Making Connection Between Transistor And Capacitor, E.g., Plug (epo) Patents (Class 257/E21.649)
  • Patent number: 11139243
    Abstract: A semiconductor memory device and a manufacturing method thereof are provided in the present invention. An under-cut structure is formed at an edge of a bit line contact opening in the process of forming the bit line contact opening for avoiding short problems caused by alignment shifting, and the process window of the process of forming the bit line contact opening may be improved accordingly.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 5, 2021
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Feng-Yi Chang, Shih-Fang Tzou, Fu-Che Lee, Chien-Cheng Tsai, Feng-Ming Huang
  • Patent number: 11063049
    Abstract: A semiconductor memory device includes a substrate with a drain and a source; a gate structure, disposed on the substrate between the drain and the source; a first dielectric, disposed on the substrate, covering the gate structure; a second dielectric disposed on the first dielectric; a plug having a first part in the first dielectric and a second part in the second dielectric, wherein the first part is in contact with the source of the substrate; a storage node landing pad, covering the second part of the plug and covered by the second dielectric; a bit line disposed on the second dielectric and connected to the drain of the substrate; a third dielectric disposed on the bit line; and a storage node, disposed on the third dielectric, contacting the storage node landing pad through the second dielectric and the third dielectric.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: July 13, 2021
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Ping Hsu
  • Patent number: 10727347
    Abstract: A semiconductor device includes a substrate provided with an electronic device, an interlayer dielectric (ILD) layer formed over the electronic device, a wiring pattern formed on the ILD layer and a contact formed in the ILD layer and physically and electrically connecting the wiring pattern to a conductive region of the electronic device. An insulating liner layer is provided on sidewalls of the contact between the contact and the ILD layer. A height of the insulating liner layer measured from a top of the conductive region of the electronic device is less than 90% of a height of the contact measured between the top of the conductive region and a level of an interface between the ILD layer and the wiring pattern.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: July 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Lien Huang, Meng-Chun Chang
  • Patent number: 10381306
    Abstract: A semiconductor memory device and a manufacturing method thereof are provided in the present invention. An under-cut structure is formed at an edge of a bit line contact opening in the process of forming the bit line contact opening for avoiding short problems caused by alignment shifting, and the process window of the process of forming the bit line contact opening may be improved accordingly.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: August 13, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Feng-Yi Chang, Shih-Fang Tzou, Fu-Che Lee, Chien-Cheng Tsai, Feng-Ming Huang
  • Patent number: 10163784
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed. In the semiconductor device, an upper part of a storage node contact plug is increased in size, and an area of overlap between a storage node formed in a subsequent process and a storage node contact plug is increased, such that resistance of the storage node contact plug is increased and device characteristics are improved. The semiconductor device includes at least one bit line formed over a semiconductor substrate, a first storage node contact plug formed between the bit lines and coupled to an upper part of the semiconductor substrate, and a second storage node contact plug formed over the first storage node contact plug, wherein a width of a lower part of the second storage node contact plug is larger than a width of an upper part thereof.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: December 25, 2018
    Assignee: SK HYNIX INC.
    Inventor: Dae Sik Park
  • Patent number: 9761593
    Abstract: A semiconductor device includes: a substrate having a plurality of active regions; a plurality of bit lines extending in a first direction, the plurality of bit lines being separate from the substrate with an insulating layer therebetween; a plurality of first insulating lines extending in a second direction that is different from the first direction, wherein the plurality of first insulating lines intersect the plurality of bit lines and have upper surfaces having levels which are higher than those of upper surfaces of the plurality of bit lines relative to the substrate; and a plurality of first contact structures connected to the plurality of active regions, the plurality of first contact structures being disposed in an area defined by the plurality of bit lines and the plurality of first insulating lines.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: September 12, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seok-ho Shin
  • Patent number: 9536868
    Abstract: A semiconductor device includes a plurality of bit lines that intersect an active region on a substrate and extend in a first direction, a contact pad formed on the active region between adjacent bit lines, and a plurality of spacers disposed on sidewalls of the plurality of bit lines. An upper portion of the contact pad is interposed between adjacent spacers, and a lower portion of the contact pad has a width greater than a distance between adjacent spacers.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: January 3, 2017
    Assignee: SAMSUNG ELECTRONICS CO, LTD.
    Inventors: Keun-Nam Kim, Sun-Young Park, Soo-Ho Shin, Kye-Hee Yeom, Hyeon-Woo Jang, Jin-Won Jeong, Chang-Hyun Cho, Hyeong-Sun Hong
  • Patent number: 9331069
    Abstract: A resistive memory cell control unit, integrated circuit, and method are described herein. The resistive memory cell control unit includes a switching transistor and a resistive memory cell. The switching transistor includes a gate disposed on a first surface of a semiconductor substrate, a source, and a drain each disposed in the semiconductor substrate, a gate terminal disposed on the first surface and connected to the gate, a source terminal disposed on the first surface and connected to the source, and a drain terminal connected to the drain and disposed on a second surface opposite the first surface. The resistive memory cell is disposed on the second surface and has a first end connected to the drain terminal. The structure provides a small area and simple manufacturing process for a resistive memory cell integrated circuit.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: May 3, 2016
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Herb He Huang
  • Patent number: 9012967
    Abstract: Embedded memories. The devices include a substrate, a first dielectric layer, a second dielectric layer, a third dielectric layer, and a plurality of capacitors. The substrate comprises transistors. The first dielectric layer, embedding first and second conductive plugs electrically connecting the transistors therein, overlies the substrate. The second dielectric layer, comprising a plurality of capacitor openings exposing the first conductive plugs, overlies the first dielectric layer. The capacitors comprise a plurality of bottom plates, respectively disposed in the capacitor openings, electrically connecting the first conductive plugs, a plurality of capacitor dielectric layers respectively overlying the bottom plates, and a top plate, comprising a top plate opening, overlying the capacitor dielectric layers. The top plate opening exposes the second dielectric layer, and the top plate is shared by the capacitors.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: April 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Ching Lin, Chun-Yao Chen, Chen-Jong Wang, Shou-Gwo Wuu, Chung S. Wang, Chien-Hua Huang, Kun-Lung Chen, Ping Yang
  • Patent number: 8980708
    Abstract: A complementary back end of line (BEOL) capacitor (CBC) structure includes a metal oxide metal (MOM) capacitor structure. The MOM capacitor structure is coupled to a first upper interconnect layer of an interconnect stack of an integrated circuit (IC) device. The MOM capacitor structure includes at least one lower interconnect layer of the interconnect stack. The CBC structure may also include a second upper interconnect layer of the interconnect stack coupled to the MOM capacitor structure. The CBC structure also includes at least one metal insulator metal (MIM) capacitor layer between the first upper interconnect layer and the second upper interconnect layer. In addition, CBC structure may also include a MIM capacitor structure coupled to the MOM capacitor structure. The MIM capacitor structure includes a first capacitor plate having at least a portion of the first upper interconnect layer, and a second capacitor plate having at least a portion of the MIM capacitor layer(s).
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 17, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: John J. Zhu, Bin Yang, P R Chidambaram, Lixin Ge, Jihong Choi
  • Patent number: 8969936
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include a substrate including first and second junction regions, a word line buried in the substrate, a bit line provided over the word line to cross the word line, a first contact provided between the substrate and the bit line and electrically connected to the first junction region, and a second contact provided between the bit lines and electrically connected to the second junction region. An overlapping area of a lower portion of the second contact may be greater than an overlapping area of an upper portion of the second contact with respect to the second junction region.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wonchul Lee, Eun A Kim, Ja Young Lee
  • Patent number: 8969937
    Abstract: A semiconductor device includes a first insulating layer, a contact plug formed in the first insulating layer, a first etch stop layer over the first insulating layer, a second etch stop layer over the first etch stop layer, a second insulating layer over the second etch stop layer and having a contact opening over the contact plug, and a conductive layer disposed in the contact opening and over the contact plug. The contact opening is substantially free of the second etch stop layer, and the first etch stop layer is present in the contact opening.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Pai, Kuo-Chi Tu, Wen-Chuan Chiang, Chung-Yen Chou
  • Patent number: 8927410
    Abstract: A method of forming a through substrate interconnect includes forming a via into a semiconductor substrate. The via extends into semiconductive material of the substrate. A liquid dielectric is applied to line at least an elevationally outermost portion of sidewalls of the via relative a side of the substrate from which the via was initially formed. The liquid dielectric is solidified within the via. Conductive material is formed within the via over the solidified dielectric and a through substrate interconnect is formed with the conductive material.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: January 6, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Dave Pratt, Andy Perkins
  • Patent number: 8815678
    Abstract: In a thin film transistor, each of an upper electrode and a lower electrode is formed of at least one material selected from the group consisting of a metal and a metal nitride, represented by TiN, Ti, W, WN, Pt, Ir, Ru. A capacitor dielectric film is formed of at least one material selected from the group consisting of ZrO2, HfO2, (Zrx, Hf1-x)O2 (0<x<1), (Zry, Ti1-y)O2 (0<y<1), (Hfz, Ti1-z)O2 (0<z<1), (Zrk, Til, Hfm)O2 (0<k, l, m<1, k+l+m=1), by an atomic layer deposition process. The thin film transistor thus formed has a minimized leakage current and an increased capacitance.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 26, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Iizuka, Tomoe Yamamoto, Mami Toda, Shintaro Yamamichi
  • Patent number: 8785320
    Abstract: A high aspect ratio metallization structure is provided in which a noble metal-containing material is present at least within a lower portion of a contact opening located in a dielectric material and is in direct contact with a metal semiconductor alloy located on an upper surface of a material stack of at least one semiconductor device. In one embodiment, the noble metal-containing material is plug located within the lower region of the contact opening and an upper region of the contact opening includes a conductive metal-containing material. The conductive metal-containing material is separated from plug of noble metal-containing material by a bottom walled portion of a U-shaped diffusion barrier. In another embodiment, the noble metal-containing material is present throughout the entire contact opening.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Fenton R. McFeely
  • Patent number: 8778757
    Abstract: In methods of manufacturing a DRAM device, a buried-type gate is formed in a substrate. A capping insulating layer pattern is formed on the buried-type gate. A conductive layer pattern filling up a gap between portions of the capping insulating layer pattern, and an insulating interlayer covering the conductive layer pattern and the capping insulating layer pattern are formed. The insulating interlayer, the conductive layer pattern, the capping insulating layer pattern and an upper portion of the substrate are etched to form an opening, and a first pad electrode making contact with a first pad region. A spacer is formed on a sidewall of the opening corresponding to a second pad region. A second pad electrode is formed in the opening. A bit line electrically connected with the second pad electrode and a capacitor electrically connected with the first pad electrode are formed.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: July 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Chul Park, Sang-sup Jeong
  • Patent number: 8759193
    Abstract: A method of fabricating a semiconductor device includes forming a first insulating layer over a semiconductor substrate, a contact plug within the first insulating layer, an etch stop layer over the first insulating layer, and a second insulating layer over the etch stop layer. The second insulating layer has an opening over the contact plug. A first metal layer, a dielectric material, and a second metal layer are deposited in the opening. The first metal layer engages the contact plug and is free of direct contact with the first insulating layer.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: June 24, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Pai, Kuo-Chi Tu, Wen-Chuan Chiang, Chung-Yen Chou
  • Patent number: 8749057
    Abstract: Methods for forming structures to use in atomic force probing of a conductive feature embedded in a dielectric layer and structures for use in atomic force probing. An insulator layer is formed on the dielectric layer such that the conductive feature is covered. A contact hole penetrates from a top surface of the insulator layer through the insulator layer to the conductive feature. The contact hole is at least partially filled with a conductive stud that is in electrical contact with the conductive feature and exposed at the top surface of the insulator layer so as to define a structure. A probe tip of an atomic force probe tool is landed on a portion of the structure and used to electrically characterize a device structure connected with the conductive feature.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: June 10, 2014
    Assignee: International Business Machines Corporation
    Inventors: David R. Goulet, Walter V. Lepuschenko
  • Patent number: 8710566
    Abstract: Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device. The semiconductor memory device may comprise a substrate comprising an upper layer. The semiconductor memory device may also comprise an array of dummy pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the dummy pillars may extend upward from the upper layer and have a bottom contact that is electrically connected with the upper layer of the substrate. The semiconductor memory device may also comprise an array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the active pillars may extend upward from the upper layer and have an active first region, an active second region, and an active third region. Each of the active pillars may also be electrically connected with the upper layer of the substrate.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: April 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Wayne Ellis, John Kim
  • Patent number: 8679965
    Abstract: A semiconductor device having a reduced bit line parasitic capacitance and a method of making same is presented. The semiconductor device includes a first, second, third, and fourth interlayer dielectric layers, first and second bit lines, first and second landing plug and first and second storage node contacts. An optional capacitor may be added to complete a CMOS configuration for the semiconductor device. The storage node contacts traverse through the interlayer dielectric layer and are electrically coupled to their respective landing plug contacts. The storage node contacts are deliberately offset, relative to the center of the corresponding landing plug contacts, at a predetermined distance in a direction away from the first bit line. This offsetting aids reducing the parasitic capacitance between the bit line and a storage node.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: March 25, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jeong Hoon Park
  • Patent number: 8680649
    Abstract: A multi-layer capacitor of staggered construction is formed of one or more layers having tapered sidewall(s). The edge(s) of the capacitor film(s) can be etched to have a gentle slope, which can improve adhesion of the overlying layers and provide more uniform film thickness. The multi-layer capacitor can be used in various applications such as filtering and decoupling.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: March 25, 2014
    Assignee: STMicroelectronics (Tours) SAS
    Inventor: Guillaume Guégan
  • Patent number: 8647944
    Abstract: A semiconductor device including a semiconductor substrate having a logic formation region where a logic device is formed; a first impurity region formed in an upper surface of the semiconductor substrate in the logic formation region; a second impurity region formed in an upper surface of the semiconductor substrate in the logic formation region; a third impurity region formed in an upper surface of the first impurity region and having a conductivity type different from that of the second impurity region; a fourth region formed in an upper surface of the second impurity region and having a conductivity type different from that of the second impurity region; a first silicide film formed in an upper surface of the third impurity region; a second silicide film formed in an upper surface of the fourth impurity region and having a larger thickness than the first silicide film.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: February 11, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Shinkawata
  • Patent number: 8643074
    Abstract: A semiconductor device includes a semiconductor substrate, an isolation structure disposed in the semiconductor substrate, a conductive layer disposed over the isolation structure, a capacitor disposed over the isolation structure, the capacitor including a top electrode, a bottom electrode, and a dielectric disposed between the top electrode and the bottom electrode, and a first contact electrically coupling the conductive layer and the bottom electrode, the bottom electrode substantially engaging the first contact on at least two faces.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: February 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Pai, Kuo-Chi Tu, Wen-Chuan Chiang, Chung-Yen Chou
  • Patent number: 8624312
    Abstract: A capacitor structure includes a conductive region; a first dielectric layer over the conductive region; a conductive material within the first dielectric layer, wherein the conductive material is on the conductive region and forms a first plate electrode of the capacitor structure; an insulating layer within the first dielectric layer and surrounding the conductive material; a first conductive layer within the first dielectric layer and surrounding the insulating layer, wherein the first conductive layer forms a second plate electrode of the capacitor structure; a second conductive layer laterally extending from the first conductive layer at a top surface of the first dielectric layer; a second dielectric layer over the first dielectric layer; and a third conductive layer within the second dielectric layer and on the conductive material.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: January 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark D. Hall, Mehul D. Shroff
  • Patent number: 8610187
    Abstract: A first transistor including a channel formation region, a first gate insulating layer, a first gate electrode, and a first source electrode and a first drain electrode; a second transistor including an oxide semiconductor layer, a second source electrode and a second drain electrode, a second gate insulating layer, and a second gate electrode; and a capacitor including one of the second source electrode and the second drain electrode, the second gate insulating layer, and an electrode provided to overlap with one of the second source electrode and the second drain electrode over the second gate insulating layer are provided. The first gate electrode and one of the second source electrode and the second drain electrode are electrically connected to each other.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: December 17, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato
  • Patent number: 8519471
    Abstract: A method for fabricating a vertical channel type nonvolatile memory device includes forming alternately a plurality of interlayer dielectric layers and a plurality of conductive layers over a substrate, forming a trench having a plurality of recesses on a surface of the trench by etching the plurality of interlayer dielectric layers and a plurality of conductive layers, wherein the plurality of recesses are formed at a certain interval on the surface of the trench, forming a charge blocking layer over a plurality of surfaces of the plurality of recesses, forming a charge storage layer over the charge blocking layer for filling a plurality of the remaining recesses with a charge storage material, forming a tunnel dielectric layer to cover the charge storage layer, and forming a vertical channel layer by filling the remaining trench.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: August 27, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Seoung-Woo Kuk, Kang-Jae Lee
  • Patent number: 8482129
    Abstract: A method of manufacturing a semiconductor device includes forming an integrated circuit region on a semiconductor wafer. A first metal layer pattern is formed over the integrated circuit region. A via hole is formed to extend through the first metal layer pattern and the integrated circuit region. A final metal layer pattern is formed over the first metal layer pattern and within the via hole. A plug is formed within the via hole. Thereafter, a passivation layer is formed to overlie the final metal layer pattern.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-Young Lee, Ho-Jin Lee, Hyun-Soo Chung, Ju-Il Choi, Son-Kwan Hwang
  • Patent number: 8450204
    Abstract: A high aspect ratio metallization structure is provided in which a noble metal-containing material is present at least within a lower portion of a contact opening located in a dielectric material and is in direct contact with a metal semiconductor alloy located on an upper surface of a material stack of at least one semiconductor device. In one embodiment, the noble metal-containing material is plug located within the lower region of the contact opening and an upper region of the contact opening includes a conductive metal-containing material. The conductive metal-containing material is separated from plug of noble metal-containing material by a bottom walled portion of a U-shaped diffusion barrier. In another embodiment, the noble metal-containing material is present throughout the entire contact opening.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Fenton R. McFeely
  • Patent number: 8410534
    Abstract: Disclosed are integrated circuit structures each having a silicon germanium film incorporated as a local interconnect and/or an electrical contact. These integrated circuit structures provide improved local interconnects between devices and/or increased capacitance to devices without significantly increasing structure surface area or power requirements. Specifically, disclosed are integrated circuit structures that incorporate a silicon germanium film as one or more of the following features: as a local interconnect between devices; as an electrical contact to a device (e.g., a deep trench capacitor, a source/drain region of a transistor, etc.); as both an electrical contact to a deep trench capacitor and a local interconnect between the deep trench capacitor and another device; and as both an electrical contact to a deep trench capacitor and as a local interconnect between the deep trench capacitor and other devices.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: April 2, 2013
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 8384155
    Abstract: A one time programmable memory cell having a gate, a gate dielectric layer, a source region, a drain region, a capacitor dielectric layer and a conductive plug is provided herein. The gate dielectric layer is disposed on a substrate. The gate is disposed on the gate dielectric layer. The source region and the drain region are disposed in the substrate at the sides of the gate, respectively. The capacitor dielectric layer is disposed on the source region. The capacitor dielectric layer is a resistive protection oxide layer or a self-aligned salicide block layer. The conductive plug is disposed on the capacitor dielectric layer. The conductive plug is served as a first electrode of a capacitor and the source region is served as a second electrode of the capacitor. The one time programmable memory (OTP) cell is programmed by making the capacitor dielectric layer breakdown.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: February 26, 2013
    Assignee: eMemory Technology Inc.
    Inventors: Chrong-Jung Lin, Hsin-Ming Chen, Ya-Chin King
  • Patent number: 8362533
    Abstract: According to an aspect of the present invention, there is provided a semiconductor device including: a transistor including: a source, a drain and a gate; first and second plugs on the source and the drain; a third plug on the gate to have a top face higher than that of the first plug; an interlayer insulating film covering the transistor and the first to the third plugs; a ferroelectric capacitor on the interlayer insulating film, one electrode thereof being connected to the first plug; a barrier film covering surfaces of the ferroelectric capacitor and the interlayer insulating film to prevent a substance affecting the ferroelectric capacitor from entering therethrough; and fourth and fifth plugs disposed on the second and the third plugs and connected thereto through connection holes formed in the barrier film.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: January 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tohru Ozaki
  • Patent number: 8318560
    Abstract: Methods of forming a capacitor of an integrated circuit device include forming a lower electrode of the capacitor on an integrated circuit substrate without exposing a contact plug to be coupled to the lower electrode. A supporting conductor is formed coupling the lower electrode to the contact plug after forming the lower electrode. A capacitor dielectric layer is formed on the lower electrode and an upper electrode of the capacitor is formed on the capacitor dielectric layer.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: November 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wan-Don Kim, Cha-Young Yoo, Suk-Jin Chung, Jin-Yong Kim
  • Patent number: 8283714
    Abstract: Channels of two transistors are vertically formed on portions of two opposite side surfaces of one active region, and gate electrodes are vertically formed on a device isolation layer contacting the channels of the active region. A common bit line contact plug is formed in the central portions of the active region, two storage node contact plugs are formed on both sides of the bit line contact plug, and an insulating spacer is formed on a side surface of the bit line contact plug. A word line, a bit line, and a capacitor are sequentially stacked on the semiconductor substrate, like a conventional semiconductor memory device. Thus, effective space arrangement of a memory cell is possible such that a 4F2 structure is constituted, and a conventional line and contact forming process can be applied such that highly integrated semiconductor memory device is readily fabricated.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: October 9, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-won Seo, Bong-soo Kim, Dong-gun Park, Kang-yoon Lee, Jae-man Yoon, Seong-goo Kim, Seung-bae Park
  • Patent number: 8278721
    Abstract: The invention provides a method for forming a contact plug, comprising: forming a gate, a sidewall spacer, a sacrificial sidewall spacer, a source region and a drain region on a substrate, wherein the sidewall spacer is formed around the gate, the sacrificial sidewall spacer is formed over the sidewall spacer, and the source region and the drain region are formed within the substrate and on respective sides of the gate; forming an interlayer dielectric layer, with the gate, the sidewall spacer and the sacrificial sidewall spacer being exposed; removing the sacrificial sidewall spacer to form a contact space, the sacrificial sidewall spacer material being different from that of the gate, the sidewall spacer and the interlayer dielectric layer; forming a conducting layer to fill the contact space; and cutting off the conducting layer, to form at least two conductors connected to the source region and the drain region respectively.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: October 2, 2012
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang
  • Patent number: 8252641
    Abstract: In a method of manufacturing a semiconductor device, first contact holes reaching diffusion regions of a cell transistor, bit line contact holes reaching diffusion regions of the cell transistor, and interconnect grooves communicating with the bit line contact holes are buried in a first insulating film. In addition, first contact plugs and bit line contacts are respectively formed by burying conductive materials in the first contact holes, the bit line contact holes and the interconnect grooves, and the first contact plugs are electrically connected to a capacitor formed in a third insulating film through an opening formed in a second insulating film.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: August 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yasuyuki Aoki
  • Patent number: 8247324
    Abstract: A method for fabricating a semiconductor device includes forming landing plugs over a substrate, forming a trench by etching the substrate between the landing plugs, forming a buried gate to partially fill the trench, forming a gap-fill layer to gap-fill an upper side of the buried gate, forming protruding portions of the landing plugs, and trimming the protruding portions of the landing plugs.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: August 21, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jong-Han Shin, Jum-Yong Park
  • Publication number: 20120193696
    Abstract: In order to achieve the reduction of contact resistance by forming a metal silicide layer with a sufficient thickness in an interface between a polycrystalline silicon plug and an upper conductive plug, the polycrystalline silicon plug contains germanium, which is ion-implanted before forming the metal silicide layer.
    Type: Application
    Filed: January 25, 2012
    Publication date: August 2, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Yoichi FUKUSHIMA
  • Patent number: 8232647
    Abstract: A high aspect ratio metallization structure is provided in which a noble metal-containing material is present at least within a lower portion of a contact opening located in a dielectric material and is in direct contact with a metal semiconductor alloy located on an upper surface of a material stack of at least one semiconductor device. In one embodiment, the noble metal-containing material is plug located within the lower region of the contact opening and an upper region of the contact opening includes a conductive metal-containing material. The conductive metal-containing material is separated from plug of noble metal-containing material by a bottom walled portion of a U-shaped diffusion barrier. In another embodiment, the noble metal-containing material is present throughout the entire contact opening.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Fenton R. McFeely
  • Patent number: 8217439
    Abstract: Some embodiments include methods of forming capacitors. A first capacitor storage node may be formed within a first opening in a first sacrificial material. A second sacrificial material may be formed over the first capacitor storage node and over the first sacrificial material, and a retaining structure may be formed over the second sacrificial material. A second opening may be formed through the retaining structure and the second sacrificial material, and a second capacitor storage node may be formed within the second opening and against the first storage node. The first and second sacrificial materials may be removed, and then capacitor dielectric material may be formed along the first and second storage nodes. Capacitor electrode material may then be formed along the capacitor dielectric material. Some embodiments include methods of forming DRAM unit cells, and some embodiments include DRAM unit cell constructions.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: July 10, 2012
    Assignee: Micron Technology, Inc.
    Inventor: John Kennedy
  • Patent number: 8207573
    Abstract: In a method of forming an asymmetric recess, an asymmetric recessed gate structure filling the asymmetric recess, a method of forming the asymmetric recessed gate structure, a semiconductor device having the asymmetric recessed gate structure and a method of manufacturing the semiconductor device, a semiconductor substrate is etched to form a first sub-recess having a first central axis. A second sub-recess is formed under the first sub-recess. The second sub-recess is in communication with the first sub-recess. The second sub-recess has a second central axis substantially parallel with the first central axis. The second central axis is spaced apart from the first central axis.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: June 26, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Se-Keun Park
  • Patent number: 8198126
    Abstract: The invention relates to a method for producing a solid electrolytic capacitor with excellent LC value, comprising sequentially stacking a dielectric oxide film, a semiconductor layer and an electrode layer on a sintered body of conductive powder to which an anode lead is connected and then encapsulating the whole with an outer jacket resin, wherein surface area of a cathode plate used in forming the semiconductor layer on the dielectric oxide film by applying current between the conductor having the dielectric oxide film thereon used as anode and the cathode plate provided in electrolysis solution is made larger by 10 times or more than its apparent surface area to thereby efficiently form the semiconductor layer, a capacitor produced by the method, and electronic circuits and electronic devices using the capacitor.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: June 12, 2012
    Assignee: Showa Denko K.K.
    Inventor: Kazumi Naito
  • Patent number: 8129251
    Abstract: A METAL-INSULATOR-METAL structured capacitor is formed with polysilicon instead of an oxide film as a sacrificial layer material that defines a storage electrode region. A MPS (Meta-stable Poly Silicon) process is performed to increase the surface area of the sacrificial layer that defines the storage electrode region and also increase the area of the storage electrode formed over sacrificial layer. This process results in increasing the capacity of the capacitor in a stable manner.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won Sun Seo
  • Patent number: 8129772
    Abstract: Disclosed are integrated circuit structures each having a silicon germanium film incorporated as a local interconnect and/or an electrical contact. These integrated circuit structures provide improved local interconnects between devices and/or increased capacitance to devices without significantly increasing structure surface area or power requirements. Specifically, disclosed are integrated circuit structures that incorporate a silicon germanium film as one or more of the following features: as a local interconnect between devices; as an electrical contact to a device (e.g., a deep trench capacitor, a source/drain region of a transistor, etc.); as both an electrical contact to a deep trench capacitor and a local interconnect between the deep trench capacitor and another device; and as both an electrical contact to a deep trench capacitor and as a local interconnect between the deep trench capacitor and other devices.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 8124491
    Abstract: Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: February 28, 2012
    Assignee: Micron Technology, Inc.
    Inventors: D. Mark Durcan, Trung T. Doan, Roger R. Lee, Fernando Gonzalez
  • Patent number: 8022457
    Abstract: Channels of two transistors are vertically formed on portions of two opposite side surfaces of one active region, and gate electrodes are vertically formed on a device isolation layer contacting the channels of the active region. A common bit line contact plug is formed in the central portions of the active region, two storage node contact plugs are formed on both sides of the bit line contact plug, and an insulating spacer is formed on a side surface of the bit line contact plug. A word line, a bit line, and a capacitor are sequentially stacked on the semiconductor substrate, like a conventional semiconductor memory device. Thus, effective space arrangement of a memory cell is possible such that a 4F2 structure is constituted, and a conventional line and contact forming process can be applied such that highly integrated semiconductor memory device is readily fabricated.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 20, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-won Seo, Bong-soo Kim, Dong-gun Park, Kang-yoon Lee, Jae-man Yoon, Seong-goo Kim, Seung-bae Park
  • Patent number: 7999330
    Abstract: The invention includes methods of utilizing compositions containing iridium and tantalum in semiconductor constructions, and includes semiconductor constructions comprising compositions containing iridium and tantalum. The compositions containing iridium and tantalum can be utilized as barrier materials, and in some aspects can be utilized as barriers to copper diffusion.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: August 16, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Jeff Hu
  • Patent number: 7989287
    Abstract: A method for fabricating a storage node electrode in a semiconductor device includes: performing a primary high density plasma (HDP) process to form a first HDP oxide film over an etch stop film; performing a secondary HDP process to form a second HDP oxide film on the first HDP oxide film; forming a support film over the second HDP oxide film; performing a tertiary HDP process to form a third HDP oxide film over the support film; forming a storage node electrode on an exposed surface of the storage node contact hole; partially removing the third HDP oxide film and the support film so that a support pattern supporting the storage node electrode is formed; and exposing an outer surface of the storage node electrode by removing the second HDP oxide film and the first HDP oxide film.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: August 2, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byung Soo Eun
  • Patent number: 7985999
    Abstract: A semiconductor device having a capacitor and a method of fabricating the same may be provided. A method of fabricating a semiconductor device may include forming an etch stop layer and a mold layer sequentially on a substrate, patterning the mold layer to form a mold electrode hole exposing a portion of the etch stop layer, etching selectively the exposed etch stop layer by an isotropic dry etching process to form a contact electrode hole through the etch stop layer to expose a portion of the substrate, forming a conductive layer on the substrate and removing the conductive layer on the mold layer on the mold layer to form a cylindrical bottom electrode in the mold and contact electrode holes. The isotropic dry etching process may utilize a process gas including main etching gas and selectivity adjusting gas. The selectivity adjusting gas may increase an etch rate of the etch stop layer by more than an etch rate of the mold layer by the isotropic wet etching process.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: July 26, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Min Oh, Jeong-Nam Han, Chang-Ki Hong, Woo-Gwan Shim, Im-Soo Park
  • Patent number: 7969008
    Abstract: A semiconductor device has: a circuit portion having semiconductor elements formed on a semiconductor substrate; insulating lamination formed above the semiconductor substrate and covering the circuit portion; a multilevel wiring structure formed in the insulating lamination and including wiring patterns and via conductors; and a pad electrode structure formed above the semiconductor substrate and connected to the multilevel wiring structure. The pad electrode structure includes pad wiring patterns and pad via conductors interconnecting the pad wiring patterns, the uppermost pad wiring pattern includes a pad pattern and a sealing pattern surrounding the pad pattern in a loop shape. Another pad wiring pattern has continuous extended pad pattern of a size overlapping the sealing pattern. The pad via conductors include a plurality of columnar via conductors disposed in register with the pad pattern and a loop-shaped wall portion disposed in register with the sealing pattern.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 28, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 7956386
    Abstract: A wiring structure in a semiconductor device may include a first insulation layer formed on a substrate, a first contact plug, a capping layer pattern, a second insulation layer and a second contact plug. The first insulation layer has a first opening that exposes a contact region of the substrate. The first contact plug is formed on the contact region to partially fill up the first opening. The capping layer pattern is formed on the first contact plug to fill up the first opening. The second insulation layer is formed on the capping layer pattern and the first insulation layer. The second insulation layer has a second opening passing through the capping layer pattern to expose the first contact plug. The second contact plug is formed on the first contact plug in the second opening. Since the wiring structure includes the capping layer pattern, the wiring structure may prevent a contact failure by preventing chemicals from permeating into the first contact plug.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 7, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Soon Bae, Sei-Ryung Choi