Using Mask (epo) Patents (Class 257/E21.314)
  • Patent number: 7622336
    Abstract: To provide a manufacturing method of a semiconductor device with a reduced chip area by reducing the size of a pattern for forming an integrated circuit. For example, the size of an IC chip that is provided as an application of IC cards or IC tags can be reduced. The manufacturing method includes the steps of forming a gate electrode; forming an insulating layer over the gate electrode; and forming an opening in the insulating layer. One or both of the step of forming the gate electrode and the step of forming the opening in the insulating layer is/are conducted by a lithography process using a phase-shift mask or a hologram mask. Accordingly, micropatterns can be formed even over a substrate with low planarity such as a glass substrate.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: November 24, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hideto Ohnuma
  • Patent number: 7575998
    Abstract: Embodiments relate to a method for forming a wiring in a semiconductor device, that may include laminating a conductive layer for wiring formation on a semiconductor substrate, forming a photoresist layer pattern on the conductive layer, performing primary dry etching for the conductive layer after employing the photoresist layer pattern as a mask, thereby forming a wiring pattern, partially removing the photoresist layer pattern through secondary dry etching, thereby forming a passivation layer on a surface of the wiring pattern, performing tertiary dry etching for the wiring pattern and a diffusion barrier after employing the photoresist layer pattern as a mask, thereby forming a metal wiring, and removing the photoresist layer pattern.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 18, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jong Soon Lee
  • Patent number: 7541286
    Abstract: A semiconductor device manufacturing method using a KrF light source is disclosed. Embodiments relate to a method for manufacturing a semiconductor device including forming an oxide film over a semiconductor substrate. A gate conductor may be formed over the oxide film. An antireflective film may be formed over the gate conductor. A photoresist film may be formed over the antireflective film. The photoresist film may be photo-etched, thereby forming a first photoresist film pattern having a first line width. The antireflective film may be etched, using the first photoresist film pattern as a mask, thereby forming an antireflective film pattern. The first photoresist film pattern may be simultaneously laterally etched, thereby forming a second photoresist film pattern having a second line width corresponding to a final design value for the gate conductor.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: June 2, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Chang-Myung Lee
  • Patent number: 7524733
    Abstract: According to some embodiments of the invention, a method includes preparing a semiconductor substrate having an active region, doping channel ions in the active region, forming a planarized selective epitaxial growth (SEG) layer in a predetermined region of the active region doped with the channel ions, sequentially forming a gate insulating layer, a gate conductive layer and a gate hard mask layer on the semiconductor substrate having the planarized SEG layer, forming a gate pattern crossing the active region by sequentially patterning the gate hard mask layer and the gate conductive layer, the planarized SEG layer being located at one side of the gate pattern, and forming source/drain regions by implanting impurity ions using the gate pattern as an ion implantation mask. Accordingly, there is provided an asymmetric source/drain transistor capable of preventing a leakage current by diffusing the channel ions into the SEG layer.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: April 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Nak-Jin Son, Du-Heon Song, Jun Seo
  • Patent number: 7504676
    Abstract: This invention discloses an improved semiconductor power device includes a plurality of power transistor cells wherein each cell further includes a planar gate padded by a gate oxide layer disposed on top of a drift layer constituting an upper layer of a semiconductor substrate wherein the planar gate further constituting a split gate including a gap opened in a gate layer whereby the a total surface area of the gate is reduced. The transistor cell further includes a JFET (junction field effect transistor) diffusion region disposed in the drift layer below the gap of the gate layer wherein the JFET diffusion region having a higher dopant concentration than the drift region for reducing a channel resistance of the semiconductor power device.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: March 17, 2009
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Anup Bhalla, Francois Hebert, Daniel S. Ng
  • Patent number: 7498232
    Abstract: Methods of fabricating semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a method of fabricating a semiconductor device includes providing a workpiece having a plurality of trenches formed therein, forming a liner over the workpiece, and forming a layer of photosensitive material over the liner. The layer of photosensitive material is removed from over the workpiece except from over at least a portion of each of the plurality of trenches. The layer of photosensitive material is partially removed from over the workpiece, leaving a portion of the layer of photosensitive material remaining within a lower portion of the plurality of trenches over the liner.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: March 3, 2009
    Assignee: Infineon Technologies AG
    Inventor: Josef Maynollo
  • Patent number: 7491600
    Abstract: A method for making a multibit non-volatile memory cell structure is provided herein. In accordance with the method, a semiconductor substrate (101) is provided, and first and second sets of memory stacks (103, 105, 107, and 109) are formed on the substrate, each memory stack including a control gate (111) and a layer of memory material (113). A source/drain region (123) is then formed between the first and second sets of memory stacks, and a silicide layer (125) is formed over the source/drain region.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: February 17, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Gowrishankar L. Chindalore, Paul A. Ingersoll
  • Patent number: 7482268
    Abstract: The present invention adds one or more thick layers of polymer dielectric and one or more layers of thick, wide metal lines on top of a finished semiconductor wafer, post-passivation. The thick, wide metal lines may be used for long signal paths and can also be used for power buses or power planes, clock distribution networks, critical signal, and re-distribution of I/O pads.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 27, 2009
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Chiu-Ming Chou, Chien-Kang Chou
  • Patent number: 7473611
    Abstract: A method of forming a non-volatile memory device may include forming a fin protruding from a substrate, forming a tunnel insulating layer on portions of the fin, and forming a floating gate on the tunnel insulting layer so that the tunnel insulating layer is between the floating gate and the fin. A dielectric layer may be formed on the floating gate so that the floating gate is between the dielectric layer and the fin, and a control gate electrode may be formed on the dielectric layer so that the dielectric layer is between the control gate and the fin. Related devices are also discussed.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: January 6, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Suk Cho, Choong-Ho Lee, Tae-Yong Kim
  • Patent number: 7413963
    Abstract: A method of edge bevel rinse. First, a wafer having a coating material layer disposed thereon is provided. A light beam is optically projected on the wafer to form a reference pattern. The reference pattern defines a central region, and a bevel region surrounding the central region on the surface of the wafer. Subsequently, the coating material layer positioned in the bevel region is removed according to the reference pattern.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: August 19, 2008
    Assignee: Touch Micro-System Technology Inc.
    Inventors: Shih-Min Huang, Sh-Pei Yang
  • Patent number: 7413960
    Abstract: A method of forming a floating gate electrode in a flash memory device. The method includes forming an isolation film in an inactive region so that a step with a predetermined thickness can be generated between an active region and the inactive region, which are defined in a semiconductor substrate, sequentially forming a tunnel oxide film, a polysilicon film for floating gate electrode and an anti-reflection film on the entire surface in which the isolation film is formed, and then forming photoresist patterns in predetermined regions of the anti-reflection film.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: August 19, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Heon Kim
  • Patent number: 7399703
    Abstract: A process for patterning a nanocarbon material includes a step of forming a nanocarbon layer on a substrate; a step of forming a first metal layer on the nanocarbon layer to pattern the first metal layer, the first metal layer containing at least one selected from the group consisting of zinc, tin, indium, aluminum, and titanium; and a step of etching the nanocarbon layer with oxygen plasma using the first metal layer as a positive pattern. Also, a method for manufacturing a semiconductor device including a semiconductor layer containing a nanocarbon material includes a step of patterning a nanocarbon material by the above process; and, a semiconductor device containing a nanocarbon material includes a semiconductor layer including a nanocarbon sub-layer patterned by the process.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: July 15, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventor: Soichiro Kawakami
  • Patent number: 7351666
    Abstract: An integrated circuit and method for fabrication includes first and second structures, each including a set of sub-lithographic lines, and contact landing segments connected to at least one of the sub-lithographic lines at an end portion. The first and second structures are nested such that the sub-lithographic lines are disposed in a parallel manner within a width, and the contact landing segments of the first structure are disposed on an opposite side of a length of the sub-lithographic lines relative to the contact landing segments of the second structure. The contact landing segments for the first and second structures are included within the width dimension, wherein the width includes a dimension four times a minimum feature size achievable by lithography.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: April 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven J. Holmes, David V. Horak, Charles William Koburger, III, Chung Hon Lam
  • Patent number: 7341960
    Abstract: A method for making a MOS device includes: forming a titanium dioxide film on a semiconductor substrate; and subjecting the titanium dioxide film to a fluorine-containing ambient, and conducting passivation of grain boundary defects of the titanium dioxide film through reaction of fluorine and titanium dangling bonds in the titanium dioxide film.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: March 11, 2008
    Assignee: National Sun Yat-Sen University
    Inventors: Ming-Kwei Lee, Jung-Jie Huang, Chih-Feng Yen, Tsung-Shiun Wu
  • Patent number: 7271022
    Abstract: The present invention relates to a process for forming microstructures on a substrate. A plating surface is applied to a substrate. A first layer of photoresist is applied on top of the plating base. The first layer of photoresist is exposed to radiation in a pattern to render the first layer of photoresist dissolvable in a first pattern. The dissolvable photoresist is removed and a first layer of primary metal is electroplated in the area where the first layer of photoresist was removed. The remainder of the photoresist is then removed and a second layer of photoresist is then applied over the plating base and first layer of primary metal. The second layer of photoresist is then exposed to a second pattern of radiation to render the photoresist dissolvable and the dissolvable photoresist is removed. The second pattern is an area that surrounds the primary structure, but it does not entail the entire substrate. Rather it is an island surrounding the primary metal.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: September 18, 2007
    Assignee: Touchdown Technologies, Inc.
    Inventors: Weilong Tang, Tseng-Yang Hsu, Salleh Ismail, Nim Hak Tea, Melvin B Khoo, Raffi Garabedian, Lakshimikanth Namburi