Vertical Transistor (epo) Patents (Class 257/E21.41)
  • Patent number: 8288230
    Abstract: A transistor with a gate electrode structure is produced by providing a semiconductor body with a first surface, and with a first sacrificial layer extending in a vertical direction of the semiconductor body from the first surface. A first trench extending from the first surface into the semiconductor body is formed by removing the sacrificial layer in a section adjacent the first surface. A second trench is formed by isotropically etching the semiconductor body in the first trench. A third trench is formed below the second trench by removing at least a part of the first sacrificial layer below the second trench. A dielectric layer is formed which at least covers sidewalls of the third trench and which only covers sidewalls of the second trench. A gate electrode is formed on the dielectric layer in the second trench. The gate electrode and dielectric layer in the second trench form the gate electrode structure.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 16, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Stefan Gamerith, Roman Knoefler, Kurt Sorschag, Anton Mauder
  • Patent number: 8288220
    Abstract: A method of forming a semiconductor device may include forming a terminal region of a first conductivity type within a semiconductor layer of the first conductivity type. A well region of a second conductivity type may be formed within the semiconductor layer wherein the well region is adjacent at least portions of the terminal region within the semiconductor layer, a depth of the well region into the semiconductor layer may be greater than a depth of the terminal region into the semiconductor layer, and the first and second conductivity types may be different. An epitaxial semiconductor layer may be formed on the semiconductor layer, and a terminal contact region of the first conductivity type may be formed in the epitaxial semiconductor layer with the terminal contact region providing electrical contact with the terminal region. In addition, an ohmic contact may be formed on the terminal contact region. Related structures are also discussed.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 16, 2012
    Assignee: Cree, Inc.
    Inventors: Brett Adam Hull, Qingchun Zhang
  • Publication number: 20120256258
    Abstract: A fabrication method of a high cell density trench power MOSFET structure is provided. Form at least a gate trench in a silicon substrate and a gate dielectric layer on the silicon substrate. Form a gate polysilicon structure in the gate trench and cover by a passivation layer. Form a first-conductive-type body region in the silicon substrate and implant impurities with a second conductive type thereof to form a source doped region. Expose the gate polysilicon structure and the source doped region. Form a dielectric spacer having a predetermined thickness on a sidewall of the gate trench. Deposit metal on the gate polysilicon structure and the source doped region. A first and a second self-aligned silicide layer are respectively formed on the gate polysilicon structure and the source doped region. The dielectric spacer forms an appropriate distance between the first and the second self-aligned silicide layer.
    Type: Application
    Filed: March 20, 2012
    Publication date: October 11, 2012
    Applicant: GREAT POWER SEMICONDUCTOR CORP.
    Inventor: HSIU-WEN HSU
  • Publication number: 20120256254
    Abstract: This invention discloses a specific superjunction MOSFET structure and its fabrication process. Such structure includes: a drain, a substrate, an EPI, a source, a side-wall isolation structure, a gate, a gate isolation layer and source. There is an isolation layer inside the active area underneath the source. Along the side-wall of this isolation layer, a buffer layer with same doping type as body can be introduced & source can be extended down too to form field plate. Such buffer layer & field plate can make the EPI doping much higher than convention device which results in lower Rdson, better performance, shorter gate so that to reduce both gate charge Qg and gate-to-drain charge Qgd. The process to make such structure is simpler and more cost effective.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Inventors: Qin HUANG, Yuming BAI, Yang GAO
  • Publication number: 20120258578
    Abstract: A semiconductor device includes an epitaxial layer having a first conduction type, a base layer formed adjacent and on the epitaxial layer and having an opposite second conduction type to the first conduction type, a source layer formed selectively on the base layer and having the first conduction type, a trench which passes through the base layer and the source layer and which reaches the epitaxial layer, an insulation film formed along an interior wall of the trench, a control electrode formed within the trench via the insulation film, and a semiconductor region formed along the bottom part of the trench at the epitaxial layer and having the first conduction type.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 11, 2012
    Applicant: Sanken Electric Co., Ltd.
    Inventors: Hironori AOKI, Shuichi Kaneko
  • Publication number: 20120256250
    Abstract: A semiconductor component includes a sequence of layers, the sequence of layers including a first insulator layer, a first semiconductor layer disposed on the first insulator layer, a second insulator layer disposed on the first semiconductor layer, and a second semiconductor layer disposed on the second insulator layer. The semiconductor component also includes a plurality of devices at least partly formed in the first semiconductor layer. A first one of the plurality of devices is a power transistor formed in a first region of the first semiconductor layer and a first region of the second semiconductor layer. The first region of the first and second semiconductor layers are in electrical contact with one another through a first opening in the second insulator layer.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Hans-Joachim Schulze, Anton Mauder, Helmut Strack, Franz Hirler
  • Publication number: 20120256255
    Abstract: A recessed trench gate structure is provided. The recessed trench gate structure includes a substrate with a recessed trench, a gate dielectric layer disposed around an inner surface of the recessed trench, a lower gate conductor disposed at a lower portion of the recessed trench and on the gate dielectric layer. Specially, the lower gate conductor has a convex top surface. A spacer is disposed along an inner side wall of a upper portion of the recessed trench and a upper gate conductor is disposed on the lower gate conductor. The convex top surface can prevent the electric field from distributing not uniformly, so that the GIDL can be prevented.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Inventors: Tieh-Chiang Wu, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8283229
    Abstract: Methods of fabricating vertical channel transistors may include forming an active region on a substrate, patterning the active region to form vertical channels at sides of the active region, forming a buried bit line in the active region between the vertical channels, and forming a word line facing a side of the vertical channel.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: October 9, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kang-Uk Kim, Hyun-Woo Chung, Yongchul Oh, Hui-Jung Kim, Hyun-Gi Kim
  • Patent number: 8283714
    Abstract: Channels of two transistors are vertically formed on portions of two opposite side surfaces of one active region, and gate electrodes are vertically formed on a device isolation layer contacting the channels of the active region. A common bit line contact plug is formed in the central portions of the active region, two storage node contact plugs are formed on both sides of the bit line contact plug, and an insulating spacer is formed on a side surface of the bit line contact plug. A word line, a bit line, and a capacitor are sequentially stacked on the semiconductor substrate, like a conventional semiconductor memory device. Thus, effective space arrangement of a memory cell is possible such that a 4F2 structure is constituted, and a conventional line and contact forming process can be applied such that highly integrated semiconductor memory device is readily fabricated.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: October 9, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-won Seo, Bong-soo Kim, Dong-gun Park, Kang-yoon Lee, Jae-man Yoon, Seong-goo Kim, Seung-bae Park
  • Publication number: 20120248526
    Abstract: Systems and methods of fabricating Wafer Level Chip Scale Packaging (WLCSP) devices with transistors having source, drain and gate contacts on one side of the transistor while still having excellent electrical performance with low drain-to-source resistance RDS(on) include using a two-metal drain contact technique. The RDS(on) is further improved by using a through-silicon-via (TSV) technique to form a drain contact or by using a copper layer closely connected to the drain drift.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 4, 2012
    Inventors: Daniel M. Kinzer, Steven Sapp, Chung-Lin Wu, Oseob Jeon, Bigidis Dosdos
  • Publication number: 20120248529
    Abstract: Methods of forming a memory device having an array portion including a plurality of array transistors and a periphery region including peripheral circuit transistor structures of the memory device, where an upper surface of the periphery region and an upper surface of the array portion are planar (or nearly planar) after formation of the peripheral circuit transistor structures and a plurality of memory cells (formed over the array transistors). The method includes forming the peripheral circuit transistor structures in the periphery region, forming the plurality of array transistors in the array portion and forming a plurality of memory cells over respective vertical transistors. Structures formed by the method have planar upper surfaces of the periphery and array regions.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Inventors: Jun Liu, Sanh D. Tang, David H. Wells
  • Patent number: 8278172
    Abstract: A method of forming a semiconductor device includes the following processes. A pillar is formed which stands on a semiconductor substrate. A first insulating film is formed which covers a side surface of the pillar. An upper portion of the first insulating film is removed to expose a side surface of an upper portion of the pillar. A contact plug is formed, which contacts the side surface of the upper portion of the pillar and a top surface of the pillar.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: October 2, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Hiroyuki Fujimoto, Shinpei Iijima
  • Patent number: 8278158
    Abstract: In a method of manufacturing a thin film transistor substrate, a semiconductor pattern is formed on a substrate, a first etch stop layer and a second etch stop layer are sequentially formed on the semiconductor pattern, and the second etch stop layer and the first etch stop layer are sequentially patterned to form a second etch stop pattern and a first etch stop pattern. Thus, when the second etch stop layer is patterned using an etchant, the first etch stop layer covers the semiconductor pattern, thereby preventing the semiconductor pattern from being etched by the etchant.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: October 2, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Ho Moon, Joon-Hoo Choi, Kyu-Sik Cho, Byoung-Seong Jeong, Yong-Hwan Park
  • Patent number: 8278706
    Abstract: A first semiconductor element portion for switching a first current includes a first channel surface having a first plane orientation. A first region of a semiconductor layer includes a first trench having the first channel surface. A first gate insulating film covers the first channel surface with a first thickness. A second semiconductor element portion for switching a second current smaller than the first current includes a second channel surface having a second plane orientation different from the first plane orientation. A second region of the semiconductor layer includes a second trench having the second channel surface. A second gate insulating film covers the second channel surface with a second thickness larger than the first thickness.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: October 2, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazutoyo Takano
  • Publication number: 20120241758
    Abstract: A compound semiconductor device is provided with a first nitride semiconductor layer of a first conductivity type, a second nitride semiconductor layer of the first conductivity type which is formed over the first nitride semiconctor layer and being in contact with the first nitride semiconductor layer, a third nitride semiconductor layer of a second conductivity type being in contact with the second nitride semiconductor layer, a fourth nitride semiconductor layer of the first conductivity type being in contact with the third nitride semiconductor layer, and an insulating film insulating the first nitride semiconductor layer and the fourth nitride, semiconductor layer from each other. A source electrode is positioned inside an Outer edge of the insulating film in planar view.
    Type: Application
    Filed: June 11, 2012
    Publication date: September 27, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Yuichi MINOURA, Toshihide Kikkawa
  • Publication number: 20120241854
    Abstract: According to one embodiment, the semiconductor device includes a first semiconductor layer. The semiconductor device includes a plurality of base regions, the base regions are provided on a surface of the first semiconductor layer. The semiconductor device includes a source region selectively provided on each of surfaces of the base regions. The semiconductor device includes a gate electrode provided via a gate insulating film in each of a pair of trenches, each of the trenches penetrate the base regions from a surface of the source region to the first semiconductor layer. The semiconductor device includes a field plate electrode provided via a field plate insulating film in each of the pair of trenches under the gate electrode. A thickness of a part of the field plate insulating film is greater than a thickness of the gate insulating film.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tsuyoshi OHTA, Masatoshi Arai, Miwako Suzuki
  • Publication number: 20120241844
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes: first and second stacked bodies, first and second semiconductor pillars, a connection portion, a memory film, and a partitioning insulating layer. The stacked bodes include electrode films stacked along a first axis and an inter-electrode insulating film provided between the electrode films. Through-holes are provided in the stacked bodies. The semiconductor pillars are filled into the through-holes. The connection portion electrically connects the semiconductor pillars. The memory film is provided between the semiconductor pillars and the electrode films. The partitioning insulating layer partitions the first and second electrode films. A side surface of the first through-hole on the partitioning insulating layer side and a side surface of the second through-hole on the partitioning insulating layer side have a portion parallel to a plane orthogonal to a second axis from the first stacked body to the second stacked body.
    Type: Application
    Filed: September 20, 2011
    Publication date: September 27, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tadashi IGUCHI, Ryota KATSUMATA
  • Publication number: 20120241761
    Abstract: According to an embodiment, a semiconductor device includes a first semiconductor layer of a first conductive type, a first main electrode provided on a first major surface side of the first semiconductor layer, and a second main electrode provided on a second major surface side of the first semiconductor layer. A pair of first control electrodes is provided within a trench provided from the first major surface side to the second major surface in the first semiconductor layer; and the first control electrodes are provided separately from each other in a direction parallel to the first major surface. Each of the first control electrodes faces an inner face of the trench via a first insulating film. A second control electrode is provided between the first control electrodes and a bottom face of the trench, and faces the inner face of the trench via a second insulating film.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi ASAHARA
  • Publication number: 20120241851
    Abstract: According to one embodiment, a semiconductor device includes a drift layer. The device includes a base layer. The device includes a source layer selectively provided on a surface of the base layer. The device includes a gate electrode provided via a gate insulating film in a trench penetrating the source layer and the base layer to reach the drift layer. The device includes a field plate electrode provided under the gate electrode in the trench. The device includes a drain electrode electrically connected to the drift layer. The device includes a source electrode. The field plate electrode is electrically connected to the source electrode. An impurity concentration of a first conductivity type contained in the base layer is lower than an impurity concentration of the first conductivity type contained in the drift layer. And the impurity concentration of the first conductivity type contained in the drift layer is not less than 1×1016 (atoms/cm3).
    Type: Application
    Filed: September 21, 2011
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Miwako Suzuki, Norio Yasuhara
  • Publication number: 20120241848
    Abstract: A semiconductor element includes a drain layer, a drift region selectively provided in the drain layer, a base region selectively provided in the drift region, a source region selectively provided in the base region, first and/or second metal layers selectively provided in at least one of the source region and the drain layer from the front surface to the inside of at least one of the source region and the drain layer, a gate electrode in a trench shape extending in a direction substantially parallel to the front surface of the drain layer from a part of the source region through the base region adjacent to at least the part of the source region to a part of the drift region, a source electrode connected to the first metal layer, and a drain electrode connected to the drain layer or the second metal layer.
    Type: Application
    Filed: September 15, 2011
    Publication date: September 27, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Takeshi UCHIHARA
  • Publication number: 20120241849
    Abstract: According to one embodiment, a semiconductor device includes a first semiconductor region, a second semiconductor region, a third semiconductor region, a control electrode, a first main electrode, an internal electrode, and an insulating region. The control electrode is provided inside a trench. The first main electrode is in conduction with the third semiconductor region. The internal electrode is provided in the trench and in conduction with the first main electrode. The insulating region is provided between an inner wall of the trench and the internal electrode. The internal electrode includes a first internal electrode part included in a first region of the trench and a second internal electrode part included in a second region between the first region and the first main electrode. A spacing between the first internal electrode part and the inner wall is wider than a spacing between the second internal electrode part and the inner wall.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Tetsuro NOZU
  • Publication number: 20120244672
    Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor device. The method can form a plurality of grooves extending in a first direction on a semiconductor substrate. The method can form an insulating layer on the inner face of the groove and on the top face of the semiconductor substrate. The method can deposit a first conductive layer on the insulating layer so as to fill in the groove. The method can deposit a second conductive layer on the first conductive layer. The method can form a hard mask in a region including part of a region immediately above the groove on the second conductive layer. The method can form a columnar body including the hard mask and the second conductive layer by etching the second conductive layer using the hard mask as a mask.
    Type: Application
    Filed: September 14, 2011
    Publication date: September 27, 2012
    Inventor: Toshiyuki SASAKI
  • Publication number: 20120228699
    Abstract: A transistor and a method of fabricating a transistor, including a metal oxide deposited on an epitaxial layer, a photo resist deposited and patterned over the metal oxide and the metal oxide and epitaxial layer are etched to form at least one circular trench, wherein the trench surfaces are defined by the epitaxial layer. An oxide layer is grown on the trench surfaces of each trench, and a gate conductor is formed within the at least one trench.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Applicant: O2MICRO, INC.
    Inventors: Hamilton Lu, Laszlo Lipcsei
  • Publication number: 20120228677
    Abstract: A method for producing a semiconductor device includes a step of forming a conductor layer and a first semiconductor layer containing a donor impurity or an acceptor impurity on a first semiconductor substrate; a step of forming a second insulating layer so as to cover the first semiconductor layer; a step of thinning the first semiconductor substrate to a predetermined thickness; a step of forming, from the first semiconductor substrate, a pillar-shaped semiconductor having a pillar-shaped structure on the first semiconductor layer; a step of forming a first semiconductor region in the pillar-shaped semiconductor by diffusing the impurity from the first semiconductor layer; and a step of forming a pixel of a solid-state imaging device with the pillar-shaped semiconductor into which the impurity has been diffused.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 13, 2012
    Inventors: Fujio Masuoka, Nozomu Harada
  • Publication number: 20120228701
    Abstract: In accordance with an embodiment, a semiconductor device includes a semiconductor layer of a first conductivity type with a recess in the surface of the semiconductor layer, a pocket region of the first conductivity type in the semiconductor layer, a source region of a second conductivity type in the semiconductor layer, a drain region of the first conductivity type in the semiconductor layer, a gate insulating film over the surface of the recess, and a gate electrode. The second conductivity type is different from the first conductivity type. The pocket region includes a part under the surface of the recess. The source region is located adjacent to the pocket region. The drain region is located away from the source region and the pocket region. The gate electrode is configured to fill the recess via the gate insulating film.
    Type: Application
    Filed: February 1, 2012
    Publication date: September 13, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hiroki SASAKI
  • Publication number: 20120228637
    Abstract: A semiconductor device of an embodiment includes a first conductive type silicon carbide substrate having first and second main surfaces, a first conductive type silicon carbide layer formed on the first main surface, a second conductive type first silicon carbide region formed in the silicon carbide layer, and a first conductive type second silicon carbide region formed in the first silicon carbide region. The device includes a trench penetrating through the first and second silicon carbide regions, and a second conductive type third silicon carbide region formed on a bottom and a side surface of the trench. The third silicon carbide region is in contact with the first silicon carbide region, and is formed between the trench and the silicon carbide layer. In addition, the device includes a gate insulating film formed in the trench, a gate electrode, a first electrode, and a second electrode.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 13, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: YUKIO NAKABAYASHI, TAKASHI SHINOHE, ATSUKO YAMASHITA
  • Publication number: 20120231592
    Abstract: A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 13, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gordon Haller, Sanh Dang Tang, Steve Cummings
  • Patent number: 8263460
    Abstract: A method for manufacturing a semiconductor device comprises forming a buried gate after forming an active region to have a line type. The buried gate comprises an operational gate and a dummy gate. A height of a gate electrode layer (conductive material) of the dummy gate is formed to be lower than that of a gate electrode layer of the operational gate, thereby increasing a threshold voltage and preventing an overlap of the ion-implanted active region with the dummy gate. As a result, a Gate Induced Drain Leakage (GIDL) is prevented to improve a refresh characteristic of the semiconductor device.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: September 11, 2012
    Assignee: Hynix Semiconductor Inc
    Inventor: Kyung Do Kim
  • Patent number: 8263440
    Abstract: A method for fabricating an etching barrier includes forming wall bodies with a trench in between the wall bodies in a semiconductor substrate. An etching barrier is formed by performing a deposition having a directionality in an oblique direction with respect to the surface of the semiconductor substrate, wherein one of two bottom edge portions of the trench is not covered by the deposition due to a shadow effect by upper portions of the wall bodies.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: September 11, 2012
    Assignee: SK Hynix Inc.
    Inventor: Jun Ki Kim
  • Patent number: 8264035
    Abstract: A power semiconductor device with improved avalanche capability structures is disclosed. By forming at least an avalanche capability enhancement doped regions with opposite conductivity type to epitaxial layer underneath an ohmic contact doped region which surrounds at least bottom of trenched contact filled with metal plug between two adjacent gate trenches, avalanche current is enhanced with the disclosed structures.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: September 11, 2012
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Publication number: 20120223382
    Abstract: A method for fabricating a non-volatile memory device includes forming a channel link layer and an isolation layer surrounding the channel link layer over a substrate, forming a stack structure having interlayer dielectric layers that are alternately stacked with gate electrode layers over the channel link layer and the isolation layer, and forming a pair of channels connected to the channel link layer through the stack structure, and a memory layer interposed between the channel and the stack structure.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 6, 2012
    Inventors: Han-Soo Joo, Dong-Kee Lee, Sang-Hyun Oh
  • Publication number: 20120223380
    Abstract: There is provided a monolithic three dimensional array of charge storage devices which includes a plurality of device levels, wherein at least one surface between two successive device levels is planarized by chemical mechanical polishing.
    Type: Application
    Filed: May 10, 2012
    Publication date: September 6, 2012
    Applicant: SanDisk 3D LLC
    Inventors: Thomas H. Lee, Vivek Subramanian, James M. Cleeves, Andrew J. Walker, Christopher J. Petti, Igor G. Kouznetzov, Mark G. Johnson, Paul Michael Farmwald, Brad Herner
  • Patent number: 8258031
    Abstract: Exemplary embodiments include a method for fabricating a heterojunction tunnel field-effect-transistor (FET), the method including forming a gate region on a silicon layer of a silicon-on-insulator (SOI) substrate, forming a drain region on the silicon layer adjacent the gate region and forming a vertical heterojunction source region adjacent the gate region, wherein the vertical heterojunction source region generates a tunnel path inline with a gate field associated with the gate region.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: September 4, 2012
    Assignee: International Business Machines Corporation
    Inventors: Isaac Lauer, Amlan Majumdar, Paul M. Solomon, Steven J. Koester
  • Publication number: 20120217564
    Abstract: Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Inventors: Sanh D. Tang, John K. Zahurak
  • Publication number: 20120217468
    Abstract: A nanotubular MOSFET device and a method of fabricating the same are used to extend device scaling roadmap while maintaining good short channel effects and providing competitive drive current. The nanotubular MOSFET device includes a concentric tubular inner and outer gate separated from each other by a tubular shaped epitaxially grown silicon layer, and a source and drain respectively separated by spacers surrounding the tubular inner and outer gates.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Applicant: International Business Machines Corporation
    Inventors: Daniel Tekleab, Hung H. Tran, Jeffrey W. Sleight, Dureseti Chidambarrao
  • Publication number: 20120220089
    Abstract: A gate electrode is formed so as to embed an electrode material in a recess for an electrode, which has been formed in a structure of stacked compound semiconductors, through a gate insulation film, and also a field plate electrode that comes in Schottky contact with the structure of the stacked compound semiconductors is formed by embedding an electrode material in a recess for an electrode, which has been formed in the structure of the stacked compound semiconductors so that the field plate electrode directly comes in contact with the structure of the stacked compound semiconductors at least on the bottom face of the recess for the electrode.
    Type: Application
    Filed: December 14, 2011
    Publication date: August 30, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Tadahiro IMADA, Toshihide Kikkawa
  • Publication number: 20120217580
    Abstract: A semiconductor device includes a source, a drain, and a gate configured to selectively enable a current to pass between the source and the drain. The semiconductor device includes a drift zone between the source and the drain and a first field plate adjacent the drift zone. The semiconductor device includes a dielectric layer electrically isolating the first field plate from the drift zone and charges within the dielectric layer close to an interface of the dielectric layer adjacent the drift zone.
    Type: Application
    Filed: May 3, 2012
    Publication date: August 30, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Rudolf Berger, Franz Hirler, Ralf Siemieniec, Hans-Joachim Schulze
  • Publication number: 20120217575
    Abstract: According to one embodiment, a method is disclosed for manufacturing semiconductor device. The method can include preparing a semiconductor layer having a drain layer, and a drift region provided from a surface to an inside of the drain layer, the drift region having a first trench extending from a surface to an inside of the drift region. The method can include implanting impurities into the drift region through an opening of the first trench to form a source region for an exposed face of the drift region exposed on an inside wall of the first trench, and implanting impurities into the drift region through the opening of the first trench to form a base region between the source region and the drift region. The method can include forming gate electrode.
    Type: Application
    Filed: September 21, 2011
    Publication date: August 30, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Tetsuo Matsuda
  • Publication number: 20120217570
    Abstract: A semiconductor memory device includes: a lower pillar protruding from a substrate in a vertical direction and extending in a first direction by a trench formed in the first direction; an upper pillar protruding on the lower pillar in a second direction perpendicular to the first direction; a buried bit line junction region disposed on one sidewall of the lower pillar; a buried bit line contacting the buried bit line junction region and filling a portion of the trench; an etch stop film disposed on an exposed surface of the buried bit line; a first interlayer dielectric film recessed to expose a portion of an outer side of at least the upper pillar disposed on the etch stop film; a second interlayer dielectric film disposed on the first interlayer dielectric film; and a gate surrounding the exposed outer side of the upper pillar and crossing the buried bit line.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 30, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Tae Kyun KIM
  • Publication number: 20120220092
    Abstract: Method of forming a Hybrid Split Gate Semiconductor. In accordance with a method embodiment of the present invention, a plurality of first trenches is formed in a semiconductor substrate to a first depth. A plurality of second trenches is formed in the semiconductor substrate to a second depth. The first plurality of trenches are parallel with the second plurality of trenches. The trenches of the plurality of first trenches alternate with and are adjacent to trenches of the plurality of second trenches.
    Type: Application
    Filed: April 30, 2012
    Publication date: August 30, 2012
    Applicant: VISHAY-SILICONIX
    Inventors: Madhur Bobde, Qufei Chen, Misbah Ul Azam, Kyle Terrill, Yang Gao, Sharon Shi
  • Publication number: 20120220090
    Abstract: An embodiment of a method for manufacturing a power device being integrated on a semiconductor substrate comprising at least the steps of making, in the semiconductor substrate, at least a trench having sidewalls and a bottom, covering the sidewalls and the bottom of said at least one trench with a first insulating coating layer and making, inside said at least one trench, a conductive gate structure. An embodiment of the method provides the formation of the conductive gate structure comprising the steps of covering at least the sidewalls with a second conductive coating layer of a first conductive material; making a conductive central region of a second conductive material having a different resistivity than the first conductive material; and making a plurality of conductive bridges between said second conductive coating layer and said conductive central region.
    Type: Application
    Filed: March 1, 2012
    Publication date: August 30, 2012
    Applicant: STMICROELECTRONICS S.r.I.
    Inventors: Angelo MAGRI, Antonino Sebastiano ALESSANDRIA, Stefania FORTUNA, Leonardo FRAGAPANE
  • Patent number: 8252648
    Abstract: A power MOSFET device and manufacturing method thereof, includes the steps of selectively depositing a first conductive material in the middle region at the bottom of a contact trench and contacting with light-doped N-type epitaxial layer to form a Schottky junction and depositing a second conductive material at the side wall and bottom corner of the contact trench and contacting with P-type heavy-doped body region to form an ohmic junction. The first and second conductive materials can respectively optimize the performance of the ohmic contact and the Schottky contact without compromise. Meanwhile, the corner of the contact trench is surrounded by P-type heavy-doped region thereby effectively reducing the leakage currents accumulated at the corner of the contact trench.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 28, 2012
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yeeheng Lee, Yongping Ding, John Chen
  • Publication number: 20120211827
    Abstract: In one embodiment, a vertical power transistor is formed on a semiconductor substrate with other transistors. A portion of the semiconductor layer underlying the vertical power transistor is doped to provide a low on-resistance for the vertical power transistor.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Inventors: Francine Y. Robb, Stephen P. Robb, Prasad Venkatraman, Zia Hossain
  • Publication number: 20120211826
    Abstract: A trench DMOS transistor with a very low on-state drain-to-source resistance and a high gate-to-drain charge includes one or more floating islands that lie between the gate and drain to reduce the charge coupling between the gate and drain, and effectively lower the gate-to-drain capacitance.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Inventors: Yaojian Leng, Richard Wendell Foote, JR., Steven J. Adler
  • Publication number: 20120211825
    Abstract: According to an exemplary embodiment, a trench field-effect transistor (trench FET) includes a trench formed in a semiconductor substrate, the trench including a gate dielectric disposed therein. A source region is disposed adjacent the trench. The trench FET also has a gate electrode including a lower portion disposed in the trench and a proud portion extending laterally over the source region. A silicide source contact can extend vertically along a sidewall of the source region. Also, a portion of the gate dielectric can extend laterally over the semiconductor substrate. The trench FET can further include a silicide gate contact formed over the proud portion of the gate electrode.
    Type: Application
    Filed: February 21, 2011
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventors: Timothy D. Henson, Ling Ma, Hugo Burke, David P. Jones, Martin Carroll
  • Publication number: 20120211829
    Abstract: A field-effect transistor has a gate, a source, and a drain. The gate has a via extending through a semiconductor chip substrate from one surface to an opposite surface of the semiconductor chip substrate. The source has a first toroid of ion dopants implanted in the semiconductor chip substrate surrounding one end of the via on the one surface of the semiconductor chip substrate. The drain has a second toroid of ion dopants implanted in the semiconductor chip substrate surrounding an opposite end of the via on the opposite surface of the semiconductor chip substrate.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gerald K. Bartley, Darryl J. Becker, Philip R. Germann, Andrew B. Maki, John E. Sheets, II
  • Publication number: 20120214285
    Abstract: Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Inventors: Jaydip Guha, Shyam Surthi, Suraj J. Mathew, Kamal M. Karda, Hung-Ming Tsai
  • Patent number: 8247296
    Abstract: A method for forming a transistor having insulated gate electrodes and insulated shield electrodes within trench regions includes forming dielectric stack overlying a substrate. The dielectric stack includes a first layer of one material overlying the substrate and a second layer of a different material overlying the first layer. Trench regions are formed adjacent to the dielectric stack. After the insulated shield electrodes are formed, the method includes removing the second layer and then forming the insulated gate electrodes. Portions of gate electrode material are removed to form first recessed regions, and dielectric plugs are formed in the first recessed regions using the first layer as a stop layer. The first layer is then removed, and spacers are formed adjacent the dielectric plugs. Second recessed regions are formed in the substrate self-aligned to the spacers.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 21, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 8247866
    Abstract: An inventive semiconductor device includes: a semiconductor layer; a drift region of a first conductivity type provided in the semiconductor layer; a body region of a second conductivity type provided on the drift region in the semiconductor layer; a trench extending from a surface of the body region in the semiconductor layer with its bottom located in the drift region; a gate insulation film provided on an interior surface of the trench; a gate electrode provided in the trench with the intervention of the gate insulation film; a source region of the first conductivity type provided in the surface of the body region; a first impurity region of the second conductivity type provided around the bottom of the trench in spaced relation from the body region; and a second impurity region of the second conductivity type provided on a lateral side of the body region in the semiconductor layer, the second impurity region being isolated from the body region and electrically connected to the first impurity region.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: August 21, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Naoki Izumi
  • Publication number: 20120205719
    Abstract: A semiconductor device is provided that includes a fin having a first gate and a second gate formed on a first sidewall of the fin in a first trench, wherein the first gate is formed above the second gate. The device includes a third gate and a fourth gate formed on a second sidewall of the fin in a second trench, wherein the third gate is formed above the fourth gate. Methods of manufacturing and operating the device are also included. A method of operation may include biasing the first gate and the fourth gate to create a current path across the fin.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Werner Juengling, Howard C. Kirsch