Light Responsive Or Combined With Light Responsive Device Patents (Class 257/290)
  • Patent number: 7608858
    Abstract: A liquid crystal display is provided. A liquid crystal display includes a first substrate having color filters therewith; a second substrate having plural first signal lines and plural second signal lines thereon; plural first openings located at intersections of said first signal lines and plural of second signal lines; and plural supports located at said plural first openings and between said first substrate and said second substrate, and separating said first substrate from said second substrate.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: October 27, 2009
    Assignee: HannStar Display Corporation
    Inventors: Chia-Te Liao, Tean-Sen Jen, Hsu-Ho Wu, Ming-Tien Lin, Te-Cheng Chung
  • Publication number: 20090261392
    Abstract: A solid-state imaging device is provided. The solid-state imaging device includes a pixel section, a peripheral circuit section, a silicide blocking layer formed in the pixel section except for part or whole of an area above an isolation portion in the pixel section, and a metal-silicided transistor formed in the peripheral circuit section.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 22, 2009
    Applicant: SONY CORPORATION
    Inventor: Keiji Tatani
  • Publication number: 20090261441
    Abstract: An optical semiconductor device includes a light-receiving element on a semiconductor substrate of a first conductivity type, the light-receiving element including a light-receiving portion for converting incident light to an electrical current signal and performing a current amplification. The light-receiving portion includes: a semiconductor layer formed on the semiconductor substrate and having an impurity concentration substantially equal to or less than that of the semiconductor substrate; a first semiconductor region of a second conductivity type formed on the semiconductor layer and having an impurity concentration higher than that of the semiconductor layer; and a second semiconductor region of the first conductivity type selectively formed between the semiconductor substrate and the semiconductor layer and having an impurity concentration higher than those of the semiconductor substrate and the semiconductor layer.
    Type: Application
    Filed: March 9, 2009
    Publication date: October 22, 2009
    Inventors: Hisatada Yasukawa, Hironari Takehara, Takaki Iwai
  • Patent number: 7605440
    Abstract: A pixel having a well-isolated charge storage region or floating diffusion region may be obtained by providing a separate P-well around the storage region or floating diffusion region. In one embodiment, a separate P-well entirely encases the storage region and is in contact with the storage region. This P-well provides an electrical barrier for preventing electrons that are generated elsewhere in the pixel from contaminating the storage region. In another embodiment, a first separate P-well encases and is in contact with the storage region and a second separate P-well encases and is in contact with the floating diffusion region.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: October 20, 2009
    Assignee: Aptina Imaging Corporation
    Inventor: Parker Altice
  • Patent number: 7605854
    Abstract: The present invention includes operational amplifier for an active pixel sensor that detects optical energy and generates an analog output that is proportional to the optical energy. The active pixel sensor operates in a number of different modes including: signal integration mode, the reset integration mode, column reset mode, and column signal readout mode. Each mode causes the operational amplifier to see a different output load. Accordingly, the operational amplifier includes a variable feedback circuit to provide compensation that provides sufficient amplifier stability for each operating mode of the active pixel sensor. For instance, the operational amplifier includes a bank of feedback capacitors, one or more of which are selected based on the operating mode to provide sufficient phase margin for stability, but also considering gain and bandwidth requirements of the operating mode.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: October 20, 2009
    Assignee: Broadcom Corporation
    Inventor: Esin Terzioglu
  • Patent number: 7605902
    Abstract: There is provided a high quality liquid crystal panel having a thickness with high accuracy, which is designed, without using a particulate spacer, within a free range in accordance with characteristics of a used liquid crystal and a driving method, and is also provided a method of fabricating the same. The shape of a spacer for keeping a substrate interval constant is made such that it is a columnar shape, a radius R of curvature is 2 ?m or less, a height H is 0.5 ?m to 10 ?m, a diameter is 20 ?m or less, and an angle ? is 65° to 115°. By doing so, it is possible to prevent the lowering of an opening rate and the lowering of light leakage due to orientation disturbance.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: October 20, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiharu Hirakata, Yuugo Goto, Yuko Kobayashi, Shunpei Yamazaki
  • Publication number: 20090256179
    Abstract: Embodiments relate to and image sensor. In embodiments, the image sensor may include a semiconductor substrate, a photodiode region, a gate electrode, a dummy gate, and an interlayer dielectric layer. The semiconductor substrate includes a field oxide layer. The photodiode region may be formed on the semiconductor substrate. The gate electrode may be formed on the semiconductor substrate. The dummy gate may be formed on the field oxide layer. The interlayer dielectric layer may be formed on one side of the dummy gate and includes an opening exposing the photodiode region.
    Type: Application
    Filed: June 18, 2009
    Publication date: October 15, 2009
    Inventor: Young-Sik Kim
  • Publication number: 20090242935
    Abstract: Methods and structures for monolithically integrating monocrystalline silicon and monocrystalline non-silicon materials and devices are provided. In one structure, a monolithically integrated semiconductor device structure comprises a silicon substrate and a first monocrystalline semiconductor layer disposed over the silicon substrate, wherein the first monocrystalline semiconductor layer has a lattice constant different from a lattice constant of relaxed silicon. The structure further includes an insulating layer disposed over the first monocrystalline semiconductor layer in a first region and a monocrystalline silicon layer disposed over the insulating layer in the first region. The structure includes at least one silicon-based photodetector comprising an active region including at least a portion of the monocrystalline silicon layer.
    Type: Application
    Filed: November 1, 2006
    Publication date: October 1, 2009
    Applicant: Massachusetts Institute of Technology
    Inventor: Eugene A. Fitzgerald
  • Patent number: 7595519
    Abstract: An image sensor includes a first type semiconductor layer, a second type semiconductor layer and a first type well. The first type semiconductor layer is formed on a semiconductor substrate and includes a plurality of pixels which receive external light and convert optical charges into an electrical signal. The second type semiconductor layer is supplied with a drain voltage to have a potential different from that of the first semiconductor layer, and the first type well controls a power source voltage (VDD) using the drain voltage.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: September 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Jin Lee, Yo-Han Sun, Tae-Seok Oh, Sung-Jae Joo, Bum-Suk Kim, Yun-Ho Jang, Sae-Young Kim, Keun-Chan Yuk
  • Patent number: 7592654
    Abstract: CMOS image sensor having high sensitivity and low crosstalk, particularly at far-red to infrared wavelengths, and a method for fabricating a CMOS image sensor. A CMOS image sensor has a substrate, an epitaxial layer above the substrate, and a plurality of pixels extending into the epitaxial layer for receiving light. The image sensor also includes at least one of a horizontal barrier layer between the substrate and the epitaxial layer for preventing carriers generated in the substrate from moving to the epitaxial layer, and a plurality of lateral barrier layers between adjacent ones of the plurality of pixels for preventing lateral diffusion of electrons in the epitaxial layer.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: September 22, 2009
    Assignee: Aptina Imaging Corporation
    Inventors: Sandeep R. Bahl, Fredrick P. LaMaster, David W. Bigelow
  • Patent number: 7588956
    Abstract: Disclosed herein are a CMOS image sensor and a method of manufacturing the same, which can reduce current leakage through a plug connecting a photodiode and a transfer transistor to each other, and thereby provide low dark current levels. The CMOS image sensor includes a first epitaxial layer on or in a substrate. A photodiode PD is in the first epitaxial layer. A second epitaxial layer is on or in the substrate (e.g., on the first epitaxial layer). A shallow trench isolation region is in an area of the substrate. A plug is in the substrate (e.g., the second epitaxial layer) connected with the photodiode and spaced apart from the shallow trench isolation region. A transfer transistor having a gate electrode and source/drain regions is connected with the plug.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: September 15, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Su Lim
  • Patent number: 7589310
    Abstract: A sensor includes an array of substantially parallel wires, radiant energy sensitive material formed adjacent the array of parallel wires, and output units connected to each of the wires and constructed to provide an analog correlation vector output responsive to radiant energy incident on the sensor. The sensor is constructed as an image sensing device suitable for applications such as pattern recognition and image tracking.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: September 15, 2009
    Inventor: Blaise Laurent Mouttet
  • Patent number: 7586139
    Abstract: An imaging sensor with an array of FET pixels and method of forming the imaging sensor. Each pixel is a semiconductor island, e.g., N-type silicon on a Silicon on insulator (SOI) wafer. FETs are formed in one photodiode electrode, e.g., a P-well cathode. A color filter may be attached to an opposite surface of island. A protective layer (e.g., glass or quartz) or window is fixed to the pixel array at the color filters. The image sensor may be illuminated from the backside with cell wiring above the cell. So, an optical signal passes through the protective layer is filtered by the color filters and selectively sensed by a corresponding photo-sensor.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: September 8, 2009
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Mark D. Jaffe, Alan Loiseau, Richard J. Rassel
  • Patent number: 7586169
    Abstract: An image sensor that can include a photodiode formed on one side of a substrate to receive light and then generate signal charges based on the light; and a transistor converting the signal charges into predetermined voltage and transmitting the voltage to an output terminal, whereby the transistor directly contact and surrounds the photodiode.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: September 8, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Woo-Seok Hyun
  • Patent number: 7586108
    Abstract: The invention relates to a radiation detector, a method of manufacturing a radiation detector and a lithographic apparatus comprising a radiation detector. The radiation detector has a radiation-sensitive surface. The radiation-sensitive surface is sensitive for radiation with a wavelength between 10-200 nm. The radiation detector has a silicon substrate, a dopant layer, a first electrode and a second electrode. The silicon substrate is provided in a surface area at a first surface side with doping profile of a certain conduction type. The dopant layer is provided on the first surface side of the silicon substrate. The dopant layer has a first layer of dopant material and a second layer. The second layer is a diffusion layer which is in contact with the surface area at the first surface side of the silicon substrate. The first electrode is connected to dopant layer. The second electrode is connected to the Silicon substrate.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: September 8, 2009
    Assignee: ASML Netherlands B.V.
    Inventors: Stoyan Nihtianov, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Scholtes
  • Patent number: 7582897
    Abstract: Disclosed is an organic semiconductor composition containing particles and an organic semiconducting compound combining with the particles.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: September 1, 2009
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Katsura Hirai, Mitsuhiro Fukuda
  • Patent number: 7579858
    Abstract: A semiconductor device is disclosed.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 25, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Yoichi Okumura
  • Patent number: 7579639
    Abstract: A CMOS image sensor that includes a semiconductor substrate with a plurality of photodiodes arranged at fixed intervals on the semiconductor substrate. A light-shielding layer partially overlaping the plurality of photodiodes and an insulating interlayer are formed on an entire surface of the semiconductor substrate including the plurality of photodiodes. A color filter layer having a plurality of color filters separated by a predetermined gap is formed on the insulating interlayer and a planarization layer is formed over the entire surface of the semiconductor substrate including the color filter layer. A plurality of microlenses are formed on the planarization layer in correspondence with the color filters of the color filter layer, wherein an additional structural layer, disposed between the color filter layer and the insulating interlayer, is provided to close a predetermined gap between the color filters of the color filter layer.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 25, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Meng An Jung
  • Patent number: 7579638
    Abstract: A solid-state image pickup device is provided in which a pixel forming region 4 and a peripheral circuit forming region 20 are formed on the same semiconductor substrate, a first element isolation portion is formed by an element isolation layer 21 in which an insulating layer is buried into a semiconductor substrate 10 in the peripheral circuit forming region 20, a second element isolation portion is composed of an element isolation region 11 formed within the semiconductor substrate 10 and an element isolation layer 12 projected in the upper direction from the semiconductor substrate 10 in the pixel forming region 4 and an element isolation layer 21 of the first element isolation portion and the element isolation layer 12 of the second element isolation portion contain the same insulating layers 17, 18 and 19. This solid-state image pickup device has a structure capable of suppressing a noise relative to a pixel signal and which can be microminiaturized in the peripheral circuit forming region.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: August 25, 2009
    Assignee: Sony Corporation
    Inventor: Ikuo Yoshihara
  • Publication number: 20090206328
    Abstract: Disclosed is a photosensitive composition having photosensitivity which is alkaline developable without containing a crosslinking agent. Specifically disclosed is a silicon-containing photosensitive composition characterized by containing a silicon-containing polymer including at least one polymer (A1) represented by the general formula (1) below, wherein at least one of R11-R1n is an H and the rest of them are organic groups, or at least one polymer (A1) and one polymer (A2) represented by the general formula (2) below, and a compound (B) which generates an acid or a base when irradiated with an active ray or radiation ray. (In the formula, at least one of R11-R1n represents an H, and n represents an integer of 1 or more.) (In the formula, R21-R2n represent atoms other than H or functional groups, and n represents an integer of 1 or more.
    Type: Application
    Filed: December 28, 2005
    Publication date: August 20, 2009
    Applicants: SEKISUI CHEMICAL CO., LTD.
    Inventors: Kimihiro Matsukawa, Yukihito Matsuura, Kenichi Azuma, Shigeru Nakamura, Yasunari Kusaka
  • Patent number: 7576362
    Abstract: To realize a high-performance liquid crystal display device or light-emitting element using a plastic film. A CPU is formed over a first glass substrate and then, separated from the first substrate. A pixel portion having a light-emitting element is formed over a second glass substrate, and then, separated from the second substrate. The both are bonded to each other. Therefore, high integration can be achieved. Further, in this case, the separated layer including the CPU serves also as a sealing layer of the light-emitting element.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: August 18, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Junya Maruyama, Yumiko Ohno
  • Patent number: 7566876
    Abstract: Effective sensitivity of a photodetector of an image sensor is controlled by partitioning signal charge from incident photons, thus producing a manageable yield and a consequently higher, photon shot noise limited, signal to noise ratio than in the prior art, when imaging high flux rates of energetic photons or particles, such as produced by x-ray generators. The invention may be applied, for example, to an image sensor with a photosensitive layer coupled to a charge collection/readout structure, e.g. photoconductor or scintillator on CMOS array, or to an intrinsically sensitive charge collection/readout structure, e.g. deep active layer CMOS.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: July 28, 2009
    Assignee: E2V Technologies (UK) Limited
    Inventors: Ian Moody, Raymond Thomas Bell
  • Patent number: 7566925
    Abstract: Image sensors and methods of fabricating the same are provided. The image sensor includes a blocking pattern disposed on photodiodes. The blocking pattern is formed of insulation material having a metal diffusion coefficient which is lower than a silicon oxide diffusion coefficient. Therefore, dark defects of the image sensor are reduced. In addition, the image sensor includes a color-ratio control layer. The color ratio control layer controls color ratios between the sensitivities to blue, green and red. As a result, color distinction of the picture that is embodied by the image sensor can be improved.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Jae-Ho Song, Young-Hoon Park, Sang-Hak Shin
  • Publication number: 20090179237
    Abstract: CMOS image sensor and method for fabricating the same, the CMOS image sensor including a second conductive type semiconductor substrate having an active region and a device isolation region defined therein, wherein the active region has a photodiode region and a transistor region defined therein, a device isolating film in the semiconductor substrate of the device isolation region, a first conductive type impurity region in the semiconductor substrate of the photodiode region, the first conductive type impurity region being spaced a distance from the device isolation film, and a second conductive type first impurity region in the semiconductor substrate between the first conductive type impurity region and the device isolation film, thereby reducing generation of a darkcurrent at an interface between the photodiode region and a field region.
    Type: Application
    Filed: February 5, 2008
    Publication date: July 16, 2009
    Inventor: Chang Hun Han
  • Publication number: 20090166684
    Abstract: A CMOS photodetector pixel formed of a substrate, an epitaxial layer above the substrate including a first region having the same polarity but a lower impurity concentration as that of the substrate, and a gate arrangement including a first gate that forms a charge accumulation region in the epitaxial layer when the gate is energized, wherein the charge accumulation region extends deeper toward the substrate than in conventional constructions. The epitaxial layer includes a shielding structure for absorbing electrons generated therein by photons impinging on the pixel, except electrons generated close to the charge accumulation region. The shielding structure may have opposite polarity from that of the substrate, including a first portion under the first gate, and a second portion extending upward from the first portion at the margin of the pixel. Alternatively, the shielding structure may have the same polarity as the substrate, but a lower impurity concentration.
    Type: Application
    Filed: December 29, 2008
    Publication date: July 2, 2009
    Applicant: 3DV SYSTEMS LTD.
    Inventors: Giora Yahav, Thomas Reiner
  • Publication number: 20090166687
    Abstract: An image sensor and a method for manufacturing the same may include a gate on a semiconductor substrate, a photodiode on the semiconductor substrate at a first side of the gate, a floating diffusion region on the semiconductor substrate at a second side of the gate, in which the second side is opposite to the first side, a channel under the gate, the channel connecting the photodiode with the floating diffusion region, and a barrier region under the photodiode.
    Type: Application
    Filed: November 5, 2008
    Publication date: July 2, 2009
    Inventor: Jong Man KIM
  • Patent number: 7554170
    Abstract: A photosensor includes a plurality of photosensitive regions including a first photosensitive region connected to a first voltage reference, and at least one additional photosensitive region. A signal collector is connected to the first photosensitive region. At least one switching device is for switching the at least one additional photosensitive region between the first voltage reference and a second voltage reference that is less than the first voltage reference, and for reversibly connecting the at least one additional photosensitive region to the signal collector so that the photosensor is variably responsive to different light levels.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: June 30, 2009
    Assignee: STMicroelectronics (Research & Development) Limited
    Inventor: Jeffrey Raynor
  • Patent number: 7550798
    Abstract: Provided is a CMOS image sensor and method for manufacturing the same. The CMOS image sensor includes a semiconductor substrate, a gate electrode formed on the semiconductor substrate, a conductive diffusion region formed in a photodiode area of the semiconductor substrate, a floating diffusion region formed in a transistor region of the semiconductor substrate, and an oxide region formed in the semiconductor substrate below the floating diffusion region.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: June 23, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sung Ho Kwak
  • Patent number: 7550813
    Abstract: A solid-state image pickup device comprises: a plurality of photoelectric converting films stacked via an insulating layer, the photoelectric converting films being above a semiconductor substrate in which a signal read circuit is formed, in which each of the photoelectric converting films is sandwiched between a pixel electrode film and an opposing electrode film, wherein the pixel electrode film of an upper one of the photoelectric converting films is connected to the signal read circuit by a longitudinal line passing through a lower one of the photoelectric converting films, and, in the longitudinal line, a passing portion which passes through the lower photoelectric converting film is formed by filling an opening with a conductive material, the opening being formed from a same plane of the pixel electrode film stacked on the lower photoelectric converting film to an upper end face of the insulating layer stacked above the photoelectric converting film.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: June 23, 2009
    Assignee: FujifilmCorporation
    Inventor: Nobuo Suzuki
  • Publication number: 20090146195
    Abstract: A system for detecting high speed noise in active pixel sensors includes a photodiode for receiving low levels of light, a reset transistor, an amplifier transistor, a row select transistor, and a high-speed analog-to-digital converter. The reset transistor gate receives a reset signal, and the reset transistor drain receives a reset voltage. The amplifier transistor gate is connected to the photodiode and the reset transistor's source. The amplifier transistor receives a supply voltage at the drain terminal. The row select transistor gate terminal receives a row select signal. The row select drain terminal is connected to the amplifier transistor source terminal. The high-speed analog-to-digital converter includes an analog input port connected to the row select transistor source and a digital output port capable of resolving high-speed excitation events received by the photodiode.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 11, 2009
    Inventor: Joshua Posamentier
  • Patent number: 7545423
    Abstract: A CMOS image sensor with improved sensitivity includes a main pixel array region of an active pixel array region formed on a semiconductor substrate. A passivation layer is formed over the sensor, and it is at least partially removed from the main pixel array region, such that incident light being detected by the main pixel array does not pass through the passivation layer. Optical absorption and refraction caused by the material of the passivation layer are eliminated, resulting in an image sensor with improved optical sensitivity.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: June 9, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young Hoon Park, Ki Hong Kim, Bum Suk Kim, Jeong Hoon Bae, Yu Jin Ahn, Jung Chak Ahn, Soo Cheol Lee, Yong Jei Lee, Sung In Hwang
  • Patent number: 7538371
    Abstract: A CMOS image sensor integrated with 1T-SRAM is provided on a substrate having a pixel array part, a logic circuit part, and a memory part by adding only one photoresist process. There are a plurality of CMOS image sensor devices in the pixel array part, a logic circuit in the logic circuit part, and a plurality of 1T-SRAMs in the memory part, and each part is isolated by a plurality of STI regions. The 1T-SRAM includes a capacitor structure and a transistor. The capacitor structure includes a well region as a bottom capacitor plate, a capacitor dielectric layer, and a top capacitor plate formed on the substrate respectively. The transistor includes a gate dielectric layer, a gate, a drain, and a source continuous with and electrically connected to the well region.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: May 26, 2009
    Assignee: United Microelectronics Corp.
    Inventor: Jinsheng Yang
  • Patent number: 7538405
    Abstract: Surface plasmons are used to increase an energy absorbing efficiency of a semiconductor sensor.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: May 26, 2009
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Russell W. Gruhlke, Charles E. Potter
  • Patent number: 7535042
    Abstract: A pixel cell with controlled leakage is formed by modifying the location and gate profile of a high dynamic range (HDR) transistor. The HDR transistor may have the gate profile of a transfer gate or a reset gate. The HDR transistor may be located on a side of the photodiode that is the same, opposite to, or perpendicular to the transfer gate. The leakage through the HDR transistor may be controlled by modifying the photodiode implants around the transistor. The photodiode implants at the HDR transistor may be placed similarly to the implants at the transfer gate. However, when the photodiode implants are moved away from the HDR transistor, leakage is reduced. When the photodiode implants are moved farther under the HDR transistor, leakage is increased to the extent desirable. The leakage through the HDR transistor may also be controlled by applying a voltage across the transistor.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: May 19, 2009
    Assignee: Aptina Imaging Corporation
    Inventor: Howard E. Rhodes
  • Patent number: 7531374
    Abstract: A CMOS image sensor (CIS) process is described. A semiconductor substrate is provided, and then a gate dielectric layer, a gate material layer and a thickening layer are sequentially formed on the substrate, wherein the thickening layer includes at least a hard mask layer. The thickening layer is defined to form a transfer-gate pattern, and then the transfer-gate pattern is used as an etching mask to pattern the gate material layer and form a transfer gate. Ion implantation is then conducted to form a PN diode in the substrate with the transfer-gate pattern and the transfer gate as a mask.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: May 12, 2009
    Assignee: United Microelectronics Corp.
    Inventor: Ching-Hung Kao
  • Patent number: 7531855
    Abstract: A multi-chip device includes LED sensors for sensing light separated by a predetermined interval in a wafer, LEDs for emitting light formed over the wafer respectively corresponding to the LED sensors, a driving circuit formed between the LEDs over the wafer, an insulating film over the wafer, and trenches in the insulating film exposign the LEDs.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: May 12, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee Bok Kang
  • Patent number: 7531856
    Abstract: A display apparatus that includes: a plurality of light-emitting devices disposed on a substrate with an accumulation of, in this or inverse order, a light transmissive electrode layer, a functional layer including a light-emitting layer, and an opposing electrode layer; and a color conversion layer that is provided on a side of the light transmissive electrode layer for any of the light-emitting devices, and applies color conversion to an emitted light generated by the light-emitting layer for the light-emitting device. In the display apparatus, the light-emitting devices each have a reflective surface on a position where the light-emitting layer is sandwiched with the light transmissive electrode layer, and an optical distance between the reflective surface and the light-emitting layer varies by the light-emitting devices depending on provision of the color conversion layer.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: May 12, 2009
    Assignee: Sony Corporation
    Inventor: Isamu Kobori
  • Patent number: 7525131
    Abstract: Disclosed is a photoelectric surface including: a first group III nitride semiconductor layer that produces photoelectrons according to incidence of ultraviolet rays; and a second group III nitride semiconductor layer provided adjacent to the first group III nitride semiconductor layer and made of a thin-film crystal having c-axis orientation in a thickness direction, the second group III nitride semiconductor layer having an Al composition higher than that of the first group III nitride semiconductor layer.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: April 28, 2009
    Assignees: National University Corporation Shizuoka University, Hamamatsu Photonics K.K.
    Inventors: Masatomo Sumiya, Shunro Fuke, Tokuaki Nihashi, Minoru Hagino
  • Publication number: 20090101946
    Abstract: A CIS and a method for manufacturing the same are provided. The CIS includes an interlayer insulation layer formed on a substrate having a photodiode and a transistor formed thereon; a plurality of color filters formed on the interlayer insulation layer and spaced a predetermined interval apart from each other; a metal sidewall formed to fill the predetermined interval between the plurality of the color filters; and a microlens formed on each of the plurality of color filters.
    Type: Application
    Filed: December 31, 2008
    Publication date: April 23, 2009
    Inventor: JOON HWANG
  • Patent number: 7514284
    Abstract: Image sensors and methods of fabricating the same are provided. The image sensor includes a blocking pattern disposed on photodiodes. The blocking pattern is formed of insulation material having a metal diffusion coefficient which is lower than a silicon oxide diffusion coefficient. Therefore, dark defects of the image sensor are reduced. In addition, the image sensor includes a color-ratio control layer. The color ratio control layer controls color ratios between the sensitivities to blue, green and red. As a result, color distinction of the picture that is embodied by the image sensor can be improved.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: April 7, 2009
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Jae-Ho Song, Young-Hoon Park, Sang-Hak Shin
  • Patent number: 7511323
    Abstract: The present invention, in the various exemplary embodiments, provides a RGB color filter array. The red, green and blue pixel cells are arranged in a honeycomb pattern. The honeycomb layout provides the space to vary the size of pixel cells of an individual color so that, for example, the photosensor of blue pixels can be made larger than that of the red or green pixels. In another aspect of the invention, depicted in the exemplary embodiments, the honeycomb structure can also be implemented with each pixel row having a same color of pixel cells which can simplify can conversion in the readout circuits. In another aspect of the invention, the RGB honeycomb pixel array may be implemented using a shared pixel cell architecture.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: March 31, 2009
    Assignee: Aptina Imaging Corporation
    Inventor: Jeffrey A. McKee
  • Publication number: 20090078972
    Abstract: A sensor thin film transistor includes a gate electrode, a gate insulation layer formed on the gate electrode, a semiconductor layer having a portion positioned above the gate electrode and on a side of the gate insulation layer opposite the gate electrode, and a source electrode and drain electrode having spaced apart ends positioned on the semiconductor layer, wherein the sensor thin film transistor is operative such that a signal-to-noise ratio is equal to or greater than about 200 when the gate-off voltage applied to the gate electrode is equal to or less than about 0V.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 26, 2009
    Inventors: Tae-Hyung HWANG, Hyung-Il JEON, Nikulin IVAN
  • Patent number: 7498621
    Abstract: A two-dimensional, temporally modulated electromagnetic wavefield, preferably in the ultraviolet, visible or infrared spectral range, can be locally detected and demodulated with one or more sensing elements. Each sensing element consists of a resistive, transparent electrode (E) on top of an insulated layer (O) that is produced over a semiconducting substrate whose surface is electrically kept in depletion. The electrode (E) is connected with two or more contacts (C1; C2) to a number of clock voltages that are operated synchronously with the frequency of the modulated wavefield. In the electrode and in the semiconducting substrate lateral electric fields are created that separate and transport photogenerated charge pairs in the semiconductor to respective diffusions (D1; D2) close to the contacts (C1; C2).
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: March 3, 2009
    Assignee: MESA Imaging AG
    Inventor: Peter Seitz
  • Patent number: 7498649
    Abstract: An electro-optical device includes an insulating substrate, a switching element, at least one PIN diode, and at least one reflector. The switching element includes a first polysilicon semiconductor layer formed on the insulating substrate, and a gate electrode formed between the insulating substrate and the first semiconductor layer. Each of the at least one PIN diode includes a second polysilicon semiconductor layer formed on the insulating substrate. The at least one reflector is formed in the same layer as the gate electrode and opposite the second semiconductor layer or layers of the at least one PIN diode.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: March 3, 2009
    Assignee: Epson Imaging Devices Corporation
    Inventors: Shin Koide, Hiroko Muramatsu, Shin Fujita
  • Patent number: 7493713
    Abstract: An image sensor and related method of fabrication are disclosed. The image sensor comprises a plurality of photoelectric conversion regions disposed in a predetermined field of a semiconductor substrate, color filters arranged on the photoelectric conversion regions, and a reflection protection structure disposed between the photoelectric conversion regions and the color filters. The reflection protection structure comprises portions having different thicknesses in relation to the color filters.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: February 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Young-Hoon Park
  • Patent number: 7495271
    Abstract: In a solid-state image-sensing device, when image sensing is performed, in each pixel, MOS transistors T1 and T5 are turned on and a MOS transistor T6 is turned off so that a MOS transistor T2 operates in a subthreshold region. When resetting is preformed, in each pixel, the MOS transistors T1 and T5 are turned off and the MOS transistor T6 is turned on so that the gate voltage of the MOS transistor T2 is kept constant. In this state, the MOS transistor T2 is brought first into a conducting state and then, by turning a signal ?VPS to a high level, into a cut-off state. This permits a signal proportional to the threshold value of the MOS transistor T2 to be output as compensation data.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: February 24, 2009
    Assignee: Minolta Co., Ltd.
    Inventors: Yoshio Hagihara, Kenji Takada
  • Patent number: 7491991
    Abstract: A method for fabricating a CMOS image sensor is provided. The method includes: forming a gate electrode with a gate insulating layer interposed on a transistor region of a semiconductor substrate having an active region defined by a photo diode and a transistor region; forming a first impurity region of a first conductive type at a transistor region at one side of the gate electrode; forming a second impurity region of a first conductive type at a photo diode region at other side of the gate electrode; forming sidewall insulating layers at both sides of the gate electrode; forming a third impurity region of a first conductive type at one side of a gate electrode where the first impurity region is formed; and forming a fourth impurity region of a second conductive type at the gate electrode, the photodiode region and the transistor region by implanting impurity ions of a second conductive type on the entire surface of the semiconductor substrate.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: February 17, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: In Gyun Jeon
  • Patent number: 7492026
    Abstract: A light sensor located above an integrated circuit including a lower electrode, a heavily-doped amorphous silicon layer of a first conductivity type, and a lightly-doped amorphous silicon layer of a second conductivity type. The lightly-doped amorphous silicon layer rests on a planar surface at least above and in the vicinity of the lower electrode.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: February 17, 2009
    Assignee: STMicroelectronics S.A.
    Inventors: Danielle Thomas, Maurice Rivoire
  • Patent number: 7491989
    Abstract: An imaging member includes a substrate, a charge transport layer, a charge generator layer, and a charge transporting or photoconductive overcoating layer.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: February 17, 2009
    Assignee: Xerox Corporation
    Inventors: Rafik O. Loutfy, Zoran D. Popovic, John F. Graham, Timothy P. Bender
  • Patent number: 7488615
    Abstract: A method of manufacturing a solid-state imaging device, wherein the solid-state imaging device comprising: a semiconductor substrate; a plurality of photodiodes that are formed on a surface of the semiconductor substrate so as to be arranged in an array form; and a light shielding film, provided on or above the surface of the semiconductor substrate, that has a plurality of openings in correspondence with respective ones of the photodiodes, the method comprising: laminating, on the surface of the semiconductor substrate, lamination layers including the light shielding film; opening through holes in the lamination layers, respectively, at positions corresponding to the photodiodes to form the openings in the light shielding film; forming a low refractive index material layer with a predetermined thickness isotropically on a side wall surface of each of the through holes; and filling a remaining hole portion of each of the through holes with a high refractive index material to form an optical waveguide for guid
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: February 10, 2009
    Assignee: Fujifilm Corporation
    Inventor: Shinji Uya