With Additional, Non-memory Control Electrode Or Channel Portion (e.g., Accessing Field Effect Transistor Structure) Patents (Class 257/326)
  • Publication number: 20150115350
    Abstract: A three dimensional stacked nonvolatile semiconductor memory according to an example of the present invention includes a memory cell array comprised of first and second blocks disposed side by side in a first direction, and a driver disposed on one end of the memory cell array in a second direction orthogonal to the first direction. A source diffusion layer, which is common to the first and second blocks, is disposed in a semiconductor substrate, and a contact plug, which has a lower end connected to the source diffusion layer and an upper end connected to a source line disposed above at least three conductive layers, is interposed between the first and second blocks.
    Type: Application
    Filed: January 5, 2015
    Publication date: April 30, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hiroshi MAEJIMA
  • Patent number: 9018694
    Abstract: Methods and systems are disclosed for gate dimension control in multi-gate structures for integrated circuit devices. Processing steps for formation of one or more subsequent gate structures are adjusted based upon dimensions determined for one or more previously formed gate structures. In this way, one or more features of the resulting multi-gate structures can be controlled with greater accuracy, and variations between a plurality of multi-gate structures can be reduced. Example multi-gate features and/or dimensions that can be controlled include overall gate length, overlap of gate structures, and/or any other desired features and/or dimensions of the multi-gate structures. Example multi-gate structures include multi-gate NVM (non-volatile memory) cells for NVM systems, such as for example, split-gate NVM cells having select gates (SGs) and control gates (CGs).
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: April 28, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, ShanShan Du
  • Patent number: 9012320
    Abstract: Example embodiments relate to a three-dimensional semiconductor memory device including an electrode structure on a substrate, the electrode structure including at least one conductive pattern on a lower electrode, and a semiconductor pattern extending through the electrode structure to the substrate. A vertical insulating layer may be between the semiconductor pattern and the electrode structure, and a lower insulating layer may be between the lower electrode and the substrate. The lower insulating layer may be between a bottom surface of the vertical insulating layer and a top surface of the substrate. Example embodiments related to methods for fabricating the foregoing three-dimensional semiconductor memory device.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaegoo Lee, Kil-Su Jeong, Hansoo Kim, Youngwoo Park
  • Patent number: 9006817
    Abstract: A semiconductor device comprising four semiconductor pillars extending in a direction perpendicular to a substrate, a connection channel formed on the substrate and connected to one ends of the four semiconductor pillars, a source line connected to the other ends of first and second semiconductor pillars adjacent to each other among the four semiconductor pillars, a bit line connected to the other ends of third and fourth semiconductor pillars among the four semiconductor pillars, first to fourth stack structures, which are formed along the first to fourth semiconductor pillars, respectively, between the source and bit lines and the substrate, and each includes a pass word line, at least one word line and a select line which are stacked over the substrate, and a memory layer interposed between the word line and each of the first to fourth semiconductor pillars.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: April 14, 2015
    Assignee: SK Hynix Inc.
    Inventor: Sang-Moo Choi
  • Patent number: 9000511
    Abstract: A non-volatile memory device includes a substrate having an active region defined by a device isolation region that has a trench and an air gap, a device isolation pattern positioned at a lower portion of the trench, a memory cell layer including a tunnel insulation layer, a trap insulation layer and a blocking insulation layer that are sequentially stacked on the active region and one of which extends from the active region toward the device isolation region encloses top of the air gap whose bottom is defined by a layer other than that of the top, and a control gate electrode positioned on the cell structure. The one of the insulation layer extending includes a recess at a region corresponding to the center of the air gap.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 7, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Il Chang, Young-Woo Park
  • Patent number: 8999828
    Abstract: A split gate memory cell is fabricated with a word gate extending below an upper surface of a substrate having the channel region. An embodiment includes providing a band engineered channel with the word gate extending there through. Another embodiment includes forming a buried channel with the word gate extending below the buried channel.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: April 7, 2015
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Eng Huat Toh, Shyue Seng (Jason) Tan
  • Publication number: 20150091079
    Abstract: A method of making a semiconductor structure includes forming a select gate over a substrate in an NVM portion and a first protection layer over a logic portion. A control gate and a storage layer are formed over the substrate in the NVM portion, wherein the control and select gates have coplanar top surfaces. The charge storage layer is under the control gate, along adjacent sidewalls of the select gate and control gate, and is partially over the top surface of the select gate. A second protection layer is formed over the NVM portion and the logic portion. The second protection layer and the first protection layer are removed from the logic portion leaving a portion of the second protection layer over the control gate and the select gate. A gate structure is formed over the logic portion comprising a high k dielectric and a metal gate.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: ASANGA H. PERERA, Cheong Min Hong, Sung-Taeg Kang, Jane A. Yater
  • Publication number: 20150091080
    Abstract: A structure of a memory cell includes a substrate, a well, three source/drain doped regions, two bottom dielectric layers, two charge trapping layers, a blocking layer and two gates to form a storage transistor and a select transistor of the memory cell. A bottom dielectric layer and a charge trapping layer may be used to provide the dielectric of the gate of the select transistor with enough thickness but without any additional fabrication process.
    Type: Application
    Filed: July 8, 2014
    Publication date: April 2, 2015
    Inventors: Wein-Town Sun, Cheng-Yen Shen
  • Patent number: 8994096
    Abstract: The invention relates to a multi-transistor, e.g. a two-transistor memory cell with an enhancement junction field effect transistor (JFET) as the access gate transistor. In one embodiment, the JFET is provided as a self-aligned JFET. Accordingly, and advantageous over the prior art, the invention allows for a method for manufacturing a multi-transistor, e.g. a two-transistor memory cell comprising a JFET as the access transistor without adding any additional masks and/or processing steps. Such a multi-transistor, e.g. a two-transistor memory cell according to invention, provides an improved reliability.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 31, 2015
    Assignee: NXP B.V.
    Inventor: Dusan Golubovic
  • Patent number: 8994006
    Abstract: Semiconductor nanoparticles are deposited on a top surface of a first insulator layer of a substrate. A second insulator layer is deposited over the semiconductor nanoparticles and the first insulator layer. A semiconductor layer is then bonded to the second insulator layer to provide a semiconductor-on-insulator substrate, which includes a buried insulator layer including the first and second insulator layers and embedded semiconductor nanoparticles therein. Back gate electrodes are formed underneath the buried insulator layer, and shallow trench isolation structures are formed to isolate the back gate electrodes. Field effect transistors are formed in a memory device region and a logic device region employing same processing steps. The embedded nanoparticles can be employed as a charge storage element of non-volatile memory devices, in which charge carriers tunnel through the second insulator layer into or out of the semiconductor nanoparticles during writing and erasing.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Robert H. Dennard, Hemanth Jagannathan, Ali Khakifirooz, Tak H. Ning, Ghavam G. Shahidi
  • Patent number: 8994094
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes first and second stacked body, first and second semiconductor pillars, a connecting portion, a first memory film, and a dividing portion. The stacked bodies include a plurality of electrode films stacked along a first axis and as interelectrode insulating film provided between the electrode films. The first and second semiconductor pillars penetrate through the first and second stacked bodies along the first axis, respectively. The connecting portion electrically connects the first and second semiconductor pillars. The first memory film is provided between the electrode film and the semiconductor pillar. The dividing portion electrically divides the first and second electrode films from each other between the first semiconductor pillar and the second semiconductor pillar, is in contact with the connecting portion, and includes a stacked film including a material used for the first memory film.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: March 31, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toru Matsuda
  • Publication number: 20150084114
    Abstract: A non-volatile memory device may include a semiconductor substrate and an isolation layer on the semiconductor substrate wherein the isolation layer defines an active region of the semiconductor substrate. A tunnel insulation layer may be provided on the active region of the semiconductor substrate, and a charge storage pattern may be provided on the tunnel insulation layer. An interface layer pattern may be provided on the charge storage pattern, and a blocking insulation pattern may be provided on the interface layer pattern. Moreover, the block insulation pattern may include a high-k dielectric material, and the interface layer pattern and the blocking insulation pattern may include different materials. A control gate electrode may be provided on the blocking insulating layer so that the blocking insulation pattern is between the interface layer pattern and the control gate electrode. Related methods are also discussed.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 26, 2015
    Inventors: Juhyung KIM, Changseok Kang, Sung-II Chang, Jungdal Choi
  • Patent number: 8987807
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes first to n-th semiconductor layers which are stacked in a first direction perpendicular to a surface of a semiconductor substrate and which extend in a second direction parallel to the surface of the semiconductor substrate, an electrode which extends in the first direction along side surfaces of the first to n-th semiconductor layers, the side surfaces of the first to n-th semiconductor layers exposing in a third direction perpendicular to the first and second directions, and first to n-th charge storage layers located between the first to n-th semiconductor layers and the electrode respectively. The first to n-th charge storage layers are separated from each other in areas between the first to n-th semiconductor layers.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shosuke Fujii, Kiwamu Sakuma, Jun Fujiki, Atsuhiro Kinoshita
  • Patent number: 8987804
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a semiconductor region, a tunnel insulator provided above the semiconductor region, a charge storage insulator provided above the tunnel insulator, a block insulator provided above the charge storage insulator, a control gate electrode provided above the block insulator, and an interface region including a metal element, the interface region being provided at one interface selected from between the semiconductor region and the tunnel insulator, the tunnel insulator and the charge storage insulator, the charge storage insulator and the block insulator, and the block insulator and the control gate electrode.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichiro Toratani, Masayuki Tanaka, Kazuhiro Matsuo
  • Patent number: 8981460
    Abstract: The subject disclosure presents power semiconductor devices, and methods for manufacture thereof, with improved ruggedness and. In an aspect, the power semiconductor devices are power field effect transistors (FETs) having enhanced suppression of the activation of the parasitic bipolar junction transistor (BJT) and a normal threshold value. The devices comprise a doped source (14) of a first conductivity type, a doped body (15) of a second conductivity type, a source electrode (20) short-connecting the doped body and the doped source, a doped drift region (10) of the first conductivity type, a first layer (30) of a gate dielectric region (36) covering the surface of the doped drift region (10), and forming channel from the doped source (14) to the doped drift region (10), a second layer (31) of the gate dielectric region (36) over the first layer (30), a third layer (32) of the gate dielectric region (36) over the second layer (31), and a gate electrode (21) over the third layer (32).
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: March 17, 2015
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Johnny Kin On Sin, Xianda Zhou
  • Patent number: 8981461
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a fin-type stacked layer structure in which a first insulating layer, a first semiconductor layer, . . . an n-th insulating layer, an n-th semiconductor layer, and an (n+1)-th insulating layer (n is a natural number equal to or more than 2) are stacked in order thereof in a first direction perpendicular to a surface of a semiconductor substrate and which extends in a second direction parallel to the surface of the semiconductor substrate, first to n-th memory strings which use the first to n-th semiconductor layers as channels respectively, a common semiconductor layer which combines the first to n-th semiconductor layers at first ends of the first to n-th memory strings in the second direction.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shosuke Fujii, Daisuke Hagishima, Kiwamu Sakuma
  • Publication number: 20150069494
    Abstract: A monolithic three dimensional NAND string includes a vertical semiconductor channel and a plurality of control gate electrodes in different device levels. The string also includes a blocking dielectric layer, a charge storage region and a tunnel dielectric. A first control gate electrode is separated from a second control gate electrode by an air gap located between the major surfaces of the first and second control gate electrodes and/or the charge storage region includes silicide nanoparticles embedded in a charge storage dielectric.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: Raghuveer S. Makala, Johann Alsmeier, Yao-Sheng Lee
  • Publication number: 20150069499
    Abstract: According to one embodiment, the stacked body includes a plurality of electrode layers and a plurality of insulating layers alternately stacked on the substrate. The plurality of contact parts are provided in a protruding shape on respective end parts of the plurality of electrode layers. The plurality of contact parts do not overlap each other in the stacking direction. The plurality of contact parts are displaced in a surface direction of the substrate. The plurality of plugs extends from the respective contact parts toward the respective circuit interconnections and electrically connects the respective contact parts with the respective circuit interconnections.
    Type: Application
    Filed: March 11, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hiroshi NAKAKI
  • Publication number: 20150060988
    Abstract: Semiconductor devices, and methods of fabricating the same, include forming a trench between a plurality of patterns on a substrate to be adjacent to each other, forming a first sacrificial layer in the trench, forming a first porous insulation layer having a plurality of pores on the plurality of patterns and on the first sacrificial layer, and removing the first sacrificial layer through the plurality of pores of the first porous insulation layer to form a first air gap between the plurality of patterns and under the first porous insulation layer.
    Type: Application
    Filed: October 21, 2014
    Publication date: March 5, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Bo-Young LEE, Jongwan CHOI, Myoungbum LEE
  • Publication number: 20150060995
    Abstract: Nonvolatile semiconductor storage device provided with first to fourth memory-cell unit each including a first select transistor, a second select transistor series connected to the first select transistor, a third select transistor, and memory-cell transistors series connected between the first and the second select transistors and the third select transistor. The memory-cell transistors have a stack structure including a charge storing layer and a control electrode above the charge storing layer via an insulating film. The first to third select transistors each has a stack structure substantially identical to the aforementioned stack structure. Threshold voltages of the first select transistors in the first and the fourth memory-cell unit and the second transistors in the second and third memory-cell unit differ from the threshold voltages of the second select transistors in the first and the fourth memory-cell unit and the first select transistors in the second and third memory-cell unit.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Wataru SAKAMOTO, Ryota Suzuki
  • Publication number: 20150060994
    Abstract: According to one embodiment, a non-volatile semiconductor memory device, includes: peripheral transistors including a second element isolation insulating film, a gate electrode, and a diffusion layer region, the second element isolation insulating film being configured to divide the semiconductor layer into at least two second semiconductor regions, the diffusion layer region being formed in the second semiconductor regions to be provided on two sides of the gate electrode; and a sidewall film provided at a side surface of the gate electrode. The second element isolation insulating film has a first portion and a second portion, the second portion is provided on two sides of the first portion, a width of a bottom portion of the first portion in an extension direction of the gate electrode is not more than twice a thickness of the sidewall film at a lower end of the sidewall film.
    Type: Application
    Filed: January 23, 2014
    Publication date: March 5, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tatsuya KATO, Tatsuya Okamoto
  • Patent number: 8969881
    Abstract: There are disclosed herein various implementations of a transistor having a segmented gate region. Such a transistor may include at least one segmentation dielectric segment and two or more gate dielectric segments. The segmentation dielectric segment or segments are thicker than the gate dielectric segments, and is/are situated between the gate dielectric segments. The segmentation dielectric segment or segments cause an increase in the effective gate length so as to improve resistance to punch-through breakdown between a drain electrode and a source electrode of the transistor when the transistor is off.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 3, 2015
    Assignee: International Rectifier Corporation
    Inventors: Michael A. Briere, Naresh Thapar
  • Patent number: 8971118
    Abstract: A NAND based non-volatile memory device can include a plurality of memory cells vertically arranged as a NAND string and a plurality of word line plates each electrically connected to a respective gate of the memory cells in the NAND string. A plurality of word line contacts can each be electrically connected to a respective word line plate, where the plurality of word line contacts are aligned to a bit line direction in the device.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Beom-jun Jin, Byung-seo Kim, Sung-Dong Kim
  • Patent number: 8969948
    Abstract: A non-volatile memory device and a method for forming the non-volatile memory device are disclosed. During fabrication of the memory device, a tungsten salicide is utilized as an etch-stop layer in place of a conventionally used aluminum oxide to form channel pillars having a high aspect ratio. Use of the tungsten salicide is useful for eliminating an undesired etch-stop recess and an undesired floating gate that is formed when an Al oxide etch-stop layer is conventionally used.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: March 3, 2015
    Assignee: Intel Corporation
    Inventors: Fatma A. Simsek-Ege, Krishna K. Parat
  • Patent number: 8969941
    Abstract: According to an embodiment, a semiconductor device, includes a semiconductor substrate, first and second transistors. The first transistor includes a first insulating film provided on the semiconductor substrate, a first conductive film provided on the first insulating film, a second insulating film provided on the first conductive film, and a second conductive film provided on the second insulating film. The second transistor is provided to be separated from the first transistor, the second transistor including a third insulating film provided on the semiconductor substrate, a third conductive film provided on the third insulating film, a fourth insulating film provided on the third conductive film, and a fourth conductive film provided on the fourth insulating film. The third conductive film is thicker than the first conductive film, and the second transistor has a through-portion piercing the fourth insulating film to connect the third conductive film and the fourth conductive film.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 3, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Wataru Sakamoto
  • Patent number: 8969944
    Abstract: Provided is a semiconductor integrated circuit that uses a novel vertical MOS transistor that is free of interference between cells, that enables the short-channel effect to be minimized, that does not have hot electron injection, and that does not require the formation of shallow junction. Also provided is a method of producing the semiconductor integrated circuit. A memory cell 1 in the semiconductor integrated circuit is provided with: a semiconductor pillar 2 that serves as a channel; a floating gate 5 that circumferentially covers the semiconductor pillar 2 via a tunnel insulation layer 6 on the outer circumference of the semiconductor pillar 2; and a control gate 4 that circumferentially covers the semiconductor pillar via an insulating layer 8 on the outer circumference of the semiconductor pillar 2, and that circumferentially covers the floating gate 5 via an insulating layer 7 on the outer circumference of the floating gate.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: March 3, 2015
    Assignee: Tohoku University
    Inventors: Tetsuo Endoh, Seo Moon-Sik
  • Patent number: 8963232
    Abstract: According to one embodiment, a control gate is formed on the semiconductor substrate and includes a cylindrical through hole. A block insulating film, a charge storage film, a tunnel insulating film, and a semiconductor layer are formed on a side surface of the control gate inside the through hole. The tunnel insulating film comprises a first insulating film having SiO2 as a base material and containing an element that lowers a band gap of the base material by being added. A density and a density gradient of the element monotonously increase from the semiconductor layer toward the charge storage film.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Yasuda, Masaru Kito
  • Patent number: 8963226
    Abstract: A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: February 24, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Tsutomu Okazaki, Daisuke Okada, Kyoya Nitta, Toshihiro Tanaka, Akira Kato, Toshikazu Matsui, Yasushi Ishii, Digh Hisamoto, Kan Yasui
  • Publication number: 20150048439
    Abstract: Semiconductor devices and methods for forming a semiconductor device are disclosed. The method includes providing a substrate prepared with a memory cell region. A first gate structure is formed on the memory cell region. An isolation layer is formed on the substrate and over the first gate structure. A second gate structure is formed adjacent to and separated from the first gate structure by the isolation layer. The first and second gate structures are processed to form at least one split gate structure with first and second adjacent gates. Asymmetrical source and drain regions are provided adjacent to first and second sides of the split gate structure.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 19, 2015
    Inventors: Danny SHUM, Fook Hong LEE, Yung Fu, Alfred CHONG
  • Publication number: 20150048440
    Abstract: According to one embodiment, a memory device includes first and second fin type stacked structures each includes first to i-th memory strings (i is a natural number except 1) that are stacked in a first direction, the first and second fin type stacked structures which extend in a second direction and which are adjacent in a third direction, a first portion connected to one end in the second direction of the first fin type stacked structure, a width in the third direction of the first portion being greater than a width in the third direction of the first fin type stacked structure, and a second portion connected to one end in the second direction of the second fin type stacked structure, a width in the third direction of the second portion being greater than a width in the third direction of the second fin type stacked structure.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 19, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kiwamu SAKUMA, Atsuhiro KINOSHITA
  • Patent number: 8956943
    Abstract: A method for manufacturing a non-volatile memory is disclosed. A gate structure is formed on a substrate and includes a gate dielectric layer and a gate conductive layer. The gate dielectric layer is partly removed, thereby a symmetrical opening is formed among the gate conductive layer, the substrate and the gate dielectric layer, and a cavity is formed on end sides of the gate dielectric layer. A first oxide layer is formed on a sidewall and bottom of the gate conductive layer, and a second oxide layer is formed on a surface of the substrate. A nitride material layer is formed covering the gate structure, the first and second oxide layer and the substrate and filling the opening. An etching process is performed to partly remove the nitride material layer, thereby forming a nitride layer on a sidewall of the gate conductive layer and extending into the opening.
    Type: Grant
    Filed: May 27, 2013
    Date of Patent: February 17, 2015
    Assignee: United Microelectronics Corporation
    Inventors: Chien-Hung Chen, Tzu-Ping Chen, Yu-Jen Chang
  • Patent number: 8952445
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device has a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a charge storage film formed on the first insulating film, a second insulating film formed on the charge storage film, and a control electrode formed on the second insulating film. In the nonvolatile semiconductor memory device, the second insulating film has a laminated structure that has a first silicon oxide film, a first silicon nitride film, and a second silicon oxide film, a first atom is provided at an interface between the first silicon oxide film and the first silicon nitride film, and/or at an interface between the second silicon oxide film and the first silicon nitride film, and the first atom is selected from the group consisting of aluminum, boron, and alkaline earth metals.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: February 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Tanaka, Kazuhiro Matsuo
  • Patent number: 8951865
    Abstract: Memory arrays and their formation are disclosed. One such memory array has a string of series-coupled memory cells with a substantially vertical portion. A distance between adjacent memory cells at one end of the substantially vertical portion is greater than a distance between adjacent memory cells at an opposing end of the substantially vertical portion. For other embodiments, thicknesses of respective control gates of the memory cells and/or thicknesses of the dielectrics between successively adjacent control gates may increase as the distances of the respective control gates/dielectrics from the opposing end of the substantially vertical portion increase.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: February 10, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Akira Goda
  • Patent number: 8952446
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a channel body, a memory film, first and second insulating separation films, a first and a second inter-layer insulating films, a selection gate, a conductive layer, and resistance elements. The substrate includes a memory cell array region and a peripheral region. The stacked body includes electrode films and insulating films. The channel body extends in a stacking direction. The memory film includes a charge storage film. The first insulating separation films divide the stacked body. The first and the second inter-layer insulating films are on the stacked body and on the conductive layer, respectively. The selection gate is on the first inter-layer insulating film. The conductive layer is on the peripheral region. The resistance elements are on the second inter-layer insulating film. The second insulating separation films divide the conductive layer.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyasu Tanaka
  • Patent number: 8946810
    Abstract: Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: February 3, 2015
    Assignee: SanDisk Technologies Inc.
    Inventor: Johann Alsmeier
  • Patent number: 8941168
    Abstract: A semiconductor device includes an element isolation region having an element isolation insulating film therein; an active region delineated by the element isolation region; agate insulating film formed in the active region; a charge storage layer above the gate insulating film; and an interelectrode insulating film. The interelectrode insulating film is formed in a first region above an upper surface of the element isolation insulating film, a second region along a sidewall of the charge storage layer, and a third region above an upper surface of the charge storage layer. The interelectrode insulating film includes a stack of a first silicon oxide film, a first silicon nitride film, a second silicon oxide film, and a second silicon nitride film. A control electrode layer is formed above the interelectrode insulating film. The second silicon oxide film is thinner in the first region than in the third region.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: January 27, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Matsuo, Masayuki Tanaka, Hirofumi Iikawa
  • Patent number: 8933502
    Abstract: A stacked non-volatile memory cell array include cell areas with rows of vertical columns of NAND cells, and an interconnect area, e.g., midway in the array and extending a length of the array. The interconnect area includes at least one metal silicide interconnect extending between insulation-filled slits, and does not include vertical columns of NAND cells. The metal silicide interconnect can route power and control signals from below the stack to above the stack. The metal silicide interconnect can also be formed in a peripheral region of the substrate. Contact structures can extend from a terraced portion of the interconnect to at least one upper metal layer, above the stack, to complete a conductive path from circuitry below the stack to the upper metal layer. Subarrays can be provided in a plane of the array without word line hook-up and transfer areas between the subarrays.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 13, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Masaaki Higashitani, Peter Rabkin
  • Publication number: 20150008509
    Abstract: A method of manufacturing a double-gate electronic memory cell is presented. The cell includes a substrate; a first gate structure, with the first gate structure having a lateral flank; a stack including several layers and of which a layer is able to store electrical charges, the stack covering the lateral flank of the first gate structure and a portion of the substrate; and a second gate structure. The second gate structure includes a first portion formed from a first gate material; a second portion formed from a second gate material, with the first gate material able to be etched selectively in relation to the second gate material and with the second gate material able to be etched selectively in relation to the first gate material; a first zone of silicidation extending over the first portion of the second gate structure; and a second zone of silicidation extending over the second portion of the second gate structure.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 8, 2015
    Inventor: Christelle CHARPIN-NICOLLE
  • Publication number: 20140374814
    Abstract: An embedded flash memory device includes a gate stack, and source and drain regions in the semiconductor substrate. The first source and drain regions are on opposite sides of the gate stack. The gate stack includes a bottom dielectric layer over the semiconductor substrate, a charge trapping layer over the bottom dielectric layer, a top dielectric layer over the charge trapping layer, a high-k dielectric layer over the top dielectric layer, and a metal gate over the high-k dielectric layer.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Wei Cheng Wu, Harry-Hak-Lay Chuang
  • Publication number: 20140374815
    Abstract: An embedded flash memory device includes a gate stack, which includes a bottom dielectric layer extending into a recess in a semiconductor substrate, and a charge storage layer over the bottom dielectric layer. The charge storage layer includes a portion in the recess. The gate stack further includes a top dielectric layer over the charge storage layer, and a metal gate over the top dielectric layer. Source and drain regions are in the semiconductor substrate, and are on opposite sides of the gate stack.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Wei Cheng Wu, Harry-Hak-Lay Chuang
  • Publication number: 20140374816
    Abstract: In a power feeding region of a memory cell (MC) in which a sidewall-shaped memory gate electrode (MG) of a memory nMIS (Qnm) is provided by self alignment on a side surface of a selection gate electrode (CG) of a selection nMIS (Qnc) via an insulating film, a plug (PM) which supplies a voltage to the memory gate electrode (MG) is embedded in a contact hole (CM) formed in an interlayer insulating film (9) formed on the memory gate electrode (MG) and is electrically connected to the memory gate electrode (MG). Since a cap insulating film (CAP) is formed on an upper surface of the selection gate electrode (CG), the electrical conduction between the plug (PM) and the selection gate electrode (CG) can be prevented.
    Type: Application
    Filed: September 7, 2014
    Publication date: December 25, 2014
    Inventors: Kota FUNAYAMA, Hiraku CHAKIHARA, Yasushi ISHII
  • Patent number: 8916926
    Abstract: A nonvolatile memory device includes a substrate, a structure including a stack of alternately disposed layers of conductive and insulation materials disposed on the substrate, a plurality of pillars extending through the structure in a direction perpendicular to the substrate and into contact with the substrate, and information storage films interposed between the layers of conductive material and the pillars. In one embodiment, upper portions of the pillars located at the same level as an upper layer of the conductive material have structures that are different from lower portions of the pillars. In another embodiment, or in addition, upper string selection transistors constituted by portions of the pillars at the level of an upper layer of the conductive material are programmed differently from lower string selection transistors.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: December 23, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong-In Choe, Sunil Shim, Sung-Hwan Jang, Woonkyung Lee, Jaehoon Jang
  • Publication number: 20140367767
    Abstract: A semiconductor device according to the present embodiment includes a semiconductor substrate. An insulating film is provided on the semiconductor substrate. A gate electrode is provided on the insulating film. An SiOCN film covers side surfaces of the gate electrode. A silicon oxide film may be provided between the respective side surfaces of the gate electrode and the SiOCN film.
    Type: Application
    Filed: August 28, 2013
    Publication date: December 18, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Shundo, Kazuhiro Matsuo, Ryota Fujitsuka
  • Patent number: 8912590
    Abstract: A semiconductor device includes a semiconductor substrate having a main surface, a MONOS-type memory cell formed over the main surface and having a channel, an n-channel transistor formed over the main surface, and a p-channel transistor formed over the man surface. Nitride films are formed in a manner to contact the top surfaces of the MONOS-type memory cell, the n-channel transistor, and the p-channel transistor. The nitride films apply stress to the channels of the MONOS-type memory cell, the n-channel transistor, and the p-channel transistor.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: December 16, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Yuichi Hirano
  • Patent number: 8912593
    Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor device. The method includes forming a second stacked body on the planarized interlayer insulating film and on the uppermost stair. The second stacked body includes a second conductive film thicker than the first conductive film and a second insulating film stacked on the second conductive film. The method includes dividing the second stacked body into a select gate on the uppermost stair and a plurality of wall portions in a staircase region below the uppermost stair. The method includes forming a plurality of vias piercing the interlayer insulating film under a region between the wall portions and reaching the first conductive film of each of the stairs.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: December 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toru Matsuda
  • Patent number: 8912592
    Abstract: According to example embodiments of inventive concepts, a non-volatile memory device includes a substrate including a second impurity region crossing a first impurity region, and channel regions extending in a vertical direction on the substrate. Gate electrodes may be separated from each other in a vertical direction and a horizontal direction along outer walls of the channel regions. A first insulating interlayer may be on the gate electrodes and the channel regions, where the first insulating interlayer defines a contact hole between at least one adjacent pair gate electrodes and a contact plug is formed in the contact hole to be electrically connected to the second impurity region. An etch stop layer pattern may be on the contact plug and the first insulating interlayer.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: December 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-heun Lim, Ki-ho Bae, Hyo-jung Kim, Kyung-hyun Kim, Chan-wook Seo, Young-beom Pyon
  • Patent number: 8912594
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a stacked body, a second insulating layer, a select gate, a memory hole, a memory film, a channel body, a first semiconductor layer, and a second semiconductor layer. The select gate is provided on the second insulating layer. The memory film is provided on an inner wall of the memory hole. The channel body is provided inside the memory film. The first semiconductor layer is provided on an upper surface of the channel body. The second semiconductor layer is provided on the first semiconductor layer. The first semiconductor layer contains silicon germanium. The second semiconductor layer contains silicon germanium doped with a first impurity. A boundary between the first semiconductor layer and the second semiconductor layer is provided above a position of an upper end of the select gate.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: December 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jun Fujiki, Yoshiaki Fukuzumi, Hideaki Aochi
  • Patent number: 8907402
    Abstract: According to one embodiment, a method for manufacturing is a method for manufacturing a nonvolatile semiconductor memory device including a memory string having series-connected memory cells. The method includes forming a first semiconductor layer; forming a first sacrificial layer and the bottom surface and the side surface being surrounded with the first semiconductor layer; forming a first insulating layer on the first semiconductor layer and the first sacrificial layer; forming a stacked body on the first insulating layer, the body including electrode layers and second sacrificial layers alternately stacked; forming a first trench extending from an upper surface of the body to the first insulating layer on the first sacrificial layer; forming a second insulating layer in the first trench; forming a second trench extending from the upper surface of the body to the first semiconductor layer; and forming a third insulating layer in the second trench.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Shinohara
  • Patent number: 8907404
    Abstract: Semiconductor device including a memory cell featuring a first gate insulating film over a semiconductor substrate, a control gate electrode over the first gate insulating film, a second gate insulating film over the substrate and a side wall of the control gate electrode, a memory gate electrode over the second gate insulating film arranged adjacent with the control gate electrode through the second gate insulating film, first and second semiconductor regions in the substrate positioned on a control gate electrode side and a memory gate side, respectively, the second gate insulating film featuring a first film over the substrate, a charge storage film over the first film and a third film over the second film, the first film having a first portion between the substrate and memory gate electrode and a thickness greater than that of a second portion between the control gate electrode and the memory gate electrode.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: December 9, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Shoji Shukuri
  • Patent number: RE45480
    Abstract: A cell array includes a memory cell region in which memory cells are formed and a peripheral region that is provided around the memory cell region. In the memory cell region, first lines are extended in parallel with a first direction, and the first lines are repeatedly formed at first intervals in a second direction orthogonal to the first direction. In the peripheral region, each of the first lines located at (4n?3)-th (n is a positive integer) and (4n?2)-th positions in the second direction from a predetermined position has a contact connecting portion on one end side in the first direction of the first line. In the peripheral region, each of the first lines located at (4n?1)-th and 4n-th positions in the second direction from the predetermined position has the contact connecting portion on the other end side in the first direction of the first line. The contact connecting portion is formed so as to contact a contact plug extended in a laminating direction.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: April 21, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Nagashima, Hirofumi Inoue, Hideyuki Tabata, Masanori Komura, Eiji Ito