been within the compass of specially trained individuals having access to specialist equipment.

Sample preparation is labor intensive in part because of the number of reagents required, and the need for multiple liquid transfer (e.g., pipetting) operations. Furthermore, a trend towards portable diagnostic instruments, or those that can be easily installed in almost any healthcare setting (without requiring a dedicated facility), has meant that the instruments are configured to analyze very small (microfluidic or smaller) volumes of polynucleotide-containing solutions. With such volumes, it becomes important to minimize sample loss—such as from liquid transfer operations—during sample preparation. Even a loss of a very small fraction of a processing volume could result in loss of a significant number of copies of target polynucleotide and thereby result in a concomitant loss of amplification and detection sensitivity and—potentially—a false negative diagnosis. A major source of loss of liquid samples and solutions is from incomplete pipetting, where a pipette attempts to suck an entire quantity of fluid from a container, but where some fraction of that quantity is retained in the container, such as on the interior surfaces.

Various interior surface features in reagent tubes have been described elsewhere. U.S. Pat. No. 4,466,740 describes an array of reaction vessels on a plate, wherein each vessel has a conical interior lower surface that is stepped so that a number of concentric ridges of increasing diameter span between the bottom of the vessel and the vessel at its maximum width. Such a shape of interior surface is likely to present an increased surface area on which solution may remain during pipetting, and are unlikely to effectively channel the solution towards the location of a pipette tip. U.S. Pat. No. 6,143,250 (the '250 patent) describes liquid storage vessels having “ditches” in their lower interior surfaces that follow the interior surface of an inclined edge of the vessel. Although the '250 patent suggests that these grooves can be present in numbers of greater than two, and arranged radially with respect to the center of the vessel, such a configuration has at least the drawback that it would require a complex manufacture of the vessel, and are therefore limited to particular vessels, not necessarily those that are used in routine laboratory processes, such as biological sample preparation.

There is therefore a need for a method and apparatus of carrying out sample preparation on samples, so that loss of liquid volumes during liquid transfer is reduced. Such methods and apparatus could also find application to liquid transfer operations used in other fields, where mitigation of sample loss during work-up is important.

The discussion of the background herein is included to explain the context of the inventions described herein. This is not to be taken as an admission that any of the material referred to was published, known, or part of the common general knowledge as at the priority date of any of the claims.

Throughout the description and claims of the specification the word “comprise” and variations thereof, such as “comprising” and “comprises”, is not intended to exclude other additives, components, integers or steps.

SUMMARY OF THE INVENTION

The technology described herein includes a reagent tube comprising a pattern of ridges extending radially and centered at the bottom of the interior surface of the tube. Also contemplated are radially oriented patterns of grooves on the bottom interior surface of the tube.

The reagent tube described herein typically comprises a wall having an upper portion, usually cylindrical, and a lower portion, usually conical or tapering towards a bottom, and has an exterior surface and an interior surface. The pattern of ridges is typically star-shaped and is disposed on the interior surface of the tube, at the bottom of the tube.

The technology described herein further includes methods of using a reagent tube, as described herein, such as a method of removing all, or substantially all, of a liquid from the tube by use of a pipette tip. The pipette tip may be removably attached to a manually, such as hand-operated, pipette, or may be removably attached to an automatic dispensing apparatus.

The reagent tube herein typically finds use in sample preparation, that sequence of processing steps by which polynucleotide molecules, such as DNA and/or RNA, present in a biological sample (such as blood, sputum, semen, or urine), are extracted from their cellular matrix, and placed in a form suitable for amplification, such as by PCR, and subsequent detection as part of a diagnostic test.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B show a stellated feature on the interior of a reagent tube, in cross-sectional (FIG. 1A) and top plan (FIG. 1B) views.

FIGS. 2A, 2B, and 2C show a stellated feature on the interior of a reagent tube, in cross-sectional plan (FIG. 2A), top plan (FIG. 2B), and close-up (FIG. 2C) views.

FIG. 3 shows a sequence of pipetting operations in conjunction with a reagent tube having a stellated feature.

FIGS. 4A, 4B, 4C, and 4D show an embodiment of a reagent tube having a stellated feature as further described herein, in cross-sectional (FIG. 4A), top plan (FIG. 4B), side plan (FIG. 4C), and close-up (FIG. 4D) views.

DETAILED DESCRIPTION OF THE INVENTION

Reagent Tubes

The reagent tubes described herein are designed to facilitate pipetting of small volumes of liquid from within, such as to transfer the liquid to another container, with very little attendant loss of liquid.

The reagent tubes can be used in extracting microfluidic quantities of polynucleotides in solution following isolation of such polynucleotides from biological samples, such as in conjunction with a holder of various reagents as described in U.S. Patent Publication. No. 2009-0129978 A1, filed by ExpressMail on Jul. 14, 2008 (and entitled “Reagent Holder, and Kits Containing Same”, in the name of Wilson, et al.), and an automated pipette head and dispenser as described in U.S. Patent Publication No. 2009-0130745 A1, filed by ExpressMail on Jul. 14, 2008 (and entitled “Integrated Apparatus for Performing Nucleic Acid Extraction and Diagnostic Testing on Multiple Biological Samples”, in the name of Williams, et al.), both of which are incorporated herein by reference. Exemplary procedures for sample preparation from polynucleotide-containing biological samples are found in U.S. Patent Publication Nos. 2010-0009351 A1, and 2009-0131650 A1, both filed Jul. 11, 2008, and incorporated herein by reference.

However, reagent tubes consistent with the embodiments described herein are not exclusively for use with automated pipetting apparatus but also can be used in conjunction with manual processing, such as pipetting by hand.

Tubes consistent with the embodiments herein may have a variety of volumes, typically in the range 0.1 ml to 0.65 ml, such as 03 ml, 0.6 ml, or in the range 1.5-2.0 ml, or may have intermediate, or greater, volumes than those specifically delimited. They may also have a variety of shapes such as conical, barrel-shaped (wider at a middle portion than at top and bottom portions), or cylindrical with a tapered or conical bottom. Usually, reagent tubes are circular in cross-section, but other cross sections are possible and consistent herewith, and include but are not limited to: rectilinear, such as square or rectangular, like a cuvette; polygonal, such as pentagonal or hexagonal; and oval. Ordinarily, the tubes have a unitary construction, though in certain instances may be constructed from two or more parts fused or otherwise joined together as applicable. Typically, the tubes are configured to accept a pipette tip for deposit and/or retrieval of fluids.

The features of the reagent tubes as described herein may be found in or on the interior surfaces of many fluid containing vessels, including, but not limited to: vessels configured to carry out reactions, such as PCR tubes; arrays, such as microarray plates, having many vessels arranged in a single substrate; snap-in tubes, such as tubes that contain reagents and are shipped separately or loosely, but when used are snapped into a supporting member such as a rack or a holder, disposable tubes; re-usable tubes; tubes that are sealed to limit contact of their contents with air and/or moisture during storage or transport; tubes that are sealable and re-sealable, such as having a removable, or flip-up cap; tubes that can be labeled for a single use, or labeled for multiple uses; tubes that are made of a clear, or a translucent, or an opaque material, depending upon, e.g., photosensitivity of the contents; tubes that contain liquid reagents such as those that are directly pipetted out of the tubes; and tubes that contain solid, e.g., particulate, or lyophilized, reagents that are constituted into liquid form prior to pipetting, such as by dissolving upon contact with a liquid such as an aqueous buffer solution; and tubes that are made of plastic, or glass, or quartz.

As described elsewhere herein, the reagent tubes are configured to have a star-shaped—also referred to as stellated—pattern (see FIGS. 1A and 1B) on their bottom interior surfaces. Still other tubes for uses referenced herein, as well as for other uses not herein described, can be similarly configured.

The design of the star shaped pattern is important, especially when present in a reagent tube used for recovery of DNA or RNA present in very small quantities (low copy numbers) in a clinical sample, or an extract therefrom. The star-shaped pattern ensures that when a fluid is withdrawn from the tube, a pipette tip can be bottomed out in the tube and still be able to withdraw the entire, or almost the entire fluid from the tube, as shown in FIG. 3, further described herein. This is important because, when working with such small volumes, and when target DNA can be present in very few copies, sample loss due to imperfections of pipetting is to be minimized to every extent possible. Additionally, the stellated pattern should be designed to minimize surface area as well as dead-end grooves that tend to have two undesirable effects: to trap liquid, and to increase undesirable retention of molecules such as polynucleotides by adsorption.

Accordingly, the stellated pattern should enable pipetting of most of the liquid (residual volume<1 microliter) when used with a pipette bottomed out with the bottom of the tube. Although it is not necessary for a pipette tip to bottom out in the reagent tubes described herein, an advantage of it so doing is that a very clear indication of the position of the tip during pipetting is obtained and thereby a consistent positioning can be accomplished across multiple pipetting operations. A requirement that a pipette tip be positioned at some intermediate distance above the bottom of the tube in order to maximize pipetting efficiency, would be harder to verify and to make consistent and reproducible over large numbers of operations even when using an automated pipetting device.

The design of the stellated or star-shaped pattern can be optimized to maximize the flow rate of liquid through various gaps in the pattern that lie between a bottomed out pipette, such as a p1000 pipette, and the star pattern. It would be understood that, although the description herein pertains to pipettes and pipette tips typically used in sample preparation of biological samples, the principles and detailed aspects of the design are as applicable to other types of pipette and pipette tip, and may be so-adapted.

FIG. 1A shows a cross sectional perspective view of a reagent tube 2200 having side wall 2201 and bottom portion 2202. Interior surface 2204 of the bottom portion is visible. An exemplary star-shaped feature 2203 is shown in part, as three apical portions, which may be grooves or may be ridges raised above the lower interior surface 2204. Typically, however, the star-shaped pattern is present as a raised portion on the lower interior surface of the tube.

FIG. 1B shows a plan view of the reagent tube of FIG. 1A, looking down its central axis from the top. Thus wall 2201 in FIG. 1B is shown at its widest diameter, typically corresponding to the top of tube 2200. The exemplary star pattern 2203 shown in FIG. 1B in plan view resembles a “ship's wheel” and comprises a center 2209, a circular ring 2207 centered on center 2209, and eight radial segments 2205 configured as radial ridges or grooves. Each radial segment meets the other radial segment at center 2209, and has a radial end 2206, also referred to as an apex or vertex. Star pattern 2203 in FIG. 1B has eight radial segments, but it would be understood that a star pattern having fewer or a greater number of radial segments, such as 3, 4, 5, 6, 7, 9, 10, or 12, would be consistent with the design herein. The number of radial segments of the star should be a minimum consistent with effective liquid pipetting and ease of manufacture. The radial segments should also be spaced apart enough not to trap the tip of any of the pipette tips to be used in the various liquid handling applications.

Center 2209 is typically positioned coincidentally with the geometric center of the bottom of reagent tube 2200. Such a tube is typically circular in cross-section, so that identifying its geometric center (e.g., at a crossing point of two diameters) is normally straightforward. Center 2209 may be larger than shown in FIG. 1B, such as may be a circular cutout or raised portion that exceeds in diameter the region formed by the meeting point of radial segments 2205.

Ring 2207 is an optional feature of star-shaped pattern 2203. Typically ring 2207 is centered on center 2209, and typically it also has a dimension that corresponds to the lower surface or caliber of a pipette tip. Thus, when a pipette tip ‘bottoms out’ in the bottom of reagent tube 2200, the bottom of the pipette tip rests in contact with ring 2207. Ring 2207 is thus preferably a cut-out or recessed feature that can accommodate the pipette tip and assist in guiding its positioning centrally at the bottom of the tube. Ring 2207 may alternately be a raised or ridge-like feature, according to manufacturing or other preference. In other embodiments more than one, such as 2, 3, or 4, concentric rings 2207 are present, so that pipette tips of varying calibers can be used with the same reagent tube, and each can be suitably positioned, while pipetting, in contact with one of the respective rings.

In the embodiment shown in FIG. 1B, the segments are narrower (occupy a smaller radial angle) than the gaps between them. In other embodiments, the radial segments may be proportionately wider than the gaps between them. When configured as grooves, radial segments 2205 are separated by ridges (occupying the space in between adjacent grooves). In other embodiments, the grooves and ridges that separate them are of equal widths at each radial distance from the center. It may be more appropriate to describe the stellated features as having ridges or • grooves, depending on which occupies the cumulative greater spatial extent.

FIG. 2A shows in cross-sectional plan view a reagent tube 2200 having another exemplary stellated feature 2203, wall 2201, and sealed top 2208. The tube has a cylindrical upper portion 2220, and a tapering lower portion 2202. Shown as a dashed line 2230 in FIG. 2A is a central axis of symmetry of the tube, about which the tube is rotationally symmetric. FIG. 2B shows a top plan view of the reagent tube in FIG. 2A looking down its central axis towards stellated feature 2203 centered in the bottom of the tube. The ring denoted 2202 in FIG. 2B denotes an intermediate diameter of lower portion 2202. Stellated feature 2203 is shown in further detail in FIG. 2C as having 6 radial segments, three adjacent ones of which are labeled 2205-1, 2205-2, and 2205-3, respectively. The axis labeled.X-X′ corresponds to the viewpoint looking into the plane of the page in FIG. 2A. Thus, segment 2205-2 is shown as being in the middle of the stellated feature, and segments 2205-1 and 2205-3 are shown in cross-section, in FIG. 2A.

Characteristic features of the stellated pattern in FIGS. 2A-C include the following: segments 2205 may be configured as grooves or as ridges but are typically ridges, as shown in FIG. 2A; segments 2205 do not meet at center 2209 of the stellated pattern so that, where segments 2205 are ridges, a pipette tip that rests thereupon when pipetting is resting above a space at center 2209; there is no ring corresponding to ring 2207 in FIG. 1B; apices 2206 of segments 2205 are squared off but may be rounded in shape, or may be pointed; segments 2205 have interior apices 2222 that are also rounded, but may be pointed or squared off; and segments 2205 have, in cross-sectional view, rounded or flat bottoms if grooves, or rounded or flat upper surfaces if ridges; segments 2205 may be beveled so that they are narrower in their upper portion than at their lower portion, if ridges, or so that they are narrower in their lower portion than at their upper portion, if grooves.

A star pattern 2203 as described herein is configured to have dimensions that give an optimal flow-rate of liquid out of the reagent tube into a suitably positioned, such as a bottomed-out, pipette tip. The star pattern in FIGS. 1B and 2B is shown as being significantly smaller in diameter than the diameter of the tube at its widest point. The star pattern may have, in various embodiments, a diameter (measured from center 2209 to apex 2206 of a ridge or groove 2205) that is from 1-10%, or from 5-20%, or from 10-25%, or from 15-30%, or from 20-40%, or from 25-50%, or from 30-50%, or from 40-60%, or from 50-75%, or from 65-90% of the maximum diameter of the reagent tube.

The radial segments are typically rounded in their lower surfaces, such as semi-circular in cross section, or having a curved surface that is in cross section an arc of a circle, ellipse, parabola, or hyperbola, but may also be V-shaped. The segments may also be trapezoid in cross-section, such as having a wider upper portion than the bottom, which is flat, the upper portion and the bottom being connected by sloping walls.

In some embodiments, for ease of manufacture, the radial segments end on the same level as one another in the bottom of the tube. Thus the apices 2206 are all disposed on the circumference of a circle whose plane lies perpendicular to the cylindrical axis of the tube. In other embodiments, the segments do not all end on the same level. For example, apices 2206 may alternately be on different levels, and thus the apices are alternately disposed on the respective circumferences of two concentric circles that occupy different, parallel, planes in space from one another.

Radial segments 2205 are shown in FIGS. 1B and 2C as having equal lengths (as measured from center 2209 to apex 2206). This need not be so. In alternative embodiments, segments may have different lengths from one another, for example, as alternating lengths on alternating segments, where there are an even number of segments. Furthermore, apices 2206 may be rounded, rather than pointed, or may be squared off. Typically radial segments 2205 each have a length that is longer than the radius of the inlet hole in the largest pipette tip that is used in connection therewith. Typically radial segments 2205 have a width that is narrower than the diameter of the inlet hole in the largest pipette tip that is used in connection therewith, but it need not be the case.

Typically the radial segments taper uniformly in width and height or depth from center 2209 to each respective apex 2206. Still other configurations are possible, such as a segment that follows a constant width, or depth, out to a particular radial extent, within 30-60% of its length such as near its midpoint of length, and then narrows and/or becomes shallower towards its apex 2206. Alternatively, a radial segment may start narrow at center 2209, widen to a widest region within 30-60% of its length, such as near its midpoint of length, and then narrow towards its apex. Still other possibilities, not described herein, are consistent with the stellated pattern of the reagent tubes herein.

In a 0.3 ml tube, the radius of the star-pattern formed from the radial segments, measured as the shortest distance from center 2209 to an apex 2206, is typically around 0.5 mm, but may be from 0.1-1 mm, or from 0.3-0.7 mm, or from 0.5 to 1.5 mm, or from 0.7 to 2 mm.

In a 0.3 ml tube, the width of each radial segment 2205 at its widest point is typically around 50 microns, and the width typically tapers uniformly from a widest point, closest to or at center 2209, to a narrower width at the apex 2206.

In a 0.3 ml tube, the height (for a ridge) or depth (for a groove) of a segment at the deepest point is typically around 25-50 microns and the height depth typically tapers uniformly from a highest or deepest point respectively, closest to or at center 2209, to an apex 2206.

In another embodiment, in a 0.3 ml tube, the radial segments should be rounded off and less than 100 microns deep (or high), or less than 50 microns deep (or high), or less than 25 microns deep (or high).

The stellated pattern typically has a rotation axis of symmetry, the axis disposed perpendicular to the bottom of the tube and through center 2209 (concentric with a cylindrical axis of the tube), so that the radial segments are disposed symmetrically about the rotation axis. By this is meant that, for n segments, a rotation by an angle of 2π/n about the central (rotational) axis can bring each segment into coincidence with the segment adjacent to it.

The stellated shapes shown in FIGS. 1B and 2B, 2C are not limiting in that they comprise a center, a number of radial segments 2205, and an optional circular ring 2207. Other star-shaped geometries may be used, and, depending upon ease of manufacture and efficacy of use, may be preferred. For example, a star-shaped pattern can be created simply be superimposing two or more polygons having a common center, but offset rotationally with respect to one another by a rotation about the central axis. (See, for example “star polygons” described at the world wide web site mathworld.wolfram.com/StarPolygon.html.) Such alternative manners of creating star-shaped patterns are utilizable herein.

Also shown in the side plan view of FIG. 2A is a top 2208 of tube 2200. Top 2208 is typically made of aluminum foil, which may be heat-sealed on to the top of the tube. Although other layers, or a combination of layers, such as a laminate layer, as further described in U.S. Patent Publication. No. 2009-0129978 A1, filed by ExpressMail on Jul. 14, 2008 (and entitled “Reagent Holder, and Kits Containing Same”, can be placed on top of the reagent tube to seal it, typically a layer of aluminum foil is adequate, where the tube contents are solid, e.g., lyophilized, reagents. In some embodiments, the top of the reagent tube has chamfer edges to reduce expansion of the top rim of the tube during heat sealing of a foil on the top of the tube.

The reagent tube described herein may further comprise an identifiable code, such as a 1-D or a 2-D bar-code on the top 2208. Such a code is useful for identifying the composition of the reagents stored within, and/or a batch number for the preparation thereof, and/or an expiry date. The code may be printed on with, for example, an inkjet or transfer printer. The code may also be attached, or affixed, or printed on, the side of the tube, such as on an exterior surface of wall 2201.

Exemplary Manufacture

A stellated feature such as described herein may be positioned on the interior surface of the bottom of a reagent tube during manufacture of the tube by, for example injection moulding. The stellated feature is typically constructed as a raised feature, proud from the bottom interior surface. Thus, during manufacture of a reagent tube described herein by injection moulding, an outer portion of the mould is a cavity defining the exterior shape of the tube. An interior shape of the tube is formed by an inner portion of the mould positioned concentrically with the outer portion of the mould, and having a star-shaped structure milled out of its tip. Thus, when liquid plastic is injected into the space between the inner and the outer portions of the mould, the star-shape is formed as a raised portion on the bottom interior surface of the tube that is so-formed. Alternately, if the stellated feature is constructed as a recessed feature, the interior portion of the mould will have a complementary stellated feature projecting from its bottom surface.

Reagent tubes may be manufactured by injection moulding in batches, such as via an array of tube-shaped moulds in a single substrate. Tubes made in batch in this way may be imprinted with a non-functional marking characteristic of the location in the array, for example, for purposes of quality control.

Exemplary Pipetting Operations

FIG. 3 has a number of panels, A-G, each representing, in sequence, a stage in a pipetting operation carried out in conjunction with a reagent tube 2200 having a stellated pattern 2203, shown in cross section on the bottom interior surface of the tube 2200 and as further described herein. FIG. 3 is now described, as follows.

At A, a pipette tip 2210, containing a liquid 2211 (such as a buffer solution), is positioned directly or approximately above the center of reagent tube 2200. The tube contains a number of lyophilized pellets 2212, and is sealed by a layer 2214, such as of foil, as further described herein.

At B, the pipette tip is lowered, piercing seal 2214, and brought into a position above the particles 2212.

At C the liquid 2211 is discharged from the pipette tip on to the particles, dissolving the same, as shown at D. After the particles are fully dissolved, forming a solution 2218, the pipette tip is lowered to a position where it is in contact with the stellated pattern 2203.

At E, the pipette tip is caused to suck up the solution 2218 (typically leaving less than 1 μl of solution 2218 in the tube), and at F, the tip may optionally discharge the solution back into the tube. Steps E and F may be repeated, as desired, to facilitate dissolution and mixing of the lyophilized components into solution.

At G, after sucking up as much of the solution 2218 as is practicable into the pipette tip, the pipette tip is withdrawn from the tube. Ideally, 100% by volume of the solution 2218 is drawn up into the pipette tip at G. In other embodiments, and depending upon the nature of solution 2218, at least 99% by volume of the solution is drawn up. In still other embodiments, at least 98%, at least 97%, at least 96%, at least 95%, and at least 90% by volume of the solution is drawn up.

The following examples illustrate an embodiment of the invention described and claimed herein, and are not intended to be limiting.

EXAMPLES Example 1 Reagent Tube

An exemplary reagent tube, showing various dimensions, is shown in FIGS. 4A-4D. Tolerances on the shown dimensions, during manufacture, are as follows: features≦0.5 inches are machined to within±0.010 inches; features<0.5 inches are machined to within±0.005 inches; feature locations, such as theoretical center points and theoretical center lines, are within±0.010 inches of those shown in the drawings. It is to be understood that dimensions can also be represented in their metric system equivalents without departing from the scope of the technology herein.

The cross-hatch area shown on the upper portion of the tube in FIG. 4C is an area on which a marking may be made, such as during manufacture, for the purpose of indicating product origin, identifying the batch, or for quality control.

The pattern of ridges shown in FIG. 4D is such that each ridge comprise a rectangular portion capped by a semi-circular arc, the semi-circular arc being disposed close to the common center of the pattern of ridges and having a diameter of 0.203 mm. In the embodiment shown in FIG. 4D, the distance from the center of the circle of which the semi-circular arc is formed to the center of the pattern is 0.381 mm.

The tube is made from polypropylene homopolymer, e.g., available from Cannel Olefins Ltd., and identified as product no. Capilene U77 AV (see, e.g., world wide web site carmel-olefins.co.il/Media/Uploads/Capilene_nomenclatur.pdf).

Surfaces are SPI (Society of the Plastics Industry) grade A-2, a known surface quality measurement, or better.

Any and all flashes and burrs resulting from the manufacture are removed and, in order to be used, the tube should not come into contact with grease, dust, mold release or other foreign substances. The tube should also be free of cracks, crazing, scratches, and internal defects or particulates obvious to the unaided eye.

Example 2 Foil Piercing and Dissolution of Lyophilized Reagents

The containers of lyophilized reagents provided in conjunction with a holder as described herein are typically sealed by a non-plasticized aluminum foil. Aluminum foil bursts into an irregular polygonal pattern when pierced through a pipette and leaves an air vent even though the pipette is moved to the bottom of the tube. In order to save on reagents, it is desirable to dissolve the reagents and maximize the amount withdrawn from the tube. To accomplish this, a ridged-star (stellated) pattern is placed at the bottom of the container to maximize liquid volume withdrawn, and flow velocity in between the ridges.

Exemplary steps for dissolving solid particles, and withdrawing fluid are as follows:

    • 1. Pierce through the pipette and dispense the fluid away from the lyophilized material. If the pipette goes below the level of the lyophilized material, it will go into the pipette and may cause jamming of the liquid flow out of the pipette.
    • 2. Let the lyophilized material dissolve for a few seconds.
    • 3. Move pipette down touching the ridged-bottom of the tube.
    • 4. Perform an adequate number of suck and spit operations (4-10) to thoroughly mix the reagents with the liquid buffer.
    • 5. Withdraw all the reagents and move pipette to dispense it into the next processing tube.

The foregoing description is intended to illustrate various aspects of the present inventions. It is not intended that the examples presented herein limit the scope of the present inventions. The technology now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.

Claims

1. A reagent tube for insertion into a tube holder strip, comprising:

a tube body having a top, a bottom, and an interior surface, wherein the top, bottom, and interior surface of the tube body define a volume configured to hold a liquid;
a radially-extending lip at the top of the tube body configured for locking engagement with cooperating structure on a tube holder strip to retain the tube after insertion into a tube holder strip;
a pattern of convex ridges extending radially and centered at the bottom of the interior surface of the tube, wherein the convex ridges extend vertically from the bottom interior surface of the tube body, wherein the pattern of ridges and the ridges are configured to enable pipetting of substantially all of the liquid held in the reagent tube; and
a ring centered at the bottom of the interior surface of the tube, wherein the pattern of radially extending convex ridges intersect the ring.

2. The tube of claim 1, wherein the number of ridges is selected from 3, 4, 5, 6, 8, 9, 10, or 12.

3. The tube of claim 1, wherein the ridges do not meet one another at a center of the pattern.

4. The tube of claim 1, wherein each of the ridges has a width, wherein the width tapers from a widest point to an apex.

5. The tube of claim 4, wherein the widest point has a width of 50 microns.

6. The tube of claim 1, wherein each of the ridges has a height, wherein the height tapers from a highest point to an apex.

7. The tube of claim 1, wherein each of the ridges has a length, measured as the shortest distance from its widest point to its apex.

8. The tube of claim 6, wherein the length is 0.5 mm.

9. The tube of claim 1, having a volume of 0.3 ml.

10. The tube of claim 1, having a volume of between 0.1 ml to 0.65 ml.

11. The reagent tube of claim 1, where the top of the reagent tube has chamfer edges to reduce expansion of the top rim of the tube during heat sealing of a foil on the top of the tube.

12. The reagent tube of claim 1, further comprising a reagent contained therein, and wherein the tube is sealed on top by a foil.

13. The reagent tube of claim 12, further comprising an identifiable code on the top.

14. The reagent tube of claim 12, wherein the reagent is in liquid or lyophilized form.

15. The tube of claim 1, wherein the pattern of ridges extending radially and centered at the bottom of the interior surface of the tube is a stellated pattern.

16. The tube of claim 15, wherein each of the ridges has a width, wherein the width tapers from a widest point to an apex.

17. The tube of claim 15, wherein each of the ridges has a height, wherein the height tapers from a widest point to an apex.

18. The tube of claim 15, wherein the stellated pattern has a rotation axis of symmetry, the axis disposed perpendicular to the bottom of the tube, and wherein the ridges are disposed symmetrically about the rotation axis.

19. The tube of claim 15, wherein the stellated pattern additionally comprises a circular cutout at the center of the bottom of the tube.

20. The reagent tube of claim 15, wherein the stellated pattern is designed to enable liquid to be pipetted out of the tube, with less than 1 microliter of residual volume.

21. The tube of claim 16, wherein the widest point is closest to a center of the stellated pattern.

22. The tube of claim 17, wherein the highest point is closest to a center of the stellated pattern.

23. The tube of claim 22, wherein the highest point has a height of 25-30 microns.

24. A reagent holding system, comprising:

a reagent tube, comprising: a tube body having a top, a bottom, and an interior surface, wherein the top, bottom, and interior surface of the tube body define a volume configured to hold a liquid; a radially-extending lip at the top of the tube body; a pattern of convex ridges extending radially and centered at the bottom of the interior surface of the tube, wherein the convex ridges extend vertically from the bottom interior surface of the tube body, wherein the pattern of ridges and the ridges are configured to enable pipetting of substantially all of the liquid held in the reagent tube; and a ring centered at the bottom of the interior surface of the tube, wherein the pattern of radially extending convex ridges intersect the ring; and
a tube-holding strip having an opening for receiving the reagent tube with a cooperating structure configured for locking engagement with the lip of the tube body after insertion of the tube body into the tube holder strip.

25. The reagent holding system of claim 24, wherein the ridges do not meet one another at a center of the pattern.

26. The reagent holding system of claim 24, wherein the top of the reagent tube has chamfer edges to reduce expansion of the top rim of the tube during heat sealing of a foil on the top of the tube.

27. The reagent holding system of claim 24, wherein the cooperating structure comprises a snap tab.

28. A reagent tube for insertion into a tube holder strip, comprising:

a tube body having a top, a bottom, and an interior surface, wherein the top, bottom, and interior surface of the tube body define a volume configured to hold a liquid;
a radially-extending lip configured for locking engagement with cooperating structure on a tube holder strip to retain the tube after insertion into the tube holder strip, the lip comprising a top surface proximal to the top of the tube body, a bottom surface opposite the top surface, a radial wall extending between the top and bottom surface of the lip, and a beveled edge located at the junction of the top surface and the radial wall;
a pattern of convex ridges extending radially and centered at the bottom of the interior surface of the tube, wherein the convex ridges extend vertically from the bottom interior surface of the tube body, wherein the pattern of ridges and the ridges are configured to enable pipetting of substantially all of the liquid held in the reagent tube; and
a ring centered at the bottom of the interior surface of the tube, wherein the pattern of radially extending convex ridges intersect the ring.

29. The tube of claim 27, wherein the ridges do not meet one another at a center of the pattern.

30. The reagent tube of claim 27, where the top of the reagent tube has chamfer edges to reduce expansion of the top rim of the tube during heat sealing of a foil on the top of the tube.

31. The reagent tube of claim 27, wherein the width of the radial lip is at least twice as large as the thickness of the radial lip.

Referenced Cited
U.S. Patent Documents
1434314 October 1922 Raich
1616419 February 1927 Wilson
1733401 August 1930 Lovekin
3528449 September 1970 Witte et al.
3985649 October 12, 1976 Eddelman
4018089 April 19, 1977 Dzula et al.
4018652 April 19, 1977 Lanham et al.
4038192 July 26, 1977 Serur
4055395 October 25, 1977 Honkawa et al.
D249706 September 26, 1978 Adamski
4139005 February 13, 1979 Dickey
D252157 June 19, 1979 Kronish et al.
D252341 July 10, 1979 Thomas
D254687 April 8, 1980 Fadler et al.
4212744 July 15, 1980 Oota
D261033 September 29, 1981 Armbruster
D261173 October 6, 1981 Armbruster
4301412 November 17, 1981 Hill et al.
4439526 March 27, 1984 Columbus
4457329 July 3, 1984 Werley et al.
4466740 August 21, 1984 Kano et al.
4504582 March 12, 1985 Swann
4522786 June 11, 1985 Ebersole
D279817 July 23, 1985 Chen et al.
4599315 July 8, 1986 Terasaki et al.
4612873 September 23, 1986 Gunter
4612959 September 23, 1986 Costello
D288478 February 24, 1987 Carlson et al.
4654127 March 31, 1987 Baker et al.
4673657 June 16, 1987 Christian
4683195 July 28, 1987 Mullis et al.
4683202 July 28, 1987 Mullis
D292735 November 10, 1987 Lovborg
4720374 January 19, 1988 Ramachandran
4798693 January 17, 1989 Mase et al.
4800022 January 24, 1989 Leonard
4841786 June 27, 1989 Schulz
D302294 July 18, 1989 Hillman
4895650 January 23, 1990 Wang
4919829 April 24, 1990 Gates et al.
4921809 May 1, 1990 Schiff et al.
4935342 June 19, 1990 Seligson et al.
4946562 August 7, 1990 Guruswamy
4949742 August 21, 1990 Rando et al.
D310413 September 4, 1990 Bigler et al.
4963498 October 16, 1990 Hillman
4967950 November 6, 1990 Legg et al.
4978502 December 18, 1990 Dole et al.
4978622 December 18, 1990 Mishell et al.
4989626 February 5, 1991 Takagi et al.
5001417 March 19, 1991 Pumphrey et al.
5004583 April 2, 1991 Guruswamy et al.
5048554 September 17, 1991 Kremer
5053199 October 1, 1991 Keiser et al.
5060823 October 29, 1991 Perlman
5061336 October 29, 1991 Soane
5064618 November 12, 1991 Baker et al.
5071531 December 10, 1991 Soane
5091328 February 25, 1992 Miller
D324426 March 3, 1992 Fan et al.
5096669 March 17, 1992 Lauks et al.
5126002 June 30, 1992 Iwata et al.
5126022 June 30, 1992 Soane et al.
D328135 July 21, 1992 Fan et al.
D328794 August 18, 1992 Frenkel et al.
5135627 August 4, 1992 Soane
5135872 August 4, 1992 Pouletty et al.
5147606 September 15, 1992 Charlton et al.
5169512 December 8, 1992 Wiedenmann et al.
D333522 February 23, 1993 Gianino
5186339 February 16, 1993 Heissler
5192507 March 9, 1993 Taylor et al.
5208163 May 4, 1993 Charlton et al.
5223226 June 29, 1993 Wittmer et al.
D338275 August 10, 1993 Fischer et al.
5250263 October 5, 1993 Manz
5252743 October 12, 1993 Barrett et al.
5256376 October 26, 1993 Callan et al.
5275787 January 4, 1994 Yuguchi et al.
5282950 February 1, 1994 Dietze et al.
5296375 March 22, 1994 Kricka et al.
5304477 April 19, 1994 Nagoh et al.
5304487 April 19, 1994 Wilding et al.
D347478 May 31, 1994 Pinkney
5311896 May 17, 1994 Kaartinen et al.
5311996 May 17, 1994 Duffy et al.
5316727 May 31, 1994 Suzuki et al.
5327038 July 5, 1994 Culp
5339486 August 23, 1994 Persic, Jr.
D351475 October 11, 1994 Gerber
D351913 October 25, 1994 Hieb et al.
5364591 November 15, 1994 Green et al.
5372946 December 13, 1994 Cusak et al.
5374395 December 20, 1994 Robinson
5389339 February 14, 1995 Petschek et al.
5397709 March 14, 1995 Berndt
5401465 March 28, 1995 Smethers et al.
5411708 May 2, 1995 Moscetta et al.
5414245 May 9, 1995 Hackleman
5416000 May 16, 1995 Allen et al.
5422271 June 6, 1995 Chen et al.
5422284 June 6, 1995 Lau
5427946 June 27, 1995 Kricka et al.
5474796 December 12, 1995 Brennan
D366116 January 9, 1996 Biskupski
5486335 January 23, 1996 Wilding et al.
5494639 February 27, 1996 Grzegorzewski
5498392 March 12, 1996 Wilding et al.
5503803 April 2, 1996 Brown
5516410 May 14, 1996 Schneider et al.
5519635 May 21, 1996 Miyake et al.
5529677 June 25, 1996 Schneider et al.
5559432 September 24, 1996 Logue
5565171 October 15, 1996 Dovichi et al.
5569364 October 29, 1996 Hooper et al.
5578818 November 26, 1996 Kain et al.
5579928 December 3, 1996 Anukwuem
5580523 December 3, 1996 Bard
5582884 December 10, 1996 Ball et al.
5585069 December 17, 1996 Zanzucchi et al.
5585089 December 17, 1996 Queen et al.
5585242 December 17, 1996 Bouma et al.
5587128 December 24, 1996 Wilding et al.
5589136 December 31, 1996 Northrup et al.
5593838 January 14, 1997 Zanzucchi et al.
5595708 January 21, 1997 Berndt
5599432 February 4, 1997 Manz et al.
5599503 February 4, 1997 Manz et al.
5599667 February 4, 1997 Arnold, Jr. et al.
5601727 February 11, 1997 Bormann et al.
5603351 February 18, 1997 Cherukuri et al.
5605662 February 25, 1997 Heller et al.
D378782 April 8, 1997 LaBarbera et al.
5628890 May 13, 1997 Carter et al.
5630920 May 20, 1997 Friese et al.
5631337 May 20, 1997 Sassi et al.
5632876 May 27, 1997 Zanzucchi et al.
5632957 May 27, 1997 Heller et al.
5635358 June 3, 1997 Wilding et al.
5637469 June 10, 1997 Wilding et al.
5639423 June 17, 1997 Northrup et al.
5643738 July 1, 1997 Zanzucchi et al.
5646039 July 8, 1997 Northrup et al.
5647994 July 15, 1997 Tuunanen et al.
5651839 July 29, 1997 Rauf
5652149 July 29, 1997 Mileaf et al.
D382346 August 12, 1997 Buhler et al.
D382647 August 19, 1997 Staples et al.
5667976 September 16, 1997 Van Ness et al.
5671303 September 23, 1997 Shieh et al.
5674394 October 7, 1997 Whitmore
5674742 October 7, 1997 Northrup et al.
5681484 October 28, 1997 Zanzucchi et al.
5681529 October 28, 1997 Taguchi et al.
5683657 November 4, 1997 Mian
5699157 December 16, 1997 Parce
5700637 December 23, 1997 Southern
5705813 January 6, 1998 Apffel et al.
5726026 March 10, 1998 Wilding et al.
5726404 March 10, 1998 Brody
5726944 March 10, 1998 Taft et al.
5731212 March 24, 1998 Gavin et al.
5744366 April 28, 1998 Kricka et al.
5747666 May 5, 1998 Willis
5750015 May 12, 1998 Soane et al.
5755942 May 26, 1998 Zanzucchi et al.
5763262 June 9, 1998 Wong et al.
5770029 June 23, 1998 Nelson et al.
5770388 June 23, 1998 Vorpahl
5772966 June 30, 1998 Maracas et al.
5779868 July 14, 1998 Parce et al.
5787032 July 28, 1998 Heller et al.
5788814 August 4, 1998 Sun et al.
5800690 September 1, 1998 Chow et al.
5804436 September 8, 1998 Okun et al.
D399959 October 20, 1998 Prokop et al.
5827481 October 27, 1998 Bente et al.
5842106 November 24, 1998 Thaler et al.
5842787 December 1, 1998 Kopf-Sill et al.
5846396 December 8, 1998 Zanzucchi et al.
5849208 December 15, 1998 Hayes et al.
5849486 December 15, 1998 Heller et al.
5849489 December 15, 1998 Heller
5849598 December 15, 1998 Wilson et al.
5852495 December 22, 1998 Parce
5856174 January 5, 1999 Lipshutz et al.
5858187 January 12, 1999 Ramsey et al.
5858188 January 12, 1999 Soane et al.
5863502 January 26, 1999 Southgate et al.
5863708 January 26, 1999 Zanzucchi et al.
5863801 January 26, 1999 Southgate et al.
5866345 February 2, 1999 Wilding et al.
5869004 February 9, 1999 Parce et al.
5872010 February 16, 1999 Karger et al.
5872623 February 16, 1999 Stabile et al.
5874046 February 23, 1999 Megerle
5876675 March 2, 1999 Kennedy
5880071 March 9, 1999 Parce et al.
5882465 March 16, 1999 McReynolds
5883211 March 16, 1999 Sassi et al.
5885432 March 23, 1999 Hooper et al.
5885470 March 23, 1999 Parce et al.
5895762 April 20, 1999 Greenfield et al.
5900130 May 4, 1999 Benregnu et al.
5912124 June 15, 1999 Kumar
5912134 June 15, 1999 Shartle
5916522 June 29, 1999 Boyd et al.
5916776 June 29, 1999 Kumar
5919646 July 6, 1999 Okun et al.
5919711 July 6, 1999 Boyd et al.
5922591 July 13, 1999 Anderson et al.
5927547 July 27, 1999 Papen et al.
5928880 July 27, 1999 Wilding et al.
5929208 July 27, 1999 Heller et al.
D413391 August 31, 1999 Lapeus et al.
5932799 August 3, 1999 Moles
5935401 August 10, 1999 Amigo
5939291 August 17, 1999 Loewy et al.
5942443 August 24, 1999 Parce et al.
D413677 September 7, 1999 Dumitrescu et al.
5948227 September 7, 1999 Dubrow
5955028 September 21, 1999 Chow
5955029 September 21, 1999 Wilding et al.
5957579 September 28, 1999 Kopf-Sill et al.
5958203 September 28, 1999 Parce et al.
5958694 September 28, 1999 Nikiforov
5959221 September 28, 1999 Boyd et al.
5959291 September 28, 1999 Jensen
5964995 October 12, 1999 Nikiforov et al.
5964997 October 12, 1999 McBride
5965001 October 12, 1999 Chow et al.
5965410 October 12, 1999 Chow et al.
5965886 October 12, 1999 Sauer et al.
5972187 October 26, 1999 Parce et al.
5973138 October 26, 1999 Collis
D417009 November 23, 1999 Boyd
5976336 November 2, 1999 Dubrow et al.
5980704 November 9, 1999 Cherukuri et al.
5980719 November 9, 1999 Cherukuri et al.
5981735 November 9, 1999 Thatcher et al.
5989402 November 23, 1999 Chow et al.
5992820 November 30, 1999 Fare et al.
5993611 November 30, 1999 Moroney, III et al.
5993750 November 30, 1999 Ghosh et al.
5997708 December 7, 1999 Craig
6001229 December 14, 1999 Ramsey
6001231 December 14, 1999 Kopf-Sill
6001307 December 14, 1999 Naka et al.
6004515 December 21, 1999 Parce et al.
6007690 December 28, 1999 Nelson et al.
6010607 January 4, 2000 Ramsey
6010608 January 4, 2000 Ramsey
6010627 January 4, 2000 Hood, III
6012902 January 11, 2000 Parce
D420747 February 15, 2000 Dumitrescu et al.
D421130 February 22, 2000 Cohen et al.
6024920 February 15, 2000 Cunanan
D421653 March 14, 2000 Purcell
6033546 March 7, 2000 Ramsey
6043080 March 28, 2000 Lipshutz et al.
6046056 April 4, 2000 Parce et al.
6048734 April 11, 2000 Burns et al.
6054034 April 25, 2000 Soane et al.
6054277 April 25, 2000 Furcht et al.
6056860 May 2, 2000 Amigo et al.
6057149 May 2, 2000 Burns et al.
6062261 May 16, 2000 Jacobson et al.
6063341 May 16, 2000 Fassbind et al.
6063589 May 16, 2000 Kellogg et al.
6071478 June 6, 2000 Chow
6074725 June 13, 2000 Kennedy
6074827 June 13, 2000 Nelson et al.
D428497 July 18, 2000 Lapeus et al.
6086740 July 11, 2000 Kennedy
6096509 August 1, 2000 Okun et al.
6100541 August 8, 2000 Nagle et al.
6102897 August 15, 2000 Lang
6103537 August 15, 2000 Ullman et al.
6106685 August 22, 2000 McBride et al.
6110343 August 29, 2000 Ramsey et al.
6123205 September 26, 2000 Dumitrescu et al.
6123798 September 26, 2000 Gandhi et al.
6130098 October 10, 2000 Handique et al.
6132580 October 17, 2000 Mathies et al.
6132684 October 17, 2000 Marino
6133436 October 17, 2000 Koster et al.
D433759 November 14, 2000 Mathis et al.
6143250 November 7, 2000 Tajima
6149787 November 21, 2000 Chow et al.
6156199 December 5, 2000 Zuk, Jr.
6158269 December 12, 2000 Dorenkott et al.
6167910 January 2, 2001 Chow
6168948 January 2, 2001 Anderson et al.
6171850 January 9, 2001 Nagle et al.
6174675 January 16, 2001 Chow et al.
D438311 February 27, 2001 Yamanishi et al.
6190619 February 20, 2001 Kilcoin et al.
D438632 March 6, 2001 Miller
D438633 March 6, 2001 Miller
6197595 March 6, 2001 Anderson et al.
6211989 April 3, 2001 Wulf et al.
6213151 April 10, 2001 Jacobson et al.
6221600 April 24, 2001 MacLeod et al.
6228635 May 8, 2001 Armstrong et al.
6235175 May 22, 2001 Dubrow et al.
6235313 May 22, 2001 Mathiowitz et al.
6235471 May 22, 2001 Knapp et al.
6236581 May 22, 2001 Foss et al.
6251343 June 26, 2001 Dubrow et al.
6254826 July 3, 2001 Acosta et al.
6259635 July 10, 2001 Torelli et al.
6261431 July 17, 2001 Mathies et al.
6267858 July 31, 2001 Parce et al.
D446306 August 7, 2001 Ochi et al.
6271021 August 7, 2001 Burns et al.
6274089 August 14, 2001 Chow et al.
6280967 August 28, 2001 Ransom et al.
6281008 August 28, 2001 Komai et al.
6284113 September 4, 2001 Bjornson et al.
6287254 September 11, 2001 Dodds
6287774 September 11, 2001 Kikiforov
6291248 September 18, 2001 Haj-Ahmad
6294063 September 25, 2001 Becker et al.
6302134 October 16, 2001 Kellogg et al.
6302304 October 16, 2001 Spencer
6303343 October 16, 2001 Kopf-sill
6306273 October 23, 2001 Wainright et al.
6306590 October 23, 2001 Mehta et al.
6319469 November 20, 2001 Mian et al.
6322683 November 27, 2001 Wolk et al.
6326083 December 4, 2001 Yang et al.
6326211 December 4, 2001 Anderson et al.
6337435 January 8, 2002 Chu et al.
6353475 March 5, 2002 Jensen et al.
6358387 March 19, 2002 Kopf-sill et al.
6366924 April 2, 2002 Parce
6368871 April 9, 2002 Christel et al.
6370206 April 9, 2002 Schenk
6375185 April 23, 2002 Lin
6375901 April 23, 2002 Robotti et al.
6379884 April 30, 2002 Wada et al.
6379929 April 30, 2002 Burns et al.
6379974 April 30, 2002 Parce et al.
6391541 May 21, 2002 Petersen et al.
6391623 May 21, 2002 Besemer et al.
6395161 May 28, 2002 Schneider et al.
6398956 June 4, 2002 Coville et al.
6399025 June 4, 2002 Chow
6399389 June 4, 2002 Parce et al.
6399952 June 4, 2002 Maher et al.
6403338 June 11, 2002 Knapp et al.
6408878 June 25, 2002 Unger et al.
6413401 July 2, 2002 Chow et al.
6416642 July 9, 2002 Alajoki et al.
6420143 July 16, 2002 Kopf-sill
6425972 July 30, 2002 McReynolds
D461906 August 20, 2002 Pham
6428987 August 6, 2002 Franzen
6430512 August 6, 2002 Gallagher
6432366 August 13, 2002 Ruediger et al.
6440725 August 27, 2002 Pourahmadi et al.
D463031 September 17, 2002 Slomski et al.
6444461 September 3, 2002 Knapp et al.
6447661 September 10, 2002 Chow et al.
6447727 September 10, 2002 Parce et al.
6448064 September 10, 2002 Vo-Dinh et al.
6453928 September 24, 2002 Kaplan et al.
6465257 October 15, 2002 Parce et al.
6468761 October 22, 2002 Yang et al.
6472141 October 29, 2002 Nikiforov
6475364 November 5, 2002 Dubrow et al.
D467348 December 17, 2002 McMichael et al.
D467349 December 17, 2002 Niedbala et al.
6488897 December 3, 2002 Dubrow et al.
6495104 December 17, 2002 Unno et al.
6498497 December 24, 2002 Chow et al.
6500323 December 31, 2002 Chow et al.
6500390 December 31, 2002 Boulton et al.
D468437 January 7, 2003 McMenamy et al.
6506609 January 14, 2003 Wada et al.
6509193 January 21, 2003 Tajima
6511853 January 28, 2003 Kopf-sill et al.
D470595 February 18, 2003 Crisanti et al.
6515753 February 4, 2003 Maher
6517783 February 11, 2003 Horner et al.
6520197 February 18, 2003 Deshmukh et al.
6521188 February 18, 2003 Webster
6524456 February 25, 2003 Ramsey et al.
6524790 February 25, 2003 Kopf-sill et al.
D472324 March 25, 2003 Rumore et al.
6534295 March 18, 2003 Tai et al.
6537771 March 25, 2003 Farinas et al.
6540896 April 1, 2003 Manz et al.
6544734 April 8, 2003 Briscoe et al.
6547942 April 15, 2003 Parce et al.
6555389 April 29, 2003 Ullman et al.
6556923 April 29, 2003 Gallagher et al.
D474279 May 6, 2003 Mayer et al.
D474280 May 6, 2003 Niedbala et al.
6558916 May 6, 2003 Veerapandian et al.
6558945 May 6, 2003 Kao
6569607 May 27, 2003 Mcreynolds
6572830 June 3, 2003 Burdon et al.
6575188 June 10, 2003 Parunak
6576459 June 10, 2003 Miles et al.
6579453 June 17, 2003 Bächler et al.
6589729 July 8, 2003 Chan et al.
6592821 July 15, 2003 Wada et al.
6597450 July 22, 2003 Andrews et al.
6602474 August 5, 2003 Tajima
6613211 September 2, 2003 Mccormick et al.
6613512 September 2, 2003 Kopf-sill et al.
6613580 September 2, 2003 Chow et al.
6613581 September 2, 2003 Wada et al.
6614030 September 2, 2003 Maher et al.
6620625 September 16, 2003 Wolk et al.
6623860 September 23, 2003 Hu et al.
6627406 September 30, 2003 Singh et al.
D480814 October 14, 2003 Lafferty et al.
6632655 October 14, 2003 Mehta et al.
D482796 November 25, 2003 Oyama et al.
6649358 November 18, 2003 Parce et al.
6664104 December 16, 2003 Pourahmadi et al.
6669831 December 30, 2003 Chow et al.
6670153 December 30, 2003 Stern
D484989 January 6, 2004 Gebrian
6681616 January 27, 2004 Spaid et al.
6681788 January 27, 2004 Parce et al.
6685813 February 3, 2004 Williams et al.
6692700 February 17, 2004 Handique
6695009 February 24, 2004 Chien et al.
6706519 March 16, 2004 Kellogg et al.
6720148 April 13, 2004 Nikiforov
6730206 May 4, 2004 Ricco et al.
6733645 May 11, 2004 Chow
6734401 May 11, 2004 Bedingham et al.
D491272 June 8, 2004 Alden et al.
D491273 June 8, 2004 Biegler et al.
D491276 June 8, 2004 Langille
6750661 June 15, 2004 Brooks et al.
6752966 June 22, 2004 Chazan
6756019 June 29, 2004 Dubrow et al.
6766817 July 27, 2004 da Silva
6773567 August 10, 2004 Wolk
6777184 August 17, 2004 Nikiforov et al.
6783962 August 31, 2004 Olander et al.
D495805 September 7, 2004 Lea et al.
6787015 September 7, 2004 Lackritz et al.
6787016 September 7, 2004 Tan et al.
6790328 September 14, 2004 Jacobson et al.
6790330 September 14, 2004 Gascoyne et al.
6811668 November 2, 2004 Berndt et al.
6818113 November 16, 2004 Williams et al.
6819027 November 16, 2004 Saraf
6824663 November 30, 2004 Boone
D499813 December 14, 2004 Wu
D500142 December 21, 2004 Crisanti et al.
6827831 December 7, 2004 Chow et al.
6827906 December 7, 2004 Bjornson et al.
6838156 January 4, 2005 Neyer et al.
6838680 January 4, 2005 Maher et al.
6852287 February 8, 2005 Ganesan
6858185 February 22, 2005 Kopf-sill et al.
6859698 February 22, 2005 Schmeisser
6861035 March 1, 2005 Pham et al.
6878540 April 12, 2005 Pourahmadi et al.
6878755 April 12, 2005 Singh et al.
6884628 April 26, 2005 Hubbell et al.
6887693 May 3, 2005 McMillan et al.
6893879 May 17, 2005 Petersen et al.
6900889 May 31, 2005 Bjornson et al.
6905583 June 14, 2005 Wainright et al.
6905612 June 14, 2005 Dorian et al.
6906797 June 14, 2005 Kao et al.
6908594 June 21, 2005 Schaevitz et al.
6911183 June 28, 2005 Handique et al.
6914137 July 5, 2005 Baker
6915679 July 12, 2005 Chien et al.
6918404 July 19, 2005 da Silva
D508999 August 30, 2005 Fanning et al.
6939451 September 6, 2005 Zhao et al.
6942771 September 13, 2005 Kayyem
6958392 October 25, 2005 Fomovskaia et al.
D512155 November 29, 2005 Matsumoto
6964747 November 15, 2005 Banerjee et al.
6977163 December 20, 2005 Mehta
6984516 January 10, 2006 Briscoe et al.
D515707 February 21, 2006 Shinohara et al.
D516221 February 28, 2006 Wohlstadter et al.
7001853 February 21, 2006 Brown et al.
7004184 February 28, 2006 Handique et al.
D517554 March 21, 2006 Yanagisawa et al.
7010391 March 7, 2006 Handique et al.
7023007 April 4, 2006 Gallagher
7024281 April 4, 2006 Unno
7036667 May 2, 2006 Greenstein et al.
7037416 May 2, 2006 Parce et al.
7038472 May 2, 2006 Chien
7039527 May 2, 2006 Tripathi et al.
7040144 May 9, 2006 Spaid et al.
D523153 June 13, 2006 Akashi et al.
7055695 June 6, 2006 Greenstein et al.
7060171 June 13, 2006 Nikiforov et al.
7066586 June 27, 2006 da Silva
7069952 July 4, 2006 Mcreynolds et al.
7099778 August 29, 2006 Chien
D528215 September 12, 2006 Malmsater
7101467 September 5, 2006 Spaid
7105304 September 12, 2006 Nikiforov et al.
D531321 October 31, 2006 Godfrey et al.
7118910 October 10, 2006 Unger et al.
7138032 November 21, 2006 Gandhi et al.
D534280 December 26, 2006 Gomm et al.
7148043 December 12, 2006 Kordunsky et al.
7150814 December 19, 2006 Parce et al.
7150999 December 19, 2006 Shuck
D535403 January 16, 2007 Isozaki et al.
7160423 January 9, 2007 Chien et al.
7161356 January 9, 2007 Chien
7169277 January 30, 2007 Ausserer et al.
7169618 January 30, 2007 Skould
D537951 March 6, 2007 Okamoto et al.
D538436 March 13, 2007 Patadia et al.
7192557 March 20, 2007 Wu et al.
7195986 March 27, 2007 Bousse et al.
7208125 April 24, 2007 Dong
7235406 June 26, 2007 Woudenberg et al.
7247274 July 24, 2007 Chow
D548841 August 14, 2007 Brownell et al.
D549827 August 28, 2007 Maeno et al.
7252928 August 7, 2007 Hafeman et al.
7270786 September 18, 2007 Parunak et al.
D554069 October 30, 2007 Bolotin et al.
D554070 October 30, 2007 Bolotin et al.
7276330 October 2, 2007 Chow et al.
D556914 December 4, 2007 Okamoto et al.
7303727 December 4, 2007 Dubrow et al.
D559995 January 15, 2008 Handique et al.
7323140 January 29, 2008 Handique et al.
7332130 February 19, 2008 Handique
7338760 March 4, 2008 Gong et al.
D566291 April 8, 2008 Parunak et al.
7351377 April 1, 2008 Chazan et al.
D569526 May 20, 2008 Duffy et al.
7374949 May 20, 2008 Kuriger
7390460 June 24, 2008 Osawa et al.
7419784 September 2, 2008 Dubrow et al.
7422669 September 9, 2008 Jacobson et al.
7440684 October 21, 2008 Spaid et al.
7476313 January 13, 2009 Siddiqi
7494577 February 24, 2009 Williams et al.
7494770 February 24, 2009 Wilding et al.
7514046 April 7, 2009 Kechagia et al.
7518726 April 14, 2009 Rulison et al.
7521186 April 21, 2009 Mehta
7527769 May 5, 2009 Bunch et al.
7553671 June 30, 2009 Sinclair et al.
D596312 July 14, 2009 Giraud et al.
7595197 September 29, 2009 Brasseur
7604938 October 20, 2009 Takahashi et al.
7635588 December 22, 2009 King et al.
7645581 January 12, 2010 Knapp et al.
7670559 March 2, 2010 Chien et al.
7704735 April 27, 2010 Facer et al.
7723123 May 25, 2010 Murphy et al.
D618820 June 29, 2010 Wilson et al.
7727371 June 1, 2010 Kennedy et al.
7727477 June 1, 2010 Boronkay et al.
7744817 June 29, 2010 Bui
D621060 August 3, 2010 Handique
7867776 January 11, 2011 Kennedy et al.
7892819 February 22, 2011 Wilding et al.
20010023848 September 27, 2001 Gjerde et al.
20010038450 November 8, 2001 McCaffrey et al.
20010046702 November 29, 2001 Schembri
20010055765 December 27, 2001 O'Keefe et al.
20020001848 January 3, 2002 Bedingham et al.
20020009015 January 24, 2002 Laugharn, Jr. et al.
20020015667 February 7, 2002 Chow
20020021983 February 21, 2002 Comte et al.
20020037499 March 28, 2002 Quake et al.
20020039783 April 4, 2002 McMillan et al.
20020053399 May 9, 2002 Soane et al.
20020054835 May 9, 2002 Robotti et al.
20020055167 May 9, 2002 Pourahmadi et al.
20020060156 May 23, 2002 Mathies et al.
20020068357 June 6, 2002 Mathies et al.
20020141903 October 3, 2002 Parunak et al.
20020142471 October 3, 2002 Handique et al.
20020143297 October 3, 2002 Francavilla et al.
20020143437 October 3, 2002 Handique et al.
20020169518 November 14, 2002 Luoma et al.
20020187557 December 12, 2002 Hobbs et al.
20030019522 January 30, 2003 Parunak
20030049833 March 13, 2003 Chen et al.
20030070677 April 17, 2003 Handique et al.
20030073106 April 17, 2003 Johansen et al.
20030083686 May 1, 2003 Freeman et al.
20030087300 May 8, 2003 Knapp et al.
20030127327 July 10, 2003 Kurnik
20030136679 July 24, 2003 Bohn et al.
20030186295 October 2, 2003 Colin et al.
20030199081 October 23, 2003 Wilding et al.
20030211517 November 13, 2003 Carulli et al.
20040014238 January 22, 2004 Krug et al.
20040029258 February 12, 2004 Heaney et al.
20040053290 March 18, 2004 Terbrueggen et al.
20040063217 April 1, 2004 Webster et al.
20040072278 April 15, 2004 Chou et al.
20040072375 April 15, 2004 Gjerde et al.
20040141887 July 22, 2004 Mainquist et al.
20040151629 August 5, 2004 Pease et al.
20040157220 August 12, 2004 Kurnool et al.
20040161788 August 19, 2004 Chen et al.
20040189311 September 30, 2004 Glezer et al.
20040209331 October 21, 2004 Ririe
20040209354 October 21, 2004 Mathies et al.
20040219070 November 4, 2004 Handique
20040240097 December 2, 2004 Evans
20050009174 January 13, 2005 Nikiforov et al.
20050048540 March 3, 2005 Inami et al.
20050084424 April 21, 2005 Ganesan et al.
20050106066 May 19, 2005 Saltsman et al.
20050121324 June 9, 2005 Park et al.
20050133370 June 23, 2005 Park et al.
20050135655 June 23, 2005 Kopf-sill et al.
20050152808 July 14, 2005 Ganesan
20050170362 August 4, 2005 Wada et al.
20050202470 September 15, 2005 Sundberg et al.
20050202504 September 15, 2005 Anderson et al.
20050208676 September 22, 2005 Kahatt
20050220675 October 6, 2005 Reed et al.
20050227269 October 13, 2005 Lloyd et al.
20050233370 October 20, 2005 Ammann et al.
20050238545 October 27, 2005 Parce et al.
20050272079 December 8, 2005 Burns et al.
20060041058 February 23, 2006 Yin et al.
20060057039 March 16, 2006 Morse et al.
20060057629 March 16, 2006 Kim
20060062696 March 23, 2006 Chow et al.
20060094108 May 4, 2006 Yoder et al.
20060113190 June 1, 2006 Kurnik
20060133965 June 22, 2006 Tajima et al.
20060134790 June 22, 2006 Tanaka et al.
20060148063 July 6, 2006 Fauzzi et al.
20060165558 July 27, 2006 Witty et al.
20060165559 July 27, 2006 Greenstein et al.
20060166233 July 27, 2006 Wu et al.
20060177376 August 10, 2006 Tomalia et al.
20060183216 August 17, 2006 Handique
20060207944 September 21, 2006 Siddiqi
20060246493 November 2, 2006 Jensen et al.
20060246533 November 2, 2006 Fathollahi et al.
20070004028 January 4, 2007 Lair et al.
20070009386 January 11, 2007 Padmanabhan et al.
20070020699 January 25, 2007 Carpenter et al.
20070026421 February 1, 2007 Sundberg et al.
20070042441 February 22, 2007 Masters et al.
20070092901 April 26, 2007 Ligler et al.
20070098600 May 3, 2007 Kayyem et al.
20070099200 May 3, 2007 Chow et al.
20070104617 May 10, 2007 Coulling et al.
20070154895 July 5, 2007 Spaid et al.
20070177147 August 2, 2007 Parce
20070178607 August 2, 2007 Prober et al.
20070184463 August 9, 2007 Molho et al.
20070184547 August 9, 2007 Handique et al.
20070196238 August 23, 2007 Kennedy et al.
20070199821 August 30, 2007 Chow
20070215554 September 20, 2007 Kreuwel et al.
20070218459 September 20, 2007 Miller et al.
20070231213 October 4, 2007 Prabhu et al.
20070261479 November 15, 2007 Spaid et al.
20070269861 November 22, 2007 Williams et al.
20070292941 December 20, 2007 Handique et al.
20080000774 January 3, 2008 Park et al.
20080050804 February 28, 2008 Handique et al.
20080056948 March 6, 2008 Dale et al.
20080075634 March 27, 2008 Herchenbach et al.
20080090244 April 17, 2008 Knapp et al.
20080095673 April 24, 2008 Xu
20080118987 May 22, 2008 Eastwood et al.
20080124723 May 29, 2008 Dale et al.
20080149840 June 26, 2008 Handique et al.
20080160601 July 3, 2008 Handique
20080182301 July 31, 2008 Handique et al.
20080192254 August 14, 2008 Kim et al.
20080247914 October 9, 2008 Edens et al.
20080262213 October 23, 2008 Wu et al.
20090047713 February 19, 2009 Handique
20090129978 May 21, 2009 Wilson et al.
20090130719 May 21, 2009 Handique
20090130745 May 21, 2009 Williams et al.
20090131650 May 21, 2009 Brahmasandra et al.
20090134069 May 28, 2009 Handique
20090136385 May 28, 2009 Handique et al.
20090136386 May 28, 2009 Duffy et al.
20090155123 June 18, 2009 Williams et al.
20090221059 September 3, 2009 Handique et al.
20090223925 September 10, 2009 Morse et al.
20100009351 January 14, 2010 Brahmasandra et al.
Foreign Patent Documents
2294819 January 1999 CA
19929734 December 1999 DE
0766256 April 1997 EP
2672301 August 1992 FR
2795426 December 2000 FR
58212921 December 1983 JP
H07-290706 November 1995 JP
2001-515216 September 2001 JP
A-2001-527220 December 2001 JP
A-2003-500674 January 2003 JP
2005-514718 May 2005 JP
A-2005-204661 August 2005 JP
WO 88/06633 September 1988 WO
WO 92/05443 April 1992 WO
WO 98/00231 January 1998 WO
WO 98/22625 May 1998 WO
WO 98/53311 November 1998 WO
WO 99/01688 January 1999 WO
WO 99/09042 February 1999 WO
WO 99/12016 March 1999 WO
WO 99/33559 July 1999 WO
WO 01/05510 January 2001 WO
WO 01/14931 March 2001 WO
WO 01/27614 April 2001 WO
WO 01/28684 April 2001 WO
WO 01/41931 June 2001 WO
WO 01/54813 August 2001 WO
WO 01/89681 November 2001 WO
WO 02/078845 October 2002 WO
WO 03/012325 February 2003 WO
WO 03/012406 February 2003 WO
WO 03/055605 July 2003 WO
WO 2004/007081 January 2004 WO
WO 2004/074848 September 2004 WO
WO 2005/011867 February 2005 WO
WO 2005/108620 November 2005 WO
WO 2006/079082 July 2006 WO
WO 2008/060604 May 2008 WO
WO 2009/012185 January 2009 WO
Other references
  • Brahmasandra et al., On-chip DNA detection in microfabricated separation systems, SPIE Conference on Microfuidic Devices and Systems, 1998, vol. 3515, pp. 242-251, Santa Clara, CA.
  • Handique et al., 2001, Mathematical modeling of drop mixing in a split-type microchannel, J. Micromech Microeng, 11:548-554.
  • International Search Report and Written Opinion dated Apr. 4, 2008 for PCT/US07/07513.
  • International Search Report and Written Opinion for PCT/US07/024022 dated Jan. 5, 2009.
  • Bollet, C. et al., “A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria”, Nucleic Acids Research, vol. 19, No. 8 (1991), p. 1955.
  • Breadmore, M.C. et al., “Microchip-Based Purification of DNA from Biological Samples”, Anal. Chem., vol. 75 (2003), pp. 1880-1886.
  • Brody, et al., Diffusion-Based Extraction in a Microfabricated Device, Sensors and Actuators Elsevier, 1997, vol. A58, No. 1, pp. 13-18.
  • Broyles, et al., “Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices” Analytical Chemistry (American Chemical Society), vol. 75 No. 11: pp. 2761-2767.
  • Burns et al., “An Integrated Nanoliter DNA Analysis Device”, Science 282:484-487 (1998).
  • Carlen et al., “Paraffin Actuated Surface Micromachined Valve,” in IEEE MEMS 2000 Conference, p. 381-385, Miyazaki, Japan, Jan. 2000.
  • Chung, Y. et al., “Microfluidic chip for high efficiency DNA extraction”, Miniaturisation for Chemistry, Biology & Bioengineering, vol. 4, No. 2 (Apr. 2004), pp. 141-147.
  • Handique K., et al., On-Chip Thermopneumatic Pressure for Discrete Drop Pumping, Analytical Chemistry, American Chemical Society, Apr. 15, 2001, vol. 73, No. 8, 1831-1838.
  • Handique, K. et al, “Microflidic flow control using selective hydrophobic patterning”, SPIE, vol. 3224, pp. 185-194 (1997).
  • Handique, K. et al., “Nanoliter-volume discrete drop injection and pumping in microfabricated chemical analysis systems”, Solid-State Sensor and Actuator Workshop (Hilton Head, South Carolina, Jun. 8-11, 1998) pp. 346-349.
  • Handique, K. et al., “Mathematical Modeling of Drop Mixing in a Slit-Type Micochannel”, J. Micromech. Microeng., 11:548-554 (2001).
  • Handique, K. et al., “Nanoliter Liquid Metering in Microchannels Using Hydrophobic Patterns”, Anal. Chem., 72:4100-4109 (2000).
  • He, et al., Microfabricated Filters for Microfludic Analytical Systems, Analytical Chemistry, American Chemical Society, 1999, vol. 71, No. 7, pp. 1464-1468.
  • Ibrahim, et al., Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA, Analytical Chemistry, American Chemical Society, 1998, vol. 70, No. 9, pp. 2013-2017.
  • Khandurina, et al., Microfabricated Porous Membrane Structure for Sample Concentraction and Electrophoretic Analysis, Analytical Chemistry American Chemical Society, 1999, vol. 71, No. 9, pp. 1815-1819.
  • Kopp, et al., Chemical Amplification: Continuous-Flow PCR on a Chip, www.sciencemag.org, 1998, vol. 280, pp. 1046-1048.
  • Kutter, et al., Solid Phase Extraction on Microfludic Devices, J. Microcolumn Separations, John Wiley & Sons, Inc., 2000, vol. 12, No. 2, pp. 93-97.
  • Lagally, et al., Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device, Analytical Chemistry, American Chemical Society, 2001, vol. 73, No. 3 pp. 565-570.
  • Livache, T. et al., “Polypyrrole DNA chip on a Silicon Device: Example of Hepatitis C Virus Genotyping”, Analytical Biochemistry, vol. 255 (1998), pp. 188-194.
  • Northrup, et al., A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers, Analytical Chemistry, American Chemical Society, 1998, vol. 70, No. 5, pp. 918-922.
  • Oleschuk, et al., Trapping of Bead-Based Reagents within Microfluidic Systems,: On-Chip Solid-Phase Extraction and Electrochromatography, Analytical Chemistry, American Chemical Society, 2000, vol. 72, No. 3, pp. 585-590.
  • Orchid BioSciences, Inc., www.orchid.com, Jul. 6, 2001.
  • Roche, et al. “Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells” Faseb J (2005) 19: 1341-1343.
  • Ross, et al., Analysis of DNA Fragments from Conventional and Microfabricated PCR Devices Using Delayed Extraction MALDI-TOF Mass Spectrometry, Analytical Chemistry, American Chemical Society, 1998, vol. 70, No. 10, pp. 2067-2073.
  • Shoffner, M. A. et al., Chip PCR.I. Surface Passivation of Microfabricated Silicon-Glass Chips for PCR, Nucleic Acids Research, Oxford University Press, 1996, vol. 24, No. 2, 375-379.
  • Smith, K. et al., “Comparison of Commercial DNA Extraction Kits for Extraction of Bacterial Genomic DNA from Whole-Blood Samples”, Journal of Clinical Microbiology, vol. 41, No. 6 (Jun. 2003), pp. 2440-2443.
  • Waters, et al., Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing, Analytical Chemistry, American Chemical Society, 1998, vol. 70, No. 1, pp. 158-162.
  • Weigl, et al., Microfluidic Diffusion-Based Separation and Detection, www.sciencemag.org, 1999, vol. 283, pp. 346-347.
  • Yoza, Brandon et al., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer, Mar. 20, 2003, vol. 101, No. 3, 219-228.
  • Yoza, et al., “Fully Automated DNA Extraction fro Blood Using Magnetic Particles Modified with a Hyperbranched Polyamidomine Dendrimer”, Journal of Bioscience and Bioengineering, 95(1):21-26, 2003.
Patent History
Patent number: 8216530
Type: Grant
Filed: Oct 14, 2010
Date of Patent: Jul 10, 2012
Patent Publication Number: 20110027151
Assignee: HandyLab, Inc. (Franklin Lakes, NJ)
Inventors: Kalyan Handique (Ypsilanti, MI), Theodore Springer (Ann Arbor, MI)
Primary Examiner: In Suk Bullock
Assistant Examiner: Sharon Pregler
Attorney: Knobbe Martens Olson & Bear LLP
Application Number: 12/904,901