Composed Of Alternated Layers Or Of Mixtures Of Nitrides And Oxides Or Of Oxynitrides, E.g., Formation Of Oxynitride By Oxidation Of Nitride Layer (epo) Patents (Class 257/E21.267)
-
Patent number: 12205951Abstract: Provided is a semiconductor device including a first semiconductor transistor including a semiconductor channel layer, and a metal-oxide semiconductor channel layer, and having a structure in which a second semiconductor transistor is stacked on the top of the first semiconductor transistor. A gate stack of the second semiconductor transistor and the top of a gate stack of the first semiconductor transistor may overlap by greater than or equal to 90%. The first semiconductor transistor and the second semiconductor transistor may have a similar level of operation characteristics.Type: GrantFiled: October 1, 2021Date of Patent: January 21, 2025Assignee: Samsung Electronics Co., Ltd.Inventors: Sangwook Kim, Seunggeol Nam, Taehwan Moon, Kwanghee Lee, Jinseong Heo, Hagyoul Bae, Yunseong Lee
-
Patent number: 12041763Abstract: A method for forming a capacitor, the capacitor and a semiconductor device are provided. The method includes: providing a semiconductor structure including a substrate, a stacked-layer structure, a protective layer, a first mask layer, and a photolithography layer which is provided with a plurality of cross-shaped patterns arranged in a square close-packed manner; patterning the first mask layer based on the photolithography layer; forming a plurality of through holes penetrating through the protective layer and the stacked-layer structure based on the patterned first mask layer by etching, in which in a direction perpendicular to a surface of the substrate, a projection of each through hole is cross-shaped, and the plurality of through holes are arranged in the square close-packed manner; and forming a first electrode layer, a dielectric layer and a second electrode layer covering an inner wall of each through hole to form the capacitor.Type: GrantFiled: June 24, 2022Date of Patent: July 16, 2024Assignees: CHANGXIN MEMORY TECHNOLOGIES, INC., BEIJING SUPERSTRING ACADEMY OF MEMORY TECHNOLOGYInventors: Guangsu Shao, Mengkang Yu, Xingsong Su
-
Patent number: 12018370Abstract: A film-forming method includes: forming a first film by performing an operation of forming a unit film a plurality of times, the operation including sub-step of supplying a first raw material gas containing a first element to a substrate and causing the first raw material gas to be adsorbed thereon, and sub-step of supplying a first reaction gas to the substrate; and forming a second film on the substrate by performing an operation of forming a unit film at least once, the operation including sub-step of supplying a second raw material gas containing a second element to the substrate and causing the second raw material gas to be adsorbed thereon, and sub-step of supplying a second reaction gas to the substrate, wherein a mixed film is formed by performing the forming the first film and the forming the second film, respectively once, or a plurality of times.Type: GrantFiled: October 28, 2020Date of Patent: June 25, 2024Assignee: Tokyo Electron LimitedInventors: Tatsuhiko Tanimura, Toru Kanazawa, Toshiyuki Ikeuchi
-
Patent number: 11996340Abstract: A method for making a semiconductor structure includes forming a first fin and a second fin over a substrate. The method includes forming one or more work function layers over the first and second fins. The method includes forming a nitride-based metal film over the one or more work function layers. The method includes covering the first fin with a patternable layer. The method includes removing a second portion of the nitride-based metal film from the second fin, while leaving a first portion of the nitride-based metal film over the first fin substantially intact.Type: GrantFiled: August 5, 2021Date of Patent: May 28, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yao-Wen Hsu, Ying-Liang Chuang
-
Patent number: 11984446Abstract: A semiconductor device may include a first capacitor and a second capacitor. The first capacitor may include a first lower electrode, a first upper electrode and a first dielectric layer disposed between the first lower electrode and the first upper electrode at a first height. The second capacitor may be positioned spaced apart from the first capacitor. The second capacitor may include a second lower electrode, a second upper electrode and a second dielectric layer disposed between the second lower electrode and the second upper electrode at a second height different from the first height.Type: GrantFiled: December 29, 2021Date of Patent: May 14, 2024Assignee: SK hynix Inc.Inventors: Kyu Jin Choi, Seong Min Ma, Kyu Chan Shim
-
Patent number: 11855092Abstract: In an embodiment, a method includes forming a plurality of semiconductor fins over a substrate, the plurality of semiconductor fins comprising a first fin, a second fin, a third fin, and a fourth fin; forming a first dielectric layer over the plurality of semiconductor fins, the first dielectric layer filling an entirety of a first trench between the first fin and the second fin; forming a second dielectric layer over the first dielectric layer, the second dielectric layer filling an entirety of a second trench between the second fin and the third fin, the forming the second dielectric layer comprising: forming an oxynitride layer; and forming an oxide layer; and forming a third dielectric layer over the second dielectric layer, the third dielectric layer filling an entirety of a third trench between the third fin and the fourth fin.Type: GrantFiled: April 16, 2021Date of Patent: December 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Yi Chen Ho, Yiting Chang, Lun-Kuang Tan, Chien Lin
-
Patent number: 11802134Abstract: A class of organometallic compounds is provided. The compounds correspond in structure to Formula 1 (A)x-M-(OR3)4-x wherein: A is selected from the group consisting of —NR1R2, —N(R4)(CH2)nN(R5R6), —N?C(NR4R5)(NR6R7), OCOR1, halo and Y; R1 and R2 are independently selected from the group consisting of H and a cyclic or acyclic alkyl group having from 1 to 8 carbon atoms, with the proviso that at least one of R1 and R2 must be other than H; R4, R5, R6 and R7 are independently selected from the group consisting of H and an acyclic alkyl group having from 1 to 4 carbon atoms; Y is selected from the group consisting of a 3- to 13-membered heterocyclic radical containing at least one nitrogen atom; R3 is a cyclic or acyclic alkyl group having from 1 to 6 carbon atoms; M is selected from the group consisting of Si, Ge, Sn, Ti, Zr and Hf; x is an integer from 1 to 3; and n is an integer from 1 to 4.Type: GrantFiled: February 10, 2017Date of Patent: October 31, 2023Assignee: SEASTAR CHEMICALS ULCInventors: Rajesh Odedra, Cunhai Dong, Shaun Cembella
-
Patent number: 11728247Abstract: A manufacturing method of a semiconductor structure includes at least the following steps. Forming a first tier includes forming a conductive via extending from a lower portion of a first interconnect structure into a first semiconductor substrate underlying the lower portion; forming an upper portion of the first interconnect structure on the conductive via and the lower portion; forming a first surface dielectric layer on the upper portion; and forming a first and a second bonding connectors in the first surface dielectric layer. The first bonding connector extends to be in contact with an upper-level interconnecting layer of the first interconnect structure, the second bonding connector is narrower than the first bonding connector and extends to be in contact with a lower-level interconnecting layer of the first interconnect structure, and a top surface of the conductive via is between the upper-level interconnecting layer and the first semiconductor substrate.Type: GrantFiled: July 2, 2021Date of Patent: August 15, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Chia Hu, Hsien-Wei Chen, Ming-Fa Chen, Sen-Bor Jan
-
Patent number: 11587863Abstract: The present disclosure provides a semiconductor structure, including a capacitor. The capacitor includes a first electrode and a second electrode respectively electrically connected to a first conductor and a second conductor; and a first dielectric layer between the first electrode and the second electrode. In some embodiments, the first dielectric layer contacts with a sidewall surface of the first conductor. The semiconductor structure further includes a second dielectric layer over and adjacent to the capacitor. A method of forming the semiconductor package is also provided.Type: GrantFiled: December 9, 2020Date of Patent: February 21, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Chih-Kuang Kao, Ta-Chih Peng, Ming-Hong Kao, Huei-Wen Yang
-
Patent number: 11152214Abstract: A method of forming a semiconductor device that includes forming a metal oxide material on a III-V semiconductor channel region or a germanium containing channel region; and treating the metal oxide material with an oxidation process. The method may further include depositing of a hafnium containing oxide on the metal oxide material after the oxidation process, and forming a gate conductor atop the hafnium containing oxide. The source and drain regions are on present on opposing sides of the gate structure including the metal oxide material, the hafnium containing oxide and the gate conductor.Type: GrantFiled: April 20, 2016Date of Patent: October 19, 2021Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Takashi Ando, John Bruley, Eduard A. Cartier, Martin M. Frank, Vijay Narayanan, John Rozen
-
Patent number: 10468625Abstract: A novel light-emitting device that is highly convenient or reliable is provided. A method for manufacturing a novel light-emitting device that is highly convenient or reliable is also provided. Further, a novel light-emitting device, a method for manufacturing a novel light-emitting device, or a novel device is provided. The present inventor has conceived the structure in which a first insulating film and a light-emitting element are provided between a first support having certain isotropy and a second support.Type: GrantFiled: October 5, 2016Date of Patent: November 5, 2019Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Tatsuya Sakuishi
-
Patent number: 10157844Abstract: A semiconductor device includes a semiconductor substrate having a fin structure. A gate structure is disposed over the fin structure. A first dielectric layer is disposed on the gate structure and the fin structure. A contact plug is disposed in the first dielectric layer and electrically connected to source/drain region in the fin structure. A second dielectric layer is disposed on the first dielectric layer. the second dielectric layer has a first nitride layer and a first etch stop layer, and the first nitride layer is disposed on the first etch stop layer. A via goes through the second dielectric layer and electrically connected to the contact plug. A metal layer is disposed on the second dielectric layer.Type: GrantFiled: October 12, 2017Date of Patent: December 18, 2018Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chih-Pin Tsao, Wei-Fang Chen
-
Patent number: 10056466Abstract: A method for fabricating a semiconductor device may comprise forming a first transistor having a first threshold voltage in a first region of a substrate, forming a second transistor having a second threshold voltage less than the first threshold voltage in a second region of the substrate, forming a third interlayer insulating film in the third region, and planarizing the first transistor, the second transistor and the third interlayer insulating film. The first transistor may include a first gate electrode having a first height and a first interlayer insulating film having the first height, and the second transistor may include a second gate electrode having a second height shorter than the first height and a second interlayer insulating film having the second height. The third interlayer insulating film may have the first height.Type: GrantFiled: June 24, 2016Date of Patent: August 21, 2018Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Seung-Jae Lee, Ja-Eung Koo, Ho-Young Kim, Yeong-Bong Park, Il-Su Park, Bo-Un Yoon, Il-Young Yoon, Youn-Su Ha
-
Patent number: 9620386Abstract: A method of fabricating a gate structure includes depositing a high dielectric constant (high-k) dielectric layer over a substrate. The method further includes performing a multi-stage preheat high-temperature anneal. Performing the multi-stage preheat high-temperature anneal includes performing a first stage preheat at a temperature in a range from about 400° C. to about 600° C., performing a second stage preheat at a temperature in a range from about 700° C. to about 900° C., and performing a high temperature anneal at a peak temperature in a range from 875° C. to about 1200° C.Type: GrantFiled: July 28, 2014Date of Patent: April 11, 2017Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chun Hsiung Tsai, Xiong-Fei Yu, Yu-Lien Huang, Da-Wen Lin
-
Patent number: 9583557Abstract: Integrated circuits including a MIMCAP device and methods of forming the integrated circuits are provided. An exemplary method of forming an integrated circuit including a MIMCAP device includes pre-determining a thickness of at least one of a bottom high-K layer or a top high-K layer of the MIMCAP device, followed by fabricating the MIMCAP device. The pre-determined thickness is established based upon a pre-determined TDDB lifetime for the MIMCAP device and a minimum target capacitance density at an applied voltage bias to be employed for the MIMCAP device. The MIMCAP device includes a bottom electrode and a dielectric layer disposed over the bottom electrode. The dielectric layer includes a stack of individual layers including the bottom high-K layer, the top high-K layer, and a lower-K layer sandwiched therebetween. At least one of the bottom high-K layer or the top high-K layer has the pre-determined thickness.Type: GrantFiled: August 25, 2015Date of Patent: February 28, 2017Assignee: GLOBALFOUNDRIES, INC.Inventors: Lili Cheng, Dina H. Triyoso, Jeasung Park, David Paul Brunco, Robert Fox, Sanford Chu
-
Patent number: 9564363Abstract: A method of fabricating a semiconductor device is disclosed. The method includes forming a first gate structure over a substrate, forming a source/drain feature in the substrate adjacent the first gate structure, forming a dielectric layer over the first gate structure and the source/drain feature, removing a portion of the dielectric layer to form a first trench exposing the first gate structure and the source/drain feature, forming a first conductive feature in the first trench, removing a first portion of the first gate structure to form a second trench and forming a second conductive feature in the second trench.Type: GrantFiled: August 19, 2015Date of Patent: February 7, 2017Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Hao Wang, Chun-Hsiung Lin, Chia-Hao Chang, Jia-Chuan You, Wei-Hao Wu, Yi-Hsiung Lin, Zhi-Chang Lin
-
Patent number: 9362162Abstract: Methods are provided for fabricating an interlayer structure useful in, for instance, providing BEOL interconnect for circuit structures. The method includes, for instance, providing an interlayer structure, including: providing an uncured insulating layer above a substrate structure; forming an energy removal film over the uncured insulated layer; forming at least one opening through the energy removal film and extending at least partially into the uncured insulating layer; and applying energy to cure the uncured insulating layer, establishing a cured insulating layer, and decomposing in part the energy removal film, establishing a reduced thickness, energy removal film over the cured insulating layer, the interlayer structure including the cured insulating layer, and the applying energy decreasing an aspect ratio(s) of the one opening(s). In one implementation, the uncured insulating layer includes porogens which also decompose partially during applying energy to further improve the aspect ratio(s).Type: GrantFiled: August 14, 2014Date of Patent: June 7, 2016Assignee: GLOBALFOUNDRIES INC.Inventors: Sunil Kumar Singh, Ravi Prakash Srivastava, Teck Jung Tang, Mark Alexander Zaleski
-
Patent number: 9041111Abstract: A flat panel detector includes a photoelectric conversion layer and a pixel detecting element disposed under the photoelectric conversion layer. The pixel detecting element includes: a pixel electrode for receiving charges, a storage capacitor for storing the received charges, and a thin film transistor for controlling outputting of the stored charges. The storage capacitor includes a first electrode and a second electrode. The first electrode includes an upper electrode and a bottom electrode that are disposed opposite to each other and electrically connected. A second electrode is sandwiched between the upper electrode and the bottom electrode. It is insulated between the upper electrode and the second electrode and between the second electrode and the bottom electrode.Type: GrantFiled: December 16, 2013Date of Patent: May 26, 2015Assignee: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.Inventor: Zhenyu Xie
-
Patent number: 9040424Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The single crystal silicon substrate is exposed to an anisotropic etchant that undercuts the single crystal silicon. By controlling the length of the etch, single crystal silicon islands or smooth vertical walls in the single crystal silicon may be created.Type: GrantFiled: March 9, 2012Date of Patent: May 26, 2015Assignee: MICRON TECHNOLOGY, INC.Inventors: Janos Fucsko, David H. Wells, Patrick Flynn, Whonchee Lee
-
Patent number: 9006840Abstract: A semiconductor device includes a plurality of semiconductor chips in a stack structure and a through-silicon via suitable for passing through the chips and transfer a signal from or to one or more of the chips. Each of the chips includes a buffering block disposed in path of the through-silicon via, and suitable for buffering the signal, an internal circuit, and a delay compensation block suitable for applying delay corresponding to the buffering blocks of the chips to the signal, wherein the delay compensation blocks of the chips compensates for delay difference of the signal transferred to and from the internal circuit of the chip, due to operations of the buffering block, based on stack information for distinguishing the chips.Type: GrantFiled: December 16, 2013Date of Patent: April 14, 2015Assignee: SK Hynix Inc.Inventors: Sang-Hoon Shin, Young-Ju Kim
-
Patent number: 8999862Abstract: Methods of fabricating nano-scale structures are provided. A method includes forming a first hard mask pattern corresponding to first openings in a dense region, forming first guide elements on the first hard mask pattern aligned with the first openings, and forming second hard mask patterns in a sparse region to provide isolated patterns. A blocking layer is formed in the sparse region to cover the second hard mask patterns. A first domain and second domains are formed in the dense region using a phase separation of a block co-polymer layer. Related nano-scale structures are also provided.Type: GrantFiled: April 7, 2014Date of Patent: April 7, 2015Assignee: SK Hynix Inc.Inventors: Keun Do Ban, Cheol Kyu Bok, Myoung Soo Kim, Jung Hyung Lee, Hyun Kyung Shim, Chang Il Oh
-
Patent number: 8999846Abstract: An integrated circuit structure includes a plurality of insulator layers (connected to each other) that form a laminated structure. Further included are via openings within each of the insulator layers, and conductive via material within the via openings. The conductive via material within corresponding via openings of adjacent insulator layers are electrically connected to form continuous electrical via paths through the insulator layers between the top surface and the bottom surface of the laminated structure. Within each of the continuous electrical via paths, the via openings are positioned relative to each other to form a diagonal structural path of the conductive via material through the laminated structure. The corresponding via openings of the adjacent insulator layers partially overlap each other. The diagonal structural paths are non-perpendicular to the top surface and the bottom surface.Type: GrantFiled: April 17, 2014Date of Patent: April 7, 2015Assignee: International Business Machines CorporationInventors: Luke D. LaCroix, Mark C. H. Lamorey, Janak G. Patel, Peter Slota, Jr., David B. Stone
-
Patent number: 8999805Abstract: A semiconductor device includes a first type region including a first conductivity type. The semiconductor device includes a second type region including a second conductivity type. The semiconductor device includes a channel region extending between the first type region and the second type region. The semiconductor device includes a gate region surrounding the channel region. The gate region includes a gate electrode. A gate electrode length of the gate electrode is less than about 10 nm. A method of forming a semiconductor device is provided.Type: GrantFiled: October 5, 2013Date of Patent: April 7, 2015Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Jean-Pierre Colinge, Kuo-Cheng Ching, Ta-Pen Guo, Carlos H. Diaz
-
Patent number: 8999811Abstract: An insulating layer containing a silicon peroxide radical is used as an insulating layer in contact with an oxide semiconductor layer for forming a channel. Oxygen is released from the insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the insulating layer and the oxide semiconductor layer can be reduced. Accordingly, a semiconductor device where reliability is high and variation in electric characteristics is small can be manufactured.Type: GrantFiled: August 29, 2013Date of Patent: April 7, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yuta Endo, Toshinari Sasaki, Kosei Noda, Mizuho Sato
-
Patent number: 8987922Abstract: A semiconductor device includes a substrate, a bond pad above the substrate, a guard ring above the substrate, and an alignment mark above the substrate, between the bond pad and the guard ring. The device may include a passivation layer on the substrate, a polymer layer, a post-passivation interconnect (PPI) layer in contact with the bond pad, and a connector on the PPI layer, wherein the connector is between the bond pad and the guard ring, and the alignment mark is between the connector and the guard ring. The alignment mark may be at the PPI layer. There may be multiple alignment marks at different layers. There may be multiple alignment marks for the device around the corners or at the edges of an area surrounded by the guard ring.Type: GrantFiled: March 13, 2013Date of Patent: March 24, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tsung-Yuan Yu, Hsien-Wei Chen, Wen-Hsiung Lu, Hung-Jen Lin
-
Patent number: 8981441Abstract: According to one embodiment, a manufacturing method of a magnetic memory includes forming a magnetoresistive element in a cell array section on a semiconductor substrate, forming a dummy element in a peripheral circuit section on the semiconductor substrate, the dummy element having the same stacked structure as the magnetoresistive element and being arranged at the same level as the magnetoresistive element, collectively flattening the magnetoresistive element and the dummy element, applying a laser beam to the dummy element to form the dummy element into a non-magnetic body, and forming an upper electrode on the flattened magnetoresistive element.Type: GrantFiled: September 30, 2013Date of Patent: March 17, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Kenji Noma, Hiroshi Watanabe, Shinya Kobayashi
-
Patent number: 8975128Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced sVT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.Type: GrantFiled: November 18, 2013Date of Patent: March 10, 2015Assignee: SuVolta, Inc.Inventors: Scott E. Thompson, Damodar R. Thummalapally
-
Patent number: 8952512Abstract: A wafer-level package structure of a light emitting diode and a manufacturing method thereof are provided in the present invention. The wafer-level package structure of a light emitting diode includes a die, a first insulating layer, at least two wires, bumps, an annular second insulating layer on the wires and the insulating layer, the annular second insulating layer surrounding an area between the bumps and there being spaces arranged between the second insulating layer and the bumps; a light reflecting cup on the second insulating layer; at least two discrete lead areas and leads in the lead areas. The technical solution of the invention reduces the area required for the substrate; and the electrodes can be extracted in the subsequent structure of the package without gold wiring to thereby further reduce the volume of the package.Type: GrantFiled: April 19, 2013Date of Patent: February 10, 2015Assignee: China Wafer Level CSP Ltd.Inventors: Junjie Li, Wenbin Wang, Qiuhong Zou, Guoqing Yu, Wei Wang
-
Patent number: 8952452Abstract: Semiconductor devices, and a method of manufacturing the same, include a gate insulating film pattern over a semiconductor substrate. A gate electrode is formed over the gate insulating film pattern. A spacer structure is formed on at least one side of the gate electrode and the gate insulating film pattern. The spacer structure includes a first insulating film spacer contacting the gate insulating film pattern, and a second insulating film spacer on an outer side of the first insulating film spacer. The semiconductor device has an air gap between the first insulating film spacer and the second insulating film spacer.Type: GrantFiled: December 3, 2012Date of Patent: February 10, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Hong-Seong Kang, Yoon-Hae Kim, Jong-Shik Yoon
-
Patent number: 8946894Abstract: Methods and apparatuses for forming a package for high-power semiconductor devices are disclosed herein. A package may include a plurality of distinct thermal spreader layers disposed between a die and a metal carrier. Other embodiments are described and claimed.Type: GrantFiled: February 18, 2013Date of Patent: February 3, 2015Assignee: TriQuint Semiconductor, Inc.Inventors: Tarak A. Railkar, Deep C. Dumka
-
Patent number: 8946021Abstract: On a silicon substrate is formed a stacked body by alternately stacking a plurality of silicon oxide films and silicon films, a trench is formed in the stacked body, an alumina film, a silicon nitride film and a silicon oxide film are formed in this order on an inner surface of the trench, and a channel silicon crystalline film is formed on the silicon oxide film. Next, a silicon oxide layer is formed at an interface between the silicon oxide film and the channel silicon crystalline film by performing thermal treatment in an oxygen gas atmosphere.Type: GrantFiled: August 15, 2014Date of Patent: February 3, 2015Assignee: Kabushiki Kaisha ToshibaInventor: Yoshio Ozawa
-
Patent number: 8941222Abstract: A semiconductor package includes at least one semiconductor die having an active surface, an interposer element having an upper surface and a lower surface, a package body, and a lower redistribution layer. The interposer element has at least one conductive via extending between the upper surface and the lower surface. The package body encapsulates portions of the semiconductor die and portions of the interposer element. The lower redistribution layer electrically connects the interposer element to the active surface of the semiconductor die.Type: GrantFiled: November 11, 2010Date of Patent: January 27, 2015Assignee: Advanced Semiconductor Engineering Inc.Inventor: John Richard Hunt
-
Patent number: 8928052Abstract: An optoelectronic semiconductor chip has a semiconductor layer sequence having an active layer that generates radiation between a layer of a first conductivity type and a layer of a second conductivity type. The layer of the first conductivity type is adjacent to a front side of the semiconductor layer sequence. The semiconductor layer sequence contains at least one cutout extending from a rear side, lying opposite the front side, of the semiconductor layer sequence through the active layer to the layer of the first conductivity type. The layer of the first conductivity type is electrically connected through the cutout by means of a first electrical connection layer which covers the rear side of the semiconductor layer sequence at least in places.Type: GrantFiled: March 13, 2009Date of Patent: January 6, 2015Assignee: OSRAM Opto Semiconductors GmbHInventors: Karl Engl, Lutz Hoeppel, Patrick Rode, Matthias Sabathil
-
Patent number: 8927983Abstract: Disclosed herein is a thin film transistor array substrate. The thin film transistor array substrate includes a display area and a non-display area. The non-display area includes a signal line, a connecting line and a metal contact. The connecting line is formed in a first patterned metal layer. The signal line and the metal contact are formed in a second patterned metal layer. The connecting line is connected to the signal line by a first through-hole, and the connecting line is connected to the metal contact by a second through-hole. Furthermore, a method of fabricating the thin film transistor array substrate is also disclosed.Type: GrantFiled: August 19, 2012Date of Patent: January 6, 2015Assignee: E Ink Holdings Inc.Inventors: Wen-Chung Tang, Fang-An Shu, Yao-Chou Tsai, Ted-Hong Shinn
-
Patent number: 8927433Abstract: Provided is a technology for forming a conductive via hole to implement a three dimensional stacked structure of an integrated circuit. A method for forming a conductive via hole according to an embodiment of the present invention comprises: filling inside of a via hole structure that is formed in one or more of an upper portion and a lower portion of a substrate with silver by using a reduction and precipitation of silver in order to connect a plurality of stacked substrates by a conductor; filling a portion that is not filled with silver inside of the via hole structure by flowing silver thereinto; and sublimating residual material of silver oxide series, which is generated during the flowing, on an upper layer inside of the via hole structure filled with silver.Type: GrantFiled: December 15, 2010Date of Patent: January 6, 2015Assignee: Electronics and Telecommunications Research InstituteInventor: Jin-Yeong Kang
-
Patent number: 8921174Abstract: Disclosed herein is a method for fabricating a complementary tunneling field effect transistor based on a standard CMOS IC process, which belongs to the field of logic devices and circuits of field effect transistors in ultra large scaled integrated (ULSI) circuits. In the method, an intrinsic channel and body region of a TFET are formed by means of complementary P-well and N-well masks in the standard CMOS IC process to form a well doping, a channel doping and a threshold adjustment by implantation. Further, a bipolar effect in the TFET can be inhibited via a distance between a gate and a drain on a layout so that a complementary TFET is formed. In the method according to the invention, the complementary tunneling field effect transistor (TFET) can be fabricated by virtue of existing processes in the standard CMOS IC process without any additional masks and process steps.Type: GrantFiled: June 14, 2012Date of Patent: December 30, 2014Assignee: Peking UniversityInventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
-
Patent number: 8916474Abstract: In accordance with an embodiment of the present invention, a semiconductor module includes a first semiconductor package having a first semiconductor die, which is disposed in a first encapsulant. An opening is disposed in the first encapsulant. A second semiconductor package including a second semiconductor die is disposed in a second encapsulant. The second semiconductor package is disposed at least partially within the opening in the first encapsulant.Type: GrantFiled: February 18, 2013Date of Patent: December 23, 2014Assignee: Infineon Technologies AGInventors: Ralf Otremba, Josef H•glauer
-
Patent number: 8912098Abstract: A device and method for device fabrication includes forming a buried gate electrode in a dielectric substrate and patterning a stack that includes a high dielectric constant layer, a carbon-based semi-conductive layer and a protection layer over the buried gate electrode. An isolation dielectric layer formed over the stack is opened to define recesses in regions adjacent to the stack. The recesses are etched to form cavities and remove a portion of the high dielectric constant layer to expose the carbon-based semi-conductive layer on opposite sides of the buried gate electrode. A conductive material is deposited in the cavities to form self-aligned source and drain regions.Type: GrantFiled: April 15, 2013Date of Patent: December 16, 2014Assignee: International Business Machines CorporationInventors: Dechao Guo, Shu-Jen Han, Keith Kwong Hon Wong, Jun Yuan
-
Patent number: 8906811Abstract: A silicon/carbon alloy may be formed in drain and source regions, wherein another portion may be provided as an in situ doped material with a reduced offset with respect to the gate electrode material. For this purpose, in one illustrative embodiment, a cyclic epitaxial growth process including a plurality of growth/etch cycles may be used at low temperatures in an ultra-high vacuum ambient, thereby obtaining a substantially bottom to top fill behavior.Type: GrantFiled: October 13, 2011Date of Patent: December 9, 2014Assignee: Advanced Micro Devices, Inc.Inventors: Thorsten Kammler, Andy Wei, Ina Ostermay
-
Patent number: 8906772Abstract: A system and method for forming graphene layers on a substrate. The system and methods include direct growth of graphene on diamond and low temperature growth of graphene using a solid carbon source.Type: GrantFiled: May 25, 2012Date of Patent: December 9, 2014Assignee: UChicago Argonne, LLCInventor: Anirudha V. Sumant
-
Patent number: 8901010Abstract: Methods for protecting a texturized region and a lightly doped diffusion region of a solar cell to improve solar cell lifetime and efficiency are disclosed. In an embodiment, an example method includes providing a solar cell having a front side which faces the sun during normal operation and a back side opposite the front side, a silicon substrate and where the silicon substrate includes a texturized region and a lightly doped diffusion region. The method includes placing the solar cell on a receiving medium with the front side of the solar cell placed on an upper surface of the receiving medium, where the upper surface of the receiving medium prevents damage to the to the lightly doped diffusion region and damage to the texturized region on the front side of the solar cell during a contact printing process or transferring. In an embodiment, the lightly doped diffusion region has a doping concentration below 1×1019 cm?3 and the receiving medium includes a material having a moh's hardness in the range of 5-10.Type: GrantFiled: March 15, 2013Date of Patent: December 2, 2014Assignee: SunPower CorporationInventors: Staffan Westerberg, Florito Dennis Tingchuy Vicente, Michael Cudzinovic, Princess Carmi Tomada, Jemellee Guiao
-
Patent number: 8895455Abstract: To form an insulating film with extremely low concentration of impurities such as carbon, hydrogen, nitrogen, chlorine, etc in a film. There are provided the steps of forming a specific element-containing layer on a substrate by supplying source gas containing a specific element into a processing container in which the substrate is accommodated; changing the specific element-containing layer into a nitride layer, by activating and supplying gas containing nitrogen into the processing container; and changing the nitride layer into an oxide layer or an oxynitride layer, by activating and supplying gas containing oxygen into the processing container; with this cycle set as one cycle and performed for at least one or more times.Type: GrantFiled: November 7, 2013Date of Patent: November 25, 2014Assignee: Hitachi Kokusai Electric Inc.Inventors: Naonori Akae, Yoshiro Hirose
-
Patent number: 8896110Abstract: Embodiments of the present disclosure describe techniques and configurations for paste thermal interface materials (TIMs) and their use in integrated circuit (IC) packages. In some embodiments, an IC package includes an IC component, a heat spreader, and a paste TIM disposed between the die and the heat spreader. The paste TIM may include particles of a metal material distributed through a matrix material, and may have a bond line thickness, after curing, of between approximately 20 microns and approximately 100 microns. Other embodiments may be described and/or claimed.Type: GrantFiled: March 13, 2013Date of Patent: November 25, 2014Assignee: Intel CorporationInventors: Wei Hu, Zhizhong Tang, Syadwad Jain, Rajen S. Sidhu
-
Patent number: 8895446Abstract: A method includes forming a plurality of trenches extending from a top surface of a semiconductor substrate into the semiconductor substrate, with semiconductor strips formed between the plurality of trenches. The plurality of trenches includes a first trench and second trench wider than the first trench. A first dielectric material is filled in the plurality of trenches, wherein the first trench is substantially fully filled, and the second trench is filled partially. A second dielectric material is formed over the first dielectric material. The second dielectric material fills an upper portion of the second trench, and has a shrinkage rate different from the first shrinkage rate of the first dielectric material. A planarization is performed to remove excess second dielectric material. The remaining portions of the first dielectric material and the second dielectric material form a first and a second STI region in the first and the second trenches, respectively.Type: GrantFiled: February 18, 2013Date of Patent: November 25, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Tang Peng, Tai-Chun Huang, Hao-Ming Lien
-
Patent number: 8884336Abstract: A light emitting device according to the embodiment includes a first electrode; a light emitting structure including a first semiconductor layer over the first electrode, an active layer over the first semiconductor layer, and a second semiconductor layer over the second semiconductor layer; a second electrode over the second semiconductor layer; and a connection member having one end making contact with the first semiconductor layer and the other end making contact with the second semiconductor layer to form a schottky contact with respect to one of the first and second semiconductor layers.Type: GrantFiled: September 24, 2012Date of Patent: November 11, 2014Assignee: LG Innotek Co., Ltd.Inventor: Hwan Hee Jeong
-
Patent number: 8884310Abstract: The invention generally related to a method for preparing a layer of graphene directly on the surface of a semiconductor substrate. The method includes forming a carbon-containing layer on a front surface of a semiconductor substrate and depositing a metal film on the carbon layer. A thermal cycle degrades the carbon-containing layer, which forms graphene directly upon the semiconductor substrate upon cooling. In some embodiments, the carbon source is a carbon-containing gas, and the thermal cycle causes diffusion of carbon atoms into the metal film, which, upon cooling, segregate and precipitate into a layer of graphene directly on the semiconductor substrate.Type: GrantFiled: October 16, 2012Date of Patent: November 11, 2014Assignees: SunEdison Semiconductor Limited (UEN201334164H), KSU Research FoundationInventors: Michael R. Seacrist, Vikas Berry
-
Patent number: 8884407Abstract: A device includes a tube extending in a longitudinal direction and a hollow channel arranged in the tube. An end part of the tube is formed such that first electromagnetic radiation paths extending in the tube and outside of the hollow channel in the longitudinal direction are focused in a first focus.Type: GrantFiled: December 4, 2012Date of Patent: November 11, 2014Assignee: Infineon Technologies AGInventors: Michael Sternad, Rainer Pelzer
-
Patent number: 8883571Abstract: A method of manufacturing a transistor includes: forming an oxide semiconductor film and a gate electrode on a substrate, the oxide semiconductor film having a channel region, and the gate electrode facing the channel region; and forming an insulating film covering the gate electrode and the oxide semiconductor film. Infiltration of moisture from the insulating film into the oxide semiconductor film is suppressed by the substrate.Type: GrantFiled: February 19, 2013Date of Patent: November 11, 2014Assignee: Sony CorporationInventors: Narihiro Morosawa, Motohiro Toyota
-
Patent number: 8884377Abstract: In one embodiment, first and second pattern structures respectively include first and second conductive line patterns and first and second hard masks sequentially stacked, and at least portions thereof extends in a first direction. The insulation layer patterns contact end portions of the first and second pattern structures. The first pattern structure and a first insulation layer pattern of the insulation layer patterns form a first closed curve shape in plan view, and the second pattern structure and a second insulation layer pattern of the insulation layer patterns form a second closed curve shape in plan view. The insulating interlayer covers upper portions of the first and second pattern structures and the insulation layer patterns, a first air gap between the first and second pattern structures, and a second air gap between the insulation layer patterns.Type: GrantFiled: February 18, 2013Date of Patent: November 11, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sok-Won Lee, Joon-Hee Lee, Jung-Dal Choi, Seong-Min Jo
-
Patent number: 8878275Abstract: In one general aspect, an apparatus can include a channel region disposed in a semiconductor substrate, a gate dielectric disposed on the channel region and a drift region disposed in the semiconductor substrate adjacent to the channel region. The apparatus can further include a field plate having an end portion disposed between a top surface of the semiconductor substrate and the gate dielectric The end portion can include a surface in contact with the gate dielectric, the surface having a first portion aligned along a first plane non-parallel to a second plane along which a second portion of the surface is aligned, the first plane being non-parallel to the top surface of the semiconductor substrate and the second plane being non-parallel to the top surface of the semiconductor substrate.Type: GrantFiled: February 18, 2013Date of Patent: November 4, 2014Assignee: Fairchild Semiconductor CorporationInventors: Sunglyong Kim, Mark Schmidt, Christopher Nassar, Steven Leibiger