Field Effect Device In Non-single Crystal, Or Recrystallized, Semiconductor Material Patents (Class 257/66)
  • Patent number: 8728882
    Abstract: A manufacturing method for a thin film transistor array panel includes: providing a gate line including a gate electrode, on a substrate; providing a gate insulating layer covering the gate line; providing a semiconductor material layer on the gate insulating layer; providing a data wire material layer on the semiconductor material layer; providing a first photosensitive film pattern on the data wire material layer; etching the data wire material layer by using the first photosensitive film pattern as a mask; providing a second photosensitive film pattern by etching back the first photosensitive film pattern; etching the semiconductor material layer by using the second photosensitive film pattern as a mask; and etching the data wire material layer by using the second photosensitive film pattern as a mask to form a source electrode and a drain electrode. The etching the semiconductor material layer uses a first non-sulfur fluorinated gas.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: May 20, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jae Seung Hwang, Jae-Won Lee, Jun Seo
  • Publication number: 20140131699
    Abstract: A thin film transistor display panel includes a gate electrode on a substrate; a gate insulating layer on the substrate and the gate electrode; a planarization layer on the gate insulating layer and at opposing sides of the gate electrode, where the planarization layer exposes the gate insulating layer; a semiconductor layer on the gate insulating layer; and a source electrode and a drain electrode on the semiconductor layer and spaced apart from each other.
    Type: Application
    Filed: April 8, 2013
    Publication date: May 15, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Joo Ae YOUN, Hoon KANG, Sung Hoon KIM, Hye Won YOO
  • Publication number: 20140131716
    Abstract: A memory device comprises a substrate, a tunnel oxide layer, a charge trapping layer, a block oxide layer, a plurality of conductive quantum dots, a metal gate and a source/drain structure. The tunnel oxide layer is disposed on the substrate and has a thickness substantially less than or equal to 2 nm. The charge trapping layer is disposed on the tunnel oxide layer. The quantum dots are embedded in the charge trapping layer. The block oxide layer is disposed on the charge trapping layer. The metal gate essentially consisting of aluminum (Al), copper (Cu), tantalum nitride (TiN), titanium nitride (TaN), aluminum-silicon-copper (Al—Si—Cu) alloys or the arbitrary combinations thereof is disposed on the block oxide layer. The source/drain structure is disposed in the substrate.
    Type: Application
    Filed: January 18, 2013
    Publication date: May 15, 2014
    Applicant: NATIONAL APPLIED RESEARCH LABORATORIES
    Inventors: Jia-Min Shieh, Yu-Chung Lien, Wen-Hsien Huang, Chang-Hong Shen, Min-Cheng Chen, Ci-Ling Pan
  • Patent number: 8723175
    Abstract: A field effect transistor including a semiconductor layer including a composite oxide which contains In, Zn, and one or more elements X selected from the group consisting of Zr, Hf, Ge, Si, Ti, Mn, W, Mo, V, Cu, Ni, Co, Fe, Cr, Nb, Al, B, Sc, Y and lanthanoids in the following atomic ratios (1) to (3): In/(In+Zn)=0.2 to 0.8??(1) In/(In+X)=0.29 to 0.99??(2) Zn/(X+Zn)=0.29 to 0.99??(3).
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: May 13, 2014
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Koki Yano, Hirokazu Kawashima, Kazuyoshi Inoue, Shigekazu Tomai, Masashi Kasami
  • Patent number: 8723240
    Abstract: A manufacturing method for a semiconductor device, the method including forming a thin film transistor by forming a polysilicon thin film on an insulating substrate, forming a gate electrode via a gate insulating film, and forming source/drain regions and a channel region by ion implantation in the polysilicon thin film by using the gate electrode as a mask, forming an interconnection layer on an interlayer dielectric film covering this thin film transistor and forming a first contact to be connected to the thin film transistor through the interlayer dielectric film, forming a silicon hydronitride film on the interlayer dielectric film so as to cover the interconnection layer, forming a lower electrode on this silicon hydronitride film and forming a second contact to be connected to the interconnection layer through the silicon hydronitride film, and forming a ferroelectric layer on the lower electrode.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 13, 2014
    Assignee: Gold Charm Limited
    Inventor: Hiroshi Tanabe
  • Publication number: 20140124787
    Abstract: Embodiments of the present invention provide a thin film transistor, a manufacturing method thereof and a display device. The method for manufacturing the thin film transistor, comprising the following steps: providing a substrate; forming a semiconductor layer on the substrate; forming a gate insulating layer; and forming a gate electrode, wherein the gate insulating layer comprises a first gate insulating layer, the first gate insulating layer being formed by oxidizing a portion of the semiconductor layer, and the unoxidized portion of the semiconductor layer forming an active layer, and wherein the gate electrode is formed in such a way that the gate insulating layer is sandwiched between the gate electrode and the active layer.
    Type: Application
    Filed: September 9, 2012
    Publication date: May 8, 2014
    Applicant: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Yanzhao Li, Gang Wang, Li Sun, Shuang Guan
  • Publication number: 20140124783
    Abstract: A method for manufacturing a thin-film transistor includes: preparing a substrate; forming a gate electrode above the substrate; forming a gate insulating layer above the gate electrode; forming a semiconductor film above the gate insulating layer; forming, above the semiconductor film, a protective layer comprising an organic material; forming a source electrode and a drain electrode which are opposed to each other and each of which has at least a portion located above the protective layer; forming a semiconductor layer patterned, by performing dry etching on the semiconductor film; and performing, in a hydrogen atmosphere, plasma treatment on an altered layer which (i) is a surface layer of the protective layer exposed from the source electrode and the drain electrode and altered by the dry etching, and (ii) has at least a portion contacting a surface of the semiconductor layer.
    Type: Application
    Filed: May 29, 2013
    Publication date: May 8, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Yuji Kishida, Kenichirou Nishida, Mitsutaka Matsumoto
  • Publication number: 20140117370
    Abstract: A manufacturing method of an arrayed substrate is disclosed, in which ion-doping is performed by using photoresist as a barrier layer instead of using a gate electrode, which process can reduces the short channel effect that is caused by diffusion of doped ions toward a channel region, and meanwhile decrease the coupling capacitance between the gate electrode and the source-drain electrodes, thereby improving the performance of the prepared TFT.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 1, 2014
    Applicant: BOE Technology Group Co., Ltd.
    Inventor: ZHANJIE MA
  • Publication number: 20140117367
    Abstract: Devices, structures, and related methods for IGBTs and the like which include a self-aligned series resistance at the source-body junction to avoid latchup. The series resistance is achieved by using a charged dielectric, and/or by using a dielectric which provides a source of dopant atoms of the same conductivity type as the source region, at a sidewall adjacent to the source region.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Inventors: Richard A. Blanchard, Mohamed N. Darwish, Jun Zeng
  • Publication number: 20140117368
    Abstract: A back end of line device and method for fabricating a transistor device include a substrate having an insulating layer formed thereon and a channel layer formed on the insulating layer. A gate structure is formed on the channel layer. Dopants are implanted into an upper portion of the channel layer on opposite sides of the gate structure to form shallow source and drain regions using a low temperature implantation process. An epitaxial layer is selectively grown on the shallow source and drain regions to form raised regions above the channel layer and against the gate structure using a low temperature plasma enhanced chemical vapor deposition process, wherein low temperature is less than about 400 degrees Celsius.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 1, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wilfried E. Haensch, Bahman Hekmatshoar-Tabari, Ali Khakifirooz, Tak H. Ning, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20140117323
    Abstract: A thin film transistor array panel includes a substrate, a semiconductor that is positioned on the substrate and that has a source area, a drain area, and a channel area, a gate insulating layer that is positioned on the semiconductor, a gate electrode that is positioned on the gate insulating layer and that overlaps the channel area, a first interlayer insulating layer that is positioned on the gate electrode and that has contact holes that expose the source area and the drain area, respectively, of which the source area and the drain area have a same plane pattern as that of the contact holes, and a source electrode and a drain electrode that are positioned on the first interlayer insulating layer and that are connected to the source area and the drain area, through the contact holes, respectively.
    Type: Application
    Filed: May 20, 2013
    Publication date: May 1, 2014
    Inventor: Ki-Wan AHN
  • Publication number: 20140117371
    Abstract: Embodiments of the present invention relate to an array substrate, a manufacturing method thereof and a display device. The manufacturing method of the array substrate comprises: preparing a base substrate; forming a gate electrode pattern on the base substrate; forming a gate insulating layer pattern on the base substrate with the gate electrode pattern formed thereon; and forming an active layer pattern, a pixel electrode pattern and source and drain patterns above the gate insulating layer pattern through a three-gray-tone mask process in one patterning process, wherein the gate electrode pattern, the active layer pattern, the source pattern and the drain pattern constitute a thin film transistor.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 1, 2014
    Applicant: Boe Technology Group Co., Ltd.
    Inventor: ZHANJIE MA
  • Patent number: 8710507
    Abstract: A method for manufacturing a semiconductor thin film is provided which can form its crystal grains having a uniform direction of crystal growth and being large in size and a manufacturing equipment using the above method, and a method for manufacturing a thin film transistor. In the above method, by applying an energy beam partially intercepted by a light shielding element, melt and re-crystallization occur with a light-shielded region as a starting point. The irradiation of the beam gives energy to the light-shielded region of the silicon thin film so that melt and re-crystallization occur with the light-shielded region as the starting point and so that a local temperature gradient in the light-shielded region is made to be 1200° C./?m or more. In the manufacturing method, a resolution of an optical system used to apply the energy beam is preferably 4 ?m or less.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 29, 2014
    Assignee: Getner Foundation LLC
    Inventor: Hiroshi Tanabe
  • Publication number: 20140110718
    Abstract: A thin film transistor, an array substrate, and a manufacturing method thereof. The manufacturing method comprises: forming a buffer layer and an active layer sequentially on a substrate, and forming an active region through a patterning process; forming a gate insulating layer and a gate electrode sequentially; forming Ni deposition openings; forming a dielectric layer having source/drain contact holes in a one-to-one correspondence with the Ni deposition openings; and forming source/drain electrodes which are connected with the active region via the source/drain contact holes and the Ni deposition openings.
    Type: Application
    Filed: November 13, 2012
    Publication date: April 24, 2014
    Applicant: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Yinan Liang
  • Patent number: 8704230
    Abstract: To reduce parasitic capacitance between a gate electrode and a source electrode or drain electrode of a dual-gate transistor. A semiconductor device includes a first insulating layer covering a first conductive layer; a first semiconductor layer, second semiconductor layers, and an impurity semiconductor layer sequentially provided over the first insulating layer; a second conductive layer over and at least partially in contact with the impurity semiconductor layer; a second insulating layer over the second conductive layer; a third insulating layer covering the three semiconductor layers, the second conductive layer, and the second insulating layer; and a third conductive layer over the third insulating layer. The third conductive layer overlaps with a portion of the first semiconductor layer, which does not overlap with the second semiconductor layers, and further overlaps with part of the second conductive layer.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 22, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hidekazu Miyairi
  • Patent number: 8704296
    Abstract: In a general aspect, a semiconductor device can include a gate having a first trench portion disposed within a first trench of a junction field-effect transistor device, a second trench portion disposed within a second trench of the junction field-effect transistor device, and a top portion coupled to both the first trench portion and to the second trench portion. The semiconductor device can include a mesa region disposed between the first trench and the second trench, and including a single PN junction defined by an interface between a substrate dopant region having a first dopant type and a channel dopant region having a second dopant type.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: April 22, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Robert Kuo-Chang Yang
  • Publication number: 20140103346
    Abstract: A semiconductor device includes a transistor which includes a gate electrode, a gate insulating film in contact with the gate electrode, and a stacked-layer oxide film facing the gate electrode with the gate insulating film provided therebetween. In the semiconductor device, the stacked-layer oxide film includes at least a plurality of oxide films, at least one of the plurality of oxide films includes a channel formation region, a channel length of the transistor is greater than or equal to 5 nm and less than 60 nm, and a thickness of the gate insulating film is larger than a thickness of the oxide film including the channel formation region.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei YAMAZAKI
  • Patent number: 8698138
    Abstract: Objects are to provide a semiconductor device for high power application in which a novel semiconductor material having high productivity is used and to provide a semiconductor device having a novel structure in which a novel semiconductor material is used. The present invention is a vertical transistor and a vertical diode each of which has a stacked body of an oxide semiconductor in which a first oxide semiconductor film having crystallinity and a second oxide semiconductor film having crystallinity are stacked. An impurity serving as an electron donor (donor) which is contained in the stacked body of an oxide semiconductor is removed in a step of crystal growth; therefore, the stacked body of an oxide semiconductor is highly purified and is an intrinsic semiconductor or a substantially intrinsic semiconductor whose carrier density is low. The stacked body of an oxide semiconductor has a wider band gap than a silicon semiconductor.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: April 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Publication number: 20140097435
    Abstract: Some embodiments include NAND memory constructions. The constructions may contain semiconductor material pillars extending upwardly between dielectric regions, with individual pillars having a pair of opposing vertically-extending sides along a cross-section. First conductivity type regions may be along first sides of the pillars, and second conductivity type regions may be along second sides of the individual pillars; with the second conductivity type regions contacting interconnect lines. Vertical NAND strings may be over the pillars, and select devices may selectively couple the NAND strings with the interconnect lines. The select devices may have vertical channels directly against the semiconductor material pillars and directly against upper regions of the first and second conductivity type regions. Some embodiments include methods of forming NAND memory constructions.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 10, 2014
    Applicant: Micron Technology, Inc.
    Inventor: Sanh D. Tang
  • Publication number: 20140097434
    Abstract: Device structures, design structures, and fabrication methods for a varactor. The device structure includes a first electrode formed on a dielectric layer, and a semiconductor body formed on the first electrode. The semiconductor body is comprised of a silicon-containing semiconductor material in an amorphous state or a polycrystalline state. The device structure further includes an electrode insulator formed on the semiconductor body and a second electrode formed on the electrode insulator.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. Ellis-Monaghan, Michael J. Hauser, Zhong-Xiang He, Xuefeng Liu, Richard A. Phelps, Robert M. Rassel, Anthony K. Stamper
  • Patent number: 8691672
    Abstract: A method is provided for consuming oxides in a silicon (Si) nanoparticle film. The method forms a colloidal solution film of Si nanoparticles overlying a substrate. The Si nanoparticle colloidal solution film is annealed at a high temperature in the presence of titanium (Ti). In response to the annealing, Si oxide is consumed in a resultant Si nanoparticle film. In one aspect, the consuming the Si oxide in the Si nanoparticle film includes forming Ti oxide in the Si nanoparticle film. Also in response to a low temperature annealing, solvents are evaporated in the colloidal solution film of Si nanoparticles. Si and Ti oxide molecules are sintered in the Si nanoparticle film in response to the high temperature annealing.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 8, 2014
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Themistokles Afentakis, Karen Yuri Nishimura
  • Patent number: 8692249
    Abstract: A semiconductor device comprises a thin film transistor provided over a substrate having an insulating surface, and an electrode penetrating the substrate. The thin film transistor is provided between a first structural body and a second structural body, which has a higher rigidity than the first structural body, which serve as protectors because the structural bodies have resistance to a pressing force such as a tip of a pen or bending stress applied from outside so malfunction due to the pressing force and the bending stress can be prevented.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: April 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai
  • Patent number: 8686413
    Abstract: It is an object to provide a semiconductor device having a new productive semiconductor material and a new structure. The semiconductor device includes a first conductive layer over a substrate, a first insulating layer which covers the first conductive layer, an oxide semiconductor layer over the first insulating layer that overlaps with part of the first conductive layer and has a crystal region in a surface part, second and third conductive layers formed in contact with the oxide semiconductor layer, an insulating layer which covers the oxide semiconductor layer and the second and third conductive layers, and a fourth conductive layer over the insulating layer that overlaps with part of the oxide semiconductor layer.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kei Takahashi, Yoshiaki Ito
  • Patent number: 8686424
    Abstract: Disclosed is a method of manufacturing a bipolar transistor, comprising providing a substrate (10) comprising a first isolation region (12) separated from a second isolation region by an active region (11) comprising a collector impurity; forming a layer stack over said substrate, said layer stack comprising a base layer (14, 14?), a silicon capping layer (15) over said base layer and a silicon-germanium (SiGe) base contact layer (40) over said silicon capping layer; etching the SiGe base contact layer to form an emitter window (50) over the collector impurity, wherein the silicon emitter cap layer is used as etch stop layer; forming sidewall spacers (22) in the emitter window; and filling the emitter window with an emitter material (24). A bipolar transistor manufactured in accordance with this method and an IC comprising one or more of such bipolar transistors are also disclosed.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 1, 2014
    Assignee: NXP, B.V.
    Inventors: Evelyne Gridelet, Johannes Josephus Theodorus Marinus Donkers, Tony Vanhoucke, Petrus Hubertus Cornelis Magnee, Hans Mertens, Blandine Duriez
  • Publication number: 20140084268
    Abstract: A method of forming a polysilicon film includes: forming an amorphous silicon film on a substrate; adsorbing a metal catalyst on the amorphous silicon film, crystallizing the amorphous silicon film through heat treatment to form the polysilicon film, the polysilicon film including a grain internal region and a grain boundary where the metal catalyst remains, providing an etchant having different oxidation selectivities with respect to the grain internal region and the grain boundary, and etching a surface of the polysilicon film by the etchant to remove the metal catalyst remaining on the grain boundary.
    Type: Application
    Filed: August 8, 2013
    Publication date: March 27, 2014
    Inventors: Yong-Duck SON, Ki-Yong LEE, Jin-Wook SEO, Min-Jae JEONG, Tak-Young LEE
  • Patent number: 8680525
    Abstract: A method for manufacturing a thin film transistor is provided. In the method, a gate electrode is formed on a substrate. A crystalline gate insulating layer is formed on an entire surface of the substrate having the gate electrode formed thereon. A microcrystalline silicon layer and a doped amorphous silicon layer are sequentially formed on the crystalline gate insulating layer. A metal layer is deposited on the substrate including the crystalline gate insulating layer, the microcrystalline silicon layer and the doped amorphous silicon layer. Source and drain electrodes, an ohmic contact layer and an active layer are formed by etching predetermined portions of the metal layer and the doped amorphous silicon layer to expose a predetermined portion of the microcrystalline silicon layer.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 25, 2014
    Assignee: LG Display Co., Ltd.
    Inventor: Chang Wook Han
  • Patent number: 8680679
    Abstract: Disclosed is a semiconductor device including: an insulating layer; a source electrode and a drain electrode embedded in the insulating layer; an oxide semiconductor layer in contact and over the insulating layer, the source electrode, and the drain electrode; a gate insulating layer over and covering the oxide semiconductor layer; and a gate electrode over the gate insulating layer, where the upper surfaces of the insulating layer, the source electrode, and the drain electrode exist coplanarly. The upper surface of the insulating layer, which is in contact with the oxide semiconductor layer, has a root-mean-square (RMS) roughness of 1 nm or less, and the difference in height between the upper surface of the insulating layer and the upper surface of the source electrode or the drain electrode is less than 5 nm. This structure contributes to the suppression of defects of the semiconductor device and enables their miniaturization.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: March 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromichi Godo, Ryota Imahayashi, Kiyoshi Kato
  • Publication number: 20140077216
    Abstract: Provided are a poly-silicon thin film transistor (TFT), a poly-silicon array substrate and a preparing method thereof, and a display device for solving the problems of excessive mask plates, complicated process and high costs in a conventional technology. The method of preparing the poly-silicon TFT comprising a doped region comprises steps: forming a poly-silicon layer on a substrate, forming an active layer by a patterning process; forming a first insulating layer; forming, by a patterning process, via holes exposing the active layer, the source electrode and the drain electrode being connected through the via holes to the active layer; doping the active layer through the via holes by a doping process to form a doped region; forming a source-drain metal layer, and forming the source electrode and the drain electrode by a patterning process.
    Type: Application
    Filed: November 16, 2012
    Publication date: March 20, 2014
    Applicant: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Fangzhen Zhang
  • Patent number: 8673709
    Abstract: An integrated circuit structure includes a semiconductor substrate, and a FinFET over the semiconductor substrate. The FinFET includes a semiconductor fin; a gate dielectric on a top surface and sidewalls of the semiconductor fin; a gate electrode on the gate dielectric; and a source/drain region at an end of the semiconductor fin. A first pair of shallow trench isolation (STI) regions includes portions directly underlying portions of the source/drain regions, wherein the first pair of STI regions is separated by, and adjoining a semiconductor strip. The first pair of STI regions further has first top surfaces. A second pair of STI regions comprises portions directly underlying the gate electrode, wherein the second pair of STI regions is separated from each other by, and adjoining, the semiconductor strip. The second pair of STI regions has second top surfaces higher than the first top surfaces.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Chang-Yun Chang, Feng Yuan
  • Patent number: 8674360
    Abstract: A separation layer is formed over a substrate, an insulating film 107 is formed over the separation layer, a bottom gate insulating film 103 is formed over the insulating film 107, an amorphous semiconductor film is formed over the bottom gate insulating film 103, the amorphous semiconductor film is crystallized to form a crystalline semiconductor film over the bottom gate insulating film 103, a top gate insulating film 105 is formed over the crystalline semiconductor film, top gate electrodes 106a and 106b are formed over the top gate insulating film 105, the separation layer is separated from the insulating film 107, the insulating film 107 is processed to expose the bottom gate insulating film 103, and bottom gate electrodes 115a and 115b in contact with exposed the gate insulating film 103 are formed.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: March 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yutaka Okazaki
  • Publication number: 20140070222
    Abstract: According to one embodiment, a thin-film transistor includes a thin-film semiconductor layer, a first gate electrode provided on the thin-film semiconductor layer through a first gate insulation film without overlapping an edge portion of the thin-film semiconductor layer, a source layer connected to the thin-film semiconductor layer, and a drain layer connected to the thin-film semiconductor layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: March 13, 2014
    Inventor: Tatsuya OHGURO
  • Publication number: 20140070223
    Abstract: A device and method of fabricating a device in the form of an array of planarized particles of single crystal silicon or poly crystal silicon wherein the planar surfaces of the particles is used to fabricate an array of electronic devices. This is particularly useful in the manufacture of large displays where single crystal high speed devices are required. The planar surfaces of the array of devices are coplanar when the array is fabricated on a planar substrate.
    Type: Application
    Filed: October 12, 2012
    Publication date: March 13, 2014
    Applicant: DIFTEK LASERS, INC.
    Inventor: Douglas R. Dykaar
  • Publication number: 20140070216
    Abstract: A thin film transistor (TFT) is provided, which includes a substrate, a first gate layer, an insulation layer, a first source/drain layer, a second source/drain layer, a semiconductor layer, a passivation layer and a second gate layer. The first gate layer is disposed on the substrate. The insulation layer is disposed on the first gate layer. The first source/drain layer is disposed on the insulation layer. The second source/drain layer is disposed on the insulation layer. The semiconductor layer is disposed on the insulation layer and covers the first source/drain layer and the second source/drain layer. The passivation layer is disposed on the insulation layer and covers the semiconductor layer. The second gate layer is disposed on the passivation layer and contacts the first gate layer through a via so that the two gate layers keep a same voltage level.
    Type: Application
    Filed: June 11, 2013
    Publication date: March 13, 2014
    Inventors: Kuan-Yi Lin, Fang-An Shu, Yao-Chou Tsai, Tzung-Wei Yu
  • Publication number: 20140061650
    Abstract: An electronic device is presented, such as a thin film transistor. The device comprises a patterned electrically-conductive layer associated with an active element of the electronic device. The electrically-conductive layer has a pattern defining an array of spaced-apart electrically conductive regions. This technique allows for increasing an electric current through the device.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 6, 2014
    Applicant: TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD.
    Inventors: Nir TESSLER, Moti MARGALIT, Oded GLOBERMAN, Roy SHENHAR
  • Publication number: 20140061649
    Abstract: A transistor includes a substrate; a gate including a first electrically conductive layer stack on the substrate; and a first inorganic thin film dielectric layer on the substrate with the first inorganic thin film dielectric layer having a first pattern. A second inorganic thin film dielectric layer, having a second pattern, is in contact with the first inorganic thin film dielectric layer. The first inorganic thin film dielectric layer and the second thin film dielectric layer have the same material composition. A third inorganic thin film dielectric layer has a third pattern. A semiconductor layer is in contact with and has the same pattern as the third inorganic thin film dielectric material layer. A source/drain includes a second electrically conductive layer stack.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Shelby F. Nelson, Carolyn R. Ellinger, David H. Levy
  • Publication number: 20140061648
    Abstract: A transistor includes a substrate; a gate including a first electrically conductive layer stack on the substrate; and a first inorganic thin film dielectric layer on the substrate with the first inorganic thin film dielectric layer having a first pattern. A second inorganic thin film dielectric layer, having a second pattern, is in contact with the first inorganic thin film dielectric layer. The first inorganic thin film dielectric layer and the second thin film dielectric layer have the same material composition. A semiconductor layer has a third pattern. A source/drain includes a second electrically conductive layer stack.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: David H. Levy, Carolyn R. Ellinger, Shelby F. Nelson
  • Patent number: 8664658
    Abstract: An n-channel transistor or a p-channel transistor provided with a second gate electrode for controlling a threshold voltage in addition to a normal gate electrode is used for a complementary logic circuit. In addition, an insulated gate field-effect transistor with an extremely low off-state current is used as a switching element to control the potential of the second gate electrode. A channel formation region of the transistor which functions as a switching element includes a semiconductor material whose band gap is wider than that of a silicon semiconductor and whose intrinsic carrier density is lower than that of silicon.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: March 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Seiichi Yoneda
  • Patent number: 8664661
    Abstract: A method of fabricating a TFT includes providing a substrate where a gate, an insulating layer, and a channel layer are formed. A conductive layer is formed on the substrate to cover the channel layer and the insulating layer. A photoresist layer is formed on the conductive layer. A photo mask is placed above the photoresist layer and has a data line pattern, a source pattern, and a drain pattern. A first width (W1) between the source pattern and the drain pattern and a second width (W2) of the data line pattern satisfy the following: if W1?1(um), then W2+a(um), and 0.3<a<0.7. An exposing process is performed by using the photo mask, and a development process is performed to pattern the photoresist layer. The conductive layer is patterned by using the photoresist layer as an etching mask to form a source, a drain, and a data line.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: March 4, 2014
    Assignee: Au Optronics Corporation
    Inventors: Huang-Chun Wu, Shine-Kai Tseng
  • Publication number: 20140054562
    Abstract: A thin-film transistor (TFT) array substrate including: a first conductive layer selected from an active layer, a gate electrode, a source electrode, and a drain electrode of a TFT; a second conductive layer in a layer different from the first conductive layer; and a connection node coupling the first conductive layer to the second conductive layer. Here, the TFT array has a node contact hole formed by: a first contact hole in the first conductive layer; and a second contact hole in the second conductive layer, the second contact hole being integral with the first contact hole and not being separated from the first contact hole by an insulating layer, and at least a portion of the connection node is in the node contact hole.
    Type: Application
    Filed: March 11, 2013
    Publication date: February 27, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventor: Won-Se Lee
  • Patent number: 8658500
    Abstract: Semiconductor devices and methods for making such devices are described. The UMOS semiconductor devices contain single-crystal gates that have been re-grown or formed at low temperature using microwaves. The devices can be formed by providing a semiconductor substrate, forming a trench in the substrate, forming an insulating layer in the trench, depositing a pre-gate layer on the insulating layer, the pre-gate layer comprising a conductive and/or semiconductive material (Si or SiGe) with a non-single crystal structure, contacting the pre-gate layer with a seed layer with a single-crystal structure, and heating the pre-gate layer using microwaves at low temperatures to recrystallize the non-single crystal structure into a single-crystal structure. These processes can improve the resistance and mobility of the gate either as a single crystal structure, optionally with a silicide contact above the source-well junction, enabling a higher switching speed UMOS device. Other embodiments are described.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: February 25, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Robert J. Purtell, Steve Sapp
  • Publication number: 20140048806
    Abstract: A method of manufacturing an electronic device comprises: providing a layer of semiconductor material comprising a first portion, a second portion, and a third portion, the third portion connecting the first portion to the second portion and providing a semiconductive channel for electrical current flow between the first and second portions; providing a gate terminal arranged with respect to said third portion such that a voltage may be applied to the gate terminal to control an electrical conductivity of said channel; and processing at least one of the first and second portions so as to have an electrical conductivity greater than an electrical conductivity of the channel when no voltage is applied to the gate terminal. In certain embodiments, the processing comprises exposing at least one of the first and second portions to electromagnetic radiation. The first and second portions may be laser annealed to increase their conductivities.
    Type: Application
    Filed: March 30, 2012
    Publication date: February 20, 2014
    Inventors: Richard Price, Catherine Ramsdale
  • Publication number: 20140048797
    Abstract: There is provided a semiconductor device including a first conductive layer, an insulating layer, a second conductive layer, a channel layer, a passivation layer and a third conductive layer. The insulating layer covers the first conductive layer. The second conductive layer is formed on the insulating layer and has an inner opening. The channel layer is formed on the inner opening of the second conductive layer to fully cover the inner opening. The passivation layer is formed upon the channel layer to cover the channel layer and has a contact hole inside the inner opening of the second conductive layer. The third conductive layer is formed in the contact hole.
    Type: Application
    Filed: June 3, 2013
    Publication date: February 20, 2014
    Inventors: CHIA-HUA YU, MING-CHIEH CHANG, JUNG-FANG CHANG
  • Patent number: 8653523
    Abstract: There is provided a thin-film transistor forming substrate in which at least one of a source electrode, a drain electrode, and a gate electrode, which are constituent elements of a thin film transistor, or a first electrode is included on a face of a substrate main body that is located on any one side in a thickness direction. An embedded wiring that is connected to one of the source electrode, the drain electrode, the gate electrode, and the first electrode is buried inside the substrate main body.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: February 18, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Takashi Sato
  • Patent number: 8653595
    Abstract: The present invention relates to a semiconductor device including a circuit composed of thin film transistors having a novel GOLD (Gate-Overlapped LDD (Lightly Doped Drain)) structure. The thin film transistor comprises a first gate electrode and a second electrode being in contact with the first gate electrode and a gate insulating film. Further, the LDD is formed by using the first gate electrode as a mask, and source and drain regions are formed by using the second gate electrode as the mask. Then, the LDD overlapping with the second gate electrode is formed. This structure provides the thin film transistor with high reliability.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: February 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroki Adachi
  • Patent number: 8653527
    Abstract: Disclosed is a method for manufacturing a thin film transistor in which a semiconductor film in a channel portion is provided between a source electrode and a drain electrode, wherein a partition layer (a bank) can be appropriately formed. The method comprises the steps of: forming two underlying electrodes on an underlying layer; forming a partition layer on the surface of the underlying layer containing the two underlying electrodes so as to surround an area where the source electrode and the drain electrode are to be formed; forming the source electrode and the drain electrode by a plating method on the surfaces of the two underlying electrodes, which are surrounded by the partition layer; and applying semiconductor solution, in which a semiconductor material is dissolved or dispersed, to the area surrounded by the partition layer so that a semiconductor film is formed in the area.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: February 18, 2014
    Assignee: Konica Minolta Holdings, Inc.
    Inventor: Jun Yamada
  • Patent number: 8653528
    Abstract: A thin film transistor including: an active layer formed on a substrate; a gate insulating layer pattern formed on a predetermined region of the active layer; a gate electrode formed on a predetermined region of the gate insulating layer pattern; an etching preventing layer pattern covering the gate insulating layer pattern and the gate electrode; and a source member and a drain member formed on the active layer and the etching preventing layer pattern.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yong-Duck Son, Ki-Young Lee, Jin-Wook Seo, Min-Jae Jeong, Byung-Soo So, Seung-Kyu Park, Kii-Won Lee, Yun-Mo Chung, Byoung-Keon Park, Dong-Hyun Lee, Jong-Ryuk Park, Tak-Young Lee, Jae-Wan Jung
  • Patent number: 8653531
    Abstract: Disclosed is a thin film transistor wherein an ON current is increased and a leak current is reduced. The channel layer 60 of the TFT 10 is formed of a crystalline silicon, and the lower surface of one end of the channel layer 60 is electrically connected to the surface of an n+ silicon layer 40a, and the lower surface of the other end is electrically connected to the surface of an n+ silicon layer 40b. Furthermore, the side surface of said end of the channel layer 60 is electrically connected to a source electrode 50a, and the side surface of the other end is electrically connected to a drain electrode 50b. Thus, a barrier that makes electrons, which act as carriers, not easily transferred is formed on the boundary between the source electrode 50a and the channel layer 60. As a result, the ON current that flows when the TFT 10 is in the ON state can be increased, and the leak current that flows when the TFT is in the OFF state can be reduced.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 18, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yohsuke Kanzaki, Yudai Takanishi, Yoshiki Nakatani
  • Publication number: 20140042443
    Abstract: A semiconductor device including a capacitor with increased charge capacity and having a high aperture ratio and low power consumption is provided for a semiconductor device including a driver circuit. The semiconductor device includes a driver circuit which includes a first transistor including gate electrodes above and below a semiconductor film so as to overlap with the semiconductor film; a pixel which includes a second transistor including a semiconductor film; a capacitor which includes a dielectric film between a pair of electrodes in the pixel; and a capacitor line electrically connected to one of the pair of electrodes. In the semiconductor device, the gate electrode over the semiconductor film of the first transistor is electrically connected to the capacitor line.
    Type: Application
    Filed: July 26, 2013
    Publication date: February 13, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shunpei YAMAZAKI
  • Publication number: 20140042405
    Abstract: A thin film transistor includes a semiconductor formed on a substrate and having a source region, a first drain region spaced apart from the source region by a first current channel, and a second drain region spaced apart from the source region by a second current channel which has the different length from that of the first current channel, a gate electrode insulated from the semiconductor by a gate insulating layer, a source electrode connected to the source region of the semiconductor, a first drain electrode connected to the first drain region of the semiconductor, a second drain electrode connected to the second drain region of the semiconductor, and a bypass line electrically connecting the first drain region and the second drain region.
    Type: Application
    Filed: May 23, 2013
    Publication date: February 13, 2014
    Inventor: Sung-Hoon Moon
  • Patent number: 8648360
    Abstract: A light-emitting diode structure includes a base with a recessed portion, a light-emitting chip and a light-transmissive block. The light-emitting chip disposed in the recessed portion of the base and emits a light beam. The light-transmissive block disposed on the base covers the recessed portion and the light-emitting chip, so that the light beam emitted from the light-emitting chip is radiated outwardly via the light-transmissive block. The light-transmissive block is a flat-top multilateral cone including a bottom surface, a top surface, and several side surfaces connected to and located between the bottom surface and the top surface. A slot with a bottom portion is formed on the top surface of the light-transmissive block.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 11, 2014
    Assignee: Everlight Electronics Co., Ltd.
    Inventor: Kuan-Yu Chen