Gate Electrode Self-aligned With Groove Patents (Class 257/332)
-
Patent number: 8829605Abstract: A MOSFET includes: a substrate made of silicon carbide and having a first trench and a second trench formed therein, the first trench having an opening at the main surface side, the second trench having an opening at the main surface side and being shallower than the first trench; a gate insulating film; a gate electrode; and a source electrode disposed on and in contact with a wall surface of the second trench. The substrate includes a source region, a body region, and a drift region. The first trench is formed to extend through the source region and the body region and reach the drift region. The second trench is formed to extend through the source region and reach the body region.Type: GrantFiled: November 19, 2012Date of Patent: September 9, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Takeyoshi Masuda, Keiji Wada, Toru Hiyoshi, Shinji Matsukawa
-
Patent number: 8829609Abstract: An insulated gate semiconductor device, comprising: a semiconductor body having a front side and a back side opposite to one another; a drift region, which extends in the semiconductor body and has a first type of conductivity and a first doping value; a body region having a second type of conductivity, which extends in the drift region facing the front side of the semiconductor body; a source region, which extends in the body region and has the first type of conductivity; and a buried region having the second type of conductivity, which extends in the drift region at a distance from the body region and at least partially aligned to the body region in a direction orthogonal to the front side and to the back side.Type: GrantFiled: July 26, 2012Date of Patent: September 9, 2014Assignee: STMicroelectronics S.r.l.Inventors: Donato Corona, Giovanni Samma Trice, Sebastiano Amara, Salvatore Pisano, Antonio Giuseppe Grimaldi
-
Patent number: 8823091Abstract: The present invention discloses a transistor having the saddle fin structure. The saddle fin transistor of the present invention has a structure in which a landing plug contact region, particularly, a landing plug contact region on an isolation layer is elevated such that the landing plug contact SAC (Self Aligned Contact) fail can be prevented.Type: GrantFiled: November 28, 2012Date of Patent: September 2, 2014Assignee: SK Hynix Inc.Inventor: Kyu tae Kim
-
Patent number: 8823090Abstract: A field-effect transistor has a gate, a source, and a drain. The gate has a via extending through a semiconductor chip substrate from one surface to an opposite surface of the semiconductor chip substrate. The source has a first toroid of ion dopants implanted in the semiconductor chip substrate surrounding one end of the via on the one surface of the semiconductor chip substrate. The drain has a second toroid of ion dopants implanted in the semiconductor chip substrate surrounding an opposite end of the via on the opposite surface of the semiconductor chip substrate.Type: GrantFiled: February 17, 2011Date of Patent: September 2, 2014Assignee: International Business Machines CorporationInventors: Gerald K Bartley, Darryl J Becker, Philip R Germann, Andrew B Maki, John E Sheets, II
-
Patent number: 8823086Abstract: A semiconductor device having a buried gate is provided. The semiconductor device is formed in a structure in which a plurality of contacts having small step differences are stacked without forming a metal contact applying an operation voltage to the buried gate in a single contact and a contact pad is formed between the contacts so that failure due to misalignment can be prevented without a separate additional process for forming the contacts.Type: GrantFiled: January 10, 2012Date of Patent: September 2, 2014Assignee: Hynix Semiconductor Inc.Inventor: Chul Hwan Cho
-
Patent number: 8816432Abstract: Semiconductor devices having vertical channel transistors are provided. The semiconductor device includes an insulation layer on a substrate and a buried bit line on the insulation layer. The buried bit line extends in a first direction. An active pillar is disposed on the buried bit line. The active pillar includes a lower dopant region, a channel region having a first sidewall and an upper dopant region vertically stacked on the buried bit line. A contact gate electrode is disposed to be adjacent to the first sidewall of the channel region. A word line is electrically connected to the contact gate electrode. The word line extends in a second direction intersecting the first direction. A string body connector is electrically connected to the channel region. Related methods are also provided.Type: GrantFiled: August 15, 2012Date of Patent: August 26, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sua Kim, Jin Ho Kim, Chulwoo Park
-
Patent number: 8809945Abstract: A MOSFET includes: a substrate provided with a trench having a side wall surface having an off angle of not less than 50° and not more than 65° relative to a {0001} plane; an oxide film; and a gate electrode. The substrate includes a source region, a body region, and a drift region formed to sandwich the body region between the source region and the drift region. The source region and the body region are formed by means of ion implantation. The body region has an internal region sandwiched between the source region and the drift region and having a thickness of 1 ?m or smaller in a direction perpendicular to a main surface thereof. The body region has an impurity concentration of 3×1017 cm?3 or greater.Type: GrantFiled: November 16, 2012Date of Patent: August 19, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Keiji Wada, Takeyoshi Masuda, Toru Hiyoshi
-
Patent number: 8809944Abstract: A semiconductor device includes a transistor with a substrate on which source and drain regions, both of a first conductivity type, and a channel region of a second conductivity type between the source and drain are formed, and a gate electrode formed in the channel region to bury a trench formed so the depth thereof changes intermittently in the width direction of the gate. In the channel region, each on a surface of the substrate and in a bottom portion of the trench, there are formed a second high-concentration region and a first high-concentration region, and the dopant concentration of the second conductivity type is higher than the dopant concentration of the second conductivity type in portions sideward from the trench. The dopant concentration of the second conductivity type in the first high-concentration region is higher than the dopant concentration of the second conductivity type in the second high-concentration region.Type: GrantFiled: August 29, 2012Date of Patent: August 19, 2014Assignee: Renesas Electronics CorporationInventor: Hiroshi Kawaguchi
-
Patent number: 8809926Abstract: A semiconductor memory device may include a common source region on a substrate, an active pattern between the substrate and the common source region, a gate pattern facing a sidewall of the active pattern, a gate dielectric pattern between the gate pattern and the active pattern, a variable resistance pattern between the common source region and the active pattern, and an interconnection line.Type: GrantFiled: September 6, 2012Date of Patent: August 19, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sua Kim, Jin Ho Kim, Chulwoo Park, Sangbo Lee, Hongsun Hwang
-
Patent number: 8809947Abstract: In an exemplary embodiment, a method for fabricating integrated circuits includes providing a semiconductor substrate. The method etches the semiconductor substrate to form a non-planar transistor structure having sidewalls. On a standard (100) <110> substrate the fin sidewalls have (110) surface plane if the fins are aligned or perpendicular with the <110> wafer notch. The method includes depositing a sacrificial liner along the sidewalls of the non-planar transistor structure. Further, a confining material is deposited overlying the semiconductor substrate and adjacent the sacrificial liner. The method includes removing at least a portion of the sacrificial liner and forming a void between the sidewalls of the non-planar transistor structure and the confining material. A cladding layer is epitaxially grown in the void. Since the sidewall growth is limited by the confining material, a cladding layer of uniform thickness is enabled on fins with (110) sidewall and (100) top surface.Type: GrantFiled: May 30, 2013Date of Patent: August 19, 2014Assignee: GlobalFoundries, Inc.Inventors: Kerem Murat Akarvardar, Ajey Poovannummoottil Jacob
-
Patent number: 8802530Abstract: A semiconductor power device includes a thick bottom insulator formed in a lower portion of a trench in a semiconductor epitaxial region. An electrically conductive gate electrode is formed in the trench above the bottom insulator. The gate electrode is electrically insulated from the epitaxial region by the bottom insulator and a gate insulator. Charge is deliberately induced in the thick bottom insulator proximate an interface between the bottom insulator and the epitaxial semiconductor region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.Type: GrantFiled: June 6, 2012Date of Patent: August 12, 2014Assignee: Alpha and Omega Semiconductor IncorporatedInventors: Xiaobin Wang, Anup Bhalla, Daniel Ng
-
Patent number: 8803207Abstract: In one general aspect, an apparatus can include a trench disposed in a semiconductor region, a shield dielectric layer lining a lower portion of a sidewall of the trench and a bottom surface of the trench, and a gate dielectric lining a upper portion of the sidewall of the trench. The apparatus can also include a shield electrode disposed in a lower portion of the trench and insulated from the semiconductor region by the shield dielectric layer, and an inter-electrode dielectric (IED) disposed in the trench over the shield electrode where the shield electrode has a curved top surface.Type: GrantFiled: April 6, 2011Date of Patent: August 12, 2014Assignee: Fairchild Semiconductor CorporationInventors: Thomas E. Grebs, Nathan Lawrence Kraft, Rodney Ridley, Gary M. Dolny, Joseph A. Yedinak, Christopher Boguslaw Kocon, Ashok Challa
-
Patent number: 8796088Abstract: A semiconductor device and a method of fabricating the semiconductor device is provided. In the method, a semiconductor substrate defining a device region and an outer region at a periphery of the device region is provided, an align trench is formed in the outer region, a dummy trench is formed in the device region, an epi layer is formed over a top surface of the semiconductor substrate and within the dummy trench, a current path changing part is formed over the epi layer, and a gate electrode is formed over the current path changing part. When the epi layer is formed, a current path changing trench corresponding to the dummy trench is formed over the epi layer, and the current path changing part is formed within the current path changing trench.Type: GrantFiled: July 10, 2012Date of Patent: August 5, 2014Assignee: Dongbu HiTek Co., Ltd.Inventor: Chul Jin Yoon
-
Patent number: 8791525Abstract: A power semiconductor device that includes a stack of a thin metal layer and a thick metal layer over the active region thereof, and a method for the fabrication thereof.Type: GrantFiled: February 25, 2008Date of Patent: July 29, 2014Assignee: International Rectifier CorporationInventors: Robert Montgomery, Hugo Burke, Philip Parsonage, Susan Johns, David Paul Jones
-
Patent number: 8786014Abstract: A vertical channel transistor array includes a plurality of embedded bit lines, a plurality of bit line contacts, a plurality of embedded word lines, and a current leakage isolation structure. An active area of a vertical channel transistor is defined by the semiconductor pillars. The embedded bit lines are disposed in parallel in a semiconductor substrate and extended in a column direction. Each of the bit line contacts is respectively disposed at a side of one of the embedded bit lines. The embedded word lines are disposed in parallel above the embedded bit lines and extended in a row direction. Besides, the embedded word lines and the semiconductor pillars in the same row are connected but spaced by a gate dielectric layer. The current leakage isolation structure is disposed at ends of the embedded bit lines to prevent current leakage between the adjacent bit line contacts.Type: GrantFiled: January 18, 2011Date of Patent: July 22, 2014Assignee: Powerchip Technology CorporationInventor: Yukihiro Nagai
-
Patent number: 8779507Abstract: A gate lead wiring and an electrical conductor connecting the gate lead wiring to a protective diode are arranged in a straight line without bending along one and the same side of the chip. A first gate electrode layer extending on the gate lead wiring and the electrical conductor, which connects them to the protective diode, has one bent portion or no bent portion. Further, the protective diode is arranged adjacent to the electrical conductor or the gate lead wiring, and a portion of the protective diode is arranged in close proximity to a gate pad portion.Type: GrantFiled: March 30, 2012Date of Patent: July 15, 2014Assignee: Semiconductor Components Industries, LLCInventors: Takuji Miyata, Kazumasa Takenaka
-
Patent number: 8779546Abstract: A semiconductor memory system and method of manufacture thereof including: a base wafer; an isolation region on the base wafer; an ion implanted region on the base wafer separated by the isolation region; a bit line contact plug over the ion implanted region; an isolation sidewall on the sides of the bit line contact plug; a resistor or capacitor on the isolation sidewall opposite the bit line contact plug between the bit line contact plug and another of the bit line contact plug; and a bit line over the resistor or capacitor and on the bit line contact plug.Type: GrantFiled: March 7, 2013Date of Patent: July 15, 2014Assignee: Sony CorporationInventors: Masanori Tsukamoto, Satoru Mayuzumi
-
Publication number: 20140191314Abstract: Semiconductor devices and fabrication methods are provided. A fin can be formed on a semiconductor substrate, a gate can be formed across the fin, and sidewall spacers can be formed across the fin on both sides of the gate. A dummy contact can be formed across the fin and on each of the both sides of the sidewall spacers. After forming an interlayer dielectric layer on the semiconductor substrate, the dummy contact can be removed to form a contact trench. The dummy contact is made of a material having an etch selectivity sufficiently higher than the fin such that the removing of the dummy contact generates substantially no damage to the fin. A conductive material can be filled in the contact trench to form a trench metal contact.Type: ApplicationFiled: November 12, 2013Publication date: July 10, 2014Applicant: Semiconductor Manufacturing International (Shanghai) CorporationInventors: XINPENG WANG, STEVEN ZHANG
-
Patent number: 8772866Abstract: A semiconductor device comprises a buried gate formed by being buried under a surface of a semiconductor substrate, a dummy gate formed on the buried gate, and a landing plug formed on a junction region of the semiconductor substrate being adjacent to the dummy gate.Type: GrantFiled: December 30, 2009Date of Patent: July 8, 2014Assignee: Hynix Semiconductor Inc.Inventor: Sung Pyo Hong
-
Patent number: 8766325Abstract: A semiconductor device includes: an n?-type base layer; a p-type base layer formed in a part of a front surface portion of the n?-type base layer; an n+-type source layer formed in a part of a front surface portion of the p-type base layer; a gate insulating film formed on the front surface of the p-type base layer between the n+-type source layer and the n?-type base layer; a gate electrode that faces the p-type base layer through the gate insulating film; a p-type column layer formed continuously from the p-type base layer in the n?-type base layer; a p+-type collector layer formed in a part of a rear surface portion of the n?-type base layer; a source electrode electrically connected to the n+-type source layer; and a drain electrode electrically connected to the n?-type base layer and to the p+-type collector layer.Type: GrantFiled: January 25, 2013Date of Patent: July 1, 2014Assignee: Rohm Co., Ltd.Inventors: Toshio Nakajima, Syoji Higashida
-
Patent number: 8759892Abstract: A semiconductor device including a vertical transistor and a method for forming the same are disclosed, which can greatly reduce a cell area as compared to a conventional layout of 8F2 and 6F2, and need not form a bit line contact, a storage node contact, or a land plug, such that the number of fabrication steps is reduced and a contact region between the bit line and the active region is increased in size. The semiconductor device including a vertical transistor includes an active region formed over a semiconductor substrate, a first recess formed to have a predetermined depth at both sides of the active region, and a bit line buried in the first recess.Type: GrantFiled: January 18, 2013Date of Patent: June 24, 2014Assignee: SK Hynix Inc.Inventor: Kyoung Han Lee
-
Patent number: 8754469Abstract: An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.Type: GrantFiled: October 25, 2011Date of Patent: June 17, 2014Assignee: Texas Instruments IncorporatedInventors: Sameer P. Pendharkar, John Lin
-
Patent number: 8754473Abstract: The present invention provides a power transistor device including a substrate, an epitaxial layer, a dopant source layer, a doped drain region, a first insulating layer, a gate structure, a second insulating layer, a doped source region, and a metal layer. The substrate, the doped drain region, and the doped source region have a first conductive type, while the epitaxial layer has a second conductive type. The epitaxial layer is formed on the substrate and has at least one through hole through the epitaxial layer. The first insulating layer, the gate structure, and the second insulating layer are formed sequentially on the substrate in the through hole. The doped drain region and doped source region are formed in the epitaxial layer at one side of the through hole. The metal layer is formed on the epitaxial layer and extends into the through hole to contact the doped source region.Type: GrantFiled: July 2, 2013Date of Patent: June 17, 2014Assignee: Anpec Electronics CorporationInventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Chia-Hao Chang
-
Patent number: 8754472Abstract: A transistor and a method of fabricating a transistor, including a metal oxide deposited on an epitaxial layer, a photo resist deposited and patterned over the metal oxide and the metal oxide and epitaxial layer are etched to form at least one circular trench, wherein the trench surfaces are defined by the epitaxial layer. An oxide layer is grown on the trench surfaces of each trench, and a gate conductor is formed within the at least one trench.Type: GrantFiled: March 10, 2011Date of Patent: June 17, 2014Assignee: O2Micro, Inc.Inventors: Hamilton Lu, Laszlo Lipcsei
-
Patent number: 8748979Abstract: Disclosed is a semiconductor device whose breakdown voltage is made high by controlling local concentration of an electric field. A source region faces a second plane, one of side faces of a groove part, and a part thereof extends in a direction in parallel to a nodal line of first and second planes. A drift region faces a third plane being the other side face of the groove part opposite to the second plane with a part thereof extending in a direction parallel to the nodal line of the first plane and the third plane, and is formed at a lower concentration than the source region. The drain region is provided so as to be placed on the other side of the drift region opposite to the groove part and so as to touch the drift region, and is formed at a higher concentration than the drift region.Type: GrantFiled: November 1, 2012Date of Patent: June 10, 2014Assignee: Renesas Electronics CorporationInventor: Hiroshi Takeda
-
Patent number: 8748263Abstract: In a method of fabricating a semiconductor device, isolation structures are formed in a substrate to define active regions. Conductive structures are formed on the substrate to cross over at least two of the active regions and the isolation structures, the conductive structures extending in a first direction. An interfacial layer is conformally formed on the substrate in contact with the conductive structures. A first insulation layer is provided on the interfacial layer, wherein the first insulation layer is formed using a flowable chemical vapor deposition (CVD) process, and wherein the interfacial layer reduces a tensile stress generated at an interface between the conductive structures and the first insulation layer while the first insulation layer is formed.Type: GrantFiled: July 11, 2012Date of Patent: June 10, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Honggun Kim, ByeongJu Bae, Seung-Heon Lee, Mansug Kang, Eunkee Hong
-
Patent number: 8742401Abstract: A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.Type: GrantFiled: October 31, 2013Date of Patent: June 3, 2014Assignee: Fairchild Semiconductor CorporationInventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
-
Patent number: 8742708Abstract: In an electric power steering system, a drain terminal side of a semiconductor relay is positioned to face a heat sink through an insulation film layer. The semiconductor relay has a source terminal between a gate terminal and a drain terminal. The source terminal is provided between the gate terminal and the drain terminal with respect to parts of the gate terminal, the drain terminal and the source terminal, which extend generally in parallel each other on the same plane.Type: GrantFiled: March 23, 2010Date of Patent: June 3, 2014Assignee: Denso CorporationInventors: Takashi Tsuboi, Katsuhisa Mase, Yasuyoshi Toda
-
Patent number: 8735977Abstract: A semiconductor device includes active regions defined by a device isolation layer, gates disposed in the active regions of cell channel regions, word lines disposed on the gates and extending along a first direction, and gate contacts configured to connect the gates to the word lines. The gates have a box shape which extends over two active regions.Type: GrantFiled: December 18, 2012Date of Patent: May 27, 2014Assignee: SK Hynix Inc.Inventor: Dong Min Lee
-
Patent number: 8735974Abstract: An object of the present application is to reduce the gate capacitance without lowering the withstand voltage of a semiconductor device and prevent generation of a leak current between main electrodes even when an oxide film is formed poorly. A semiconductor device of the present application comprises a gate electrode and a dummy gate electrode. The gate electrode is insulated from an emitter electrode and faces a part of a body region via an insulating film, the part of the body region separating a drift region and an emitter region from each other. The dummy gate electrode is electrically connected with the emitter electrode and is connected with the drift region and the body region via the insulating film. At least a part of the dummy gate electrode comprises a first conductive region of the same type as the drift region. In the dummy gate electrode, the emitter electrode is separated from the drift region by the first conductive region.Type: GrantFiled: February 16, 2010Date of Patent: May 27, 2014Assignee: Toyota Jidosha Kabushiki KaishaInventor: Masaru Senoo
-
Patent number: 8735975Abstract: A method and structures are provided for implementing metal via gate node high performance stacked vertical transistors in a back end of line (BEOL) on a semiconductor System on Chip (SoC). The high performance stacked vertical transistors include a pair of stacked vertical field effect transistors (FETs) formed by polycrystalline depositions in a stack between planes of a respective global signal routing wire. A channel length of each of the stacked vertical FETs is delineated by the polycrystalline depositions with sequential source deposition, channel deposition and drain deposition; and a wire via defines the gate node.Type: GrantFiled: January 9, 2013Date of Patent: May 27, 2014Assignee: International Business Machines CorporationInventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
-
Patent number: 8729601Abstract: Semiconductor devices are formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches. In one embodiment, a semiconductor device is formed in a first semiconductor layer having trenches and mesas formed thereon where the trenches extend from the top surface to the bottom surface of the first semiconductor layer. The semiconductor device includes semiconductor regions formed on the bottom surface of the mesas of the first semiconductor layer.Type: GrantFiled: October 21, 2013Date of Patent: May 20, 2014Assignee: Alpha and Omega Semiconductor IncorporatedInventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
-
Patent number: 8723254Abstract: An object is to provide a semiconductor device and its manufacturing method in which delay in switching and non-uniform operations are prevented and in which stresses occurring in trench regions are alleviated as much as possible. A gate electrode in a gate trench is formed of a polysilicon layer and a gate tungsten layer that is lower resistant than the polysilicon layer. Also, a source electrode is formed of source tungsten layers buried in source trenches and an AlSi layer in contact with the source tungsten layers and covering source layers and the gate electrodes with a thick insulating film interposed therebetween.Type: GrantFiled: June 29, 2010Date of Patent: May 13, 2014Assignee: Mitsubishi Electric CorporationInventor: Toshiaki Hikichi
-
Patent number: 8716077Abstract: An eDRAM is fabricated including high performance logic transistor technology and ultra low leakage DRAM transistor technology. Embodiments include forming a recessed channel in a substrate, forming a first gate oxide to a first thickness lining the channel and a second gate oxide to a second thickness over a portion of an upper surface of the substrate, forming a first polysilicon gate in the recessed channel and overlying the recessed channel, forming a second polysilicon gate on the second gate oxide, forming spacers on opposite sides of each of the first and second polysilicon gates, removing the first and second polysilicon gates forming first and second cavities, forming a high-k dielectric layer on the first and second gate oxides, and forming first and second metal gates in the first and second cavities, respectively.Type: GrantFiled: August 23, 2011Date of Patent: May 6, 2014Assignee: GlobalFoundries Inc.Inventors: Till Schloesser, Peter Baars, Frank Jakubowski
-
Patent number: 8716777Abstract: A method for forming a semiconductor device includes forming a sealing insulation film over a semiconductor substrate including a device isolation film and an active region, forming a bit line contact plug that protrudes from an upper part of the sealing insulation film and is coupled to the active region, forming a spacer over a sidewall of the protruded bit line contact plug, and forming a bit line coupled to an upper part of the bit line contact plug.Type: GrantFiled: October 11, 2012Date of Patent: May 6, 2014Assignee: SK Hynix Inc.Inventors: Sung Soo Kim, Na Hye Won
-
Patent number: 8716748Abstract: A semiconductor device includes: a substrate; a semiconductor stacked structure, provided over the substrate, including an electron transit layer and an electron supply layer; a gate electrode, a source electrode, and a drain electrode provided over the semiconductor stacked structure; a gate pad, a source pad, and a drain pad provided over the gate electrode, the source electrode, and the drain electrode, and connected to the gate electrode, the source electrode, and the drain electrode, respectively; and a conductive layer provided under the gate pad, the source pad, and the drain pad, wherein a distance between the gate pad and the source pad is smaller than a distance between the gate pad and the drain pad.Type: GrantFiled: October 6, 2011Date of Patent: May 6, 2014Assignee: Fujitsu LimitedInventors: Tadahiro Imada, Kazukiyo Joshin
-
Patent number: 8716788Abstract: Disclosed is a semiconductor device including a drift region of a first doping type, a junction between the drift region and a device region, and at least one field electrode structure in the drift region. The field electrode structure includes a field electrode, a field electrode dielectric adjoining the field electrode and arranged between the field electrode and the drift region, and having an opening, at least one of a field stop region and a generation region.Type: GrantFiled: September 30, 2011Date of Patent: May 6, 2014Assignee: Infineon Technologies Austria AGInventors: Hans Weber, Franz Hirler, Stefan Gamerith
-
Patent number: 8710569Abstract: A semiconductor device includes a semiconductor substrate including a DRAM portion and a logic portion thereon, an interlayer film covering the DRAM portion and logic portion of the semiconductor substrate, and plural contact plugs formed in the interlayer film in the DRAM portion and the logic portion, the plural contact plugs being in contact with a metal suicide layer on a highly-doped region of source and drain regions of first, second and third transistors in the DRAM portion and the logic portion, an interface between the plural contact plugs and the metal silicide layer being formed at a main surface in the DRAM portion and the logic portion.Type: GrantFiled: January 5, 2012Date of Patent: April 29, 2014Assignee: Renesas Electronics CorporationInventors: Ken Inoue, Masayuki Hamada
-
Patent number: 8710586Abstract: A SiC semiconductor device includes: a substrate, a drift layer, and a base region stacked in this order; first and second source regions and a contact layer in the base region; a trench penetrating the source and base regions; a gate electrode in the trench; an interlayer insulation film with a contact hole covering the gate electrode; a source electrode coupling with the source region and the contact layer via the contact hole; a drain electrode on the substrate; and a metal silicide film. The high concentration second source region is shallower than the low concentration first source region, and has a part covered with the interlayer insulation film, which includes a low concentration first portion near a surface and a high concentration second portion deeper than the first portion. The metal silicide film on the second part has a thickness larger than the first portion.Type: GrantFiled: September 12, 2011Date of Patent: April 29, 2014Assignees: DENSO CORPORATION, Toyota Jidosha Kabushiki KaishaInventors: Toshimasa Yamamoto, Masahiro Sugimoto, Hidefumi Takaya, Jun Morimoto, Narumasa Soejima, Tsuyoshi Ishikawa, Yukihiko Watanabe
-
Patent number: 8704297Abstract: A trench MOSFET with multiple trenched source-body contacts is disclosed for reducing gate charge by applying multiple trenched source-body contacts in unit cell. Furthermore, source regions are only formed along channel regions near the gate trenches, not between adjacent trenched source-body contacts for UIS (Unclamped Inductance Switching) current enhancement.Type: GrantFiled: October 12, 2012Date of Patent: April 22, 2014Assignee: Force Mos Technology Co., Ltd.Inventor: Fu-Yuan Hsieh
-
Patent number: 8703556Abstract: A FinFET device is fabricated by first receiving a FinFET precursor. The FinFET precursor includes a substrate and fin structures on the substrate. A sidewall spacer is formed along sidewall of fin structures in the precursor. A portion of fin structure is recessed to form a recessing trench with the sidewall spacer as its upper portion. A semiconductor is epitaxially grown in the recessing trench and continually grown above the recessing trench to form an epitaxial structure.Type: GrantFiled: August 30, 2012Date of Patent: April 22, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Andrew Joseph Kelly, Po-Ruwe Tzng, Pei-Shan Chien, Wei-Hsiung Tseng
-
Patent number: 8698234Abstract: A semiconductor device including a connecting structure includes an edge region, a first trench and a second trench running toward the edge region, a first electrode within the first trench, and a second electrode within the second trench, the first and second electrodes being arranged in a same electrode plane with regard to a main surface of a substrate of the electronic device within the trenches, and the first electrode extending, at an edge region side end of the first trench, farther toward the edge region than the second electrode extends, at an edge region side end of the second trench, toward the edge region.Type: GrantFiled: October 19, 2011Date of Patent: April 15, 2014Assignee: Infineon Technologies Austria AGInventors: Franz Hirler, Markus Zundel
-
Patent number: 8698235Abstract: A slit recess channel gate is provided. The slit recess channel gate includes a substrate, a gate dielectric layer, a first conductive layer and a second conductive layer. The substrate has a first trench. The gate dielectric layer is disposed on a surface of the first trench and the first conductive layer is embedded in the first trench. The second conductive layer is disposed on the first conductive layer and aligned with the first conductive layer above the main surface, wherein a bottom surface area of the second conductive layer is substantially smaller than a top surface area of the second conductive layer.Type: GrantFiled: August 5, 2013Date of Patent: April 15, 2014Assignee: Nanya Technology Corp.Inventors: Tieh-Chiang Wu, Yi-Nan Chen, Hsien-Wen Liu
-
Patent number: 8692319Abstract: A transistor includes a trench formed in a semiconductor body, the trench having sidewalls and a bottom. The transistor further includes a first semiconductor material disposed in the trench adjacent the sidewalls and a second semiconductor material disposed in the trench and spaced apart from the sidewalls by the first semiconductor material. The second semiconductor material has a different band gap than the first semiconductor material. The transistor also includes a gate material disposed in the trench and spaced apart from the first semiconductor material by the second semiconductor material. The gate material provides a gate of the transistor. Source and drain regions are arranged in the trench with a channel interposed between the source and drain regions in the first or second semiconductor material so that the channel has a lateral current flow direction along the sidewalls of the trench.Type: GrantFiled: June 3, 2011Date of Patent: April 8, 2014Assignee: Infineon Technologies Austria AGInventors: Franz Hirler, Andreas Peter Meiser
-
Patent number: 8680607Abstract: Power devices, and related process, where both gate and field plate trenches have multiple stepped widths, using self-aligned process steps.Type: GrantFiled: June 18, 2012Date of Patent: March 25, 2014Assignee: MaxPower Semiconductor, Inc.Inventors: Jun Zeng, Mohamed N. Darwish
-
Patent number: 8680610Abstract: A trench MOSFET comprising source regions having a doping profile of a Gaussian-distribution along the top surface of epitaxial layer and floating dummy cells formed between edge trench and active area is disclosed. A SBR of n region existing at cell corners renders the parasitic bipolar transistor difficult to turn on, and the floating dummy cells having no parasitic bipolar transistor act as buffer cells to absorb avalanche energy when gate bias is increasing for turning on channel, therefore, the UIS failure issue is avoided and the avalanche capability of the trench MOSFET is enhanced.Type: GrantFiled: October 20, 2011Date of Patent: March 25, 2014Assignee: Force MOS Technology Co., Ltd.Inventor: Fu-Yuan Hsieh
-
Patent number: 8680609Abstract: A manufacturing method of a depletion mode trench semiconductor device includes following steps. Firstly, a substrate including a drift epitaxial layer disposed thereon is provided. A trench is disposed in the drift epitaxial layer. A gate dielectric layer is formed on an inner sidewall of the trench and an upper surface of the drift epitaxial layer. A base doped region is formed in the drift epitaxial layer and adjacent to a side of the trench. A thin doped region is formed and conformally contacts the gate dielectric layer. A gate material layer is formed to fill the trench. A source doped region is formed in the base doped region, and the source doped region overlaps the thin doped region at a side of the trench. Finally, a contact doped region is formed to overlap the thin doped region, and the contact doped region is adjacent to the source doped region.Type: GrantFiled: April 21, 2011Date of Patent: March 25, 2014Assignee: Sinopower Semiconductor Inc.Inventors: Wei-Chieh Lin, Jia-Fu Lin
-
Patent number: 8680612Abstract: According to one embodiment, a semiconductor device includes an element region partitioned by an isolation region in a semiconductor substrate, and a source region and a drain region formed in a surface layer of the element region by being isolated by a gate trench along a predetermined direction across the element region. The semiconductor device includes a gate electrode formed to reach a position deeper than the source region and the drain region by embedding at least part thereof in the gate trench with a gate dielectric film interposed therebetween. An interface in the drain region, which is in contact with the gate dielectric film, includes a projection projecting toward the gate electrode side.Type: GrantFiled: August 31, 2012Date of Patent: March 25, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Takashi Izumida, Nobutoshi Aoki
-
Patent number: 8679909Abstract: A method for recessing and capping metal gate structures is disclosed. Embodiments include: forming a dummy gate electrode on a substrate; forming a hard mask over the dummy gate electrode; forming spacers on opposite sides of the dummy gate electrode and the hard mask; forming an interlayer dielectric (ILD) over the substrate adjacent the spacers; forming a first trench in the ILD down to the dummy gate electrode; removing the dummy gate electrode to form a second trench below the first trench; forming a metal gate structure in the first and second trenches; and forming a gate cap over the metal gate structure.Type: GrantFiled: June 8, 2012Date of Patent: March 25, 2014Assignee: GlobalFoundries Singapore Pte. Ltd.Inventors: Ruilong Xie, David V. Horak, Su Chen Fan, Pranatharthiharan Haran Balasubramanian
-
Patent number: 8674434Abstract: Impact ionization devices including vertical and recessed impact ionization metal oxide semiconductor field effect transistor (MOSFET) devices and methods of forming such devices are disclosed. The devices require lower threshold voltage than conventional MOSET devices while maintaining a footprint equal to or less than conventional MOSFET devices.Type: GrantFiled: March 24, 2008Date of Patent: March 18, 2014Assignee: Micron Technology, Inc.Inventor: Venkatesan Ananthan