Making Bit Line Contact (epo) Patents (Class 257/E21.658)
  • Patent number: 7737480
    Abstract: A semiconductor memory device includes: a transistor formed in a substrate; a capacitor formed above one of source/drain regions of the transistor; a bit line formed above the substrate and extending in the gate length direction of the transistor; a first conductive plug connecting one of the source/drain regions and the capacitor; a second conductive plug connected to the other source/drain region that is not connected to the first conductive plug; and a third conductive plug formed on the second conductive plug and connected to the bit line. The central axis of the third conductive plug is displaced from the central axis of the second conductive plug in the gate width direction of the transistor.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: June 15, 2010
    Assignee: Panasonic Corporation
    Inventors: Ryo Nakagawa, Takashi Nakabayashi, Hideyuki Arai
  • Patent number: 7732279
    Abstract: Semiconductor devices with an improved overlay margin and methods of manufacturing the same are provided. In one aspect, a method includes forming a buried bit line in a substrate; forming an isolation layer in the substrate to define an active region, the isolation layer being parallel to the bit line without overlapping the bit line; and forming a gate line including a gate pattern and a conductive line by forming the gate pattern in the active region and forming a conductive line that extends at a right angle to the bit line across the active region and is electrically connected to the gate pattern disposed thereunder. The gate pattern and the conductive line can be integrally formed.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: June 8, 2010
    Assignee: Samsung Electronics, Co., Ltd
    Inventor: Joon-Soo Park
  • Patent number: 7713855
    Abstract: A method for forming a bit-line contact plug includes providing a substrate including a transistor which includes a gate structure and a source/drain at both sides of the gate structure; forming a conductive layer, a bit-line contact material layer and a hard mask layer; performing an etching process using the conductive layer as an etching stop layer to etch the bit-line contact material layer and the hard mask layer and forming the bit-line contact plug on the source/drain. A transistor structure includes a gate structure and a source/drain at both sides of the gate structure, a conductive layer covering part of the gate structure and connected to the source/drain, and a bit-line contact plug disposed on the conductive layer and directly connected to the conductive layer.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: May 11, 2010
    Assignee: Nanya Technology Corp.
    Inventors: Yu-Chung Fang, Hong-Wen Lee, Kuo-Chung Chen, Jen-Jui Huang, Jing-Kae Liou
  • Patent number: 7635626
    Abstract: A method of manufacturing a DRAM includes firstly providing a substrate. Many transistors are then formed on the substrate. Next, a first and a second LPCs are formed between the transistors. A first dielectric layer is then formed on the substrate, and a first opening exposing the first LPC is formed in the first dielectric layer. Thereafter, a barrier layer is formed on the first dielectric layer. Afterwards, a BLC is formed in the first opening, and a BL is formed on the first dielectric layer. A liner layer is then formed on a sidewall of the BL. Next, a second dielectric layer having a dry etching rate substantially equal to that of the liner layer and having a wet etching rate larger than that of the liner layer is formed on the substrate. Finally, an SNC is formed in the first and the second dielectric layers.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: December 22, 2009
    Assignee: ProMos Technologies Inc.
    Inventors: Cheng-Che Lee, Tao-Yi Chang, Tsung-De Lin
  • Patent number: 7589369
    Abstract: The invention includes a method in which a semiconductor substrate is provided to have a memory array region, and a peripheral region outward of the memory array region. Paired transistors are formed within the memory array region, with such paired transistors sharing a source/drain region corresponding to a bitline contact location, and having other source/drain regions corresponding to capacitor contact locations. A peripheral transistor gate is formed over the peripheral region. Electrically insulative material is formed over the peripheral transistor gate, and also over the bitline contact location. The insulative material is patterned to form sidewall spacers along sidewalls of the peripheral transistor gate, and to form a protective block over the bitline contact location. Subsequently, capacitors are formed which extend over the protective block, and which electrically connect with the capacitor contact locations. The invention also includes semiconductor constructions.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: September 15, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Gordon A. Haller
  • Patent number: 7575992
    Abstract: A method of forming a micro pattern in a semiconductor device is disclosed. An oxide film mask is divided into a cell oxide film mask and a peri oxide film mask. Therefore, a connection between the cell and the peri region can be facilitated. A portion of a top surface of a first oxide film pattern between a region in which a word line will be formed and a region in which a select source line will be formed is removed. Accordingly, the space can be increased and program disturbance in the region in which the word line will be formed can be prevented. Furthermore, a pattern having a line of 50 nm and a space of 100 nm or a pattern having a line of 100 nm and a space of 50 nm, which exceeds the limitation of the ArF exposure equipment, can be formed using a pattern, which has a line of 100 nm and a space of 200 nm and therefore has a good process margin and a good critical dimension regularity.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 18, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Woo Yung Jung, Jong Hoon Kim
  • Patent number: 7572684
    Abstract: Nonvolatile memory devices, and methods of forming the same are disclosed. A memory device includes a substrate having a cell region, a low voltage region and a high voltage region. A ground selection transistor, a string selection transistor and a cell transistor are in the cell region, a low voltage transistor is in the low voltage region, and a high voltage transistor is in the high voltage region. A common source contact is on the ground selection transistor and a low voltage contact is on the low voltage transistor. A bit line contact is on the string selection transistor, a high voltage contact is on the high voltage transistor, and a bit line is on the bit line contact. A first insulating layer is on the substrate, and a second insulating layer is on the first insulating layer. The common source contact and the first low voltage contact extend to a height of the first insulating layer, and the bit line contact and the first high voltage contact extend to a height of the second insulating layer.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: August 11, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Dal Chol, Jong-Sun Sel, Chang-Seok Kang
  • Publication number: 20090197386
    Abstract: The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure.
    Type: Application
    Filed: April 6, 2009
    Publication date: August 6, 2009
    Inventors: Brett W. Busch, David K. Hwang, F. Daniel Gealy
  • Patent number: 7563668
    Abstract: A technique for enhancing the performance of a memory- and logic-equipped semiconductor device is provided. The semiconductor device comprises a semiconductor substrate (1), an insulating layer (19) on the semiconductor substrate (1), a plurality of contact plugs (16, 66) in the insulating layer (19), and an insulating layer (30) where capacitors (82), a plurality of contact plugs (25, 75), barrier metal layers (27, 87) and copper interconnections (29, 88) are formed. Source/drain regions (9) in the upper surface of the semiconductor substrate (1) are electrically connected to the copper interconnections (29). One of adjacent source/drain regions (59) in the upper surface of the semiconductor substrate (1) is electrically connected to the copper interconnection (88), while the other is electrically connected to the capacitor (82).
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: July 21, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Atsushi Hachisuka, Atsushi Amo, Tatsuo Kasaoka, Shunji Kubo
  • Patent number: 7547597
    Abstract: A method for directly aligning multiple lithography masking layers. The method may be used to fabricate a flash plus logic structure. The flash plus logic structure may comprise a flash memory cell, a logic cell and a transistor.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: June 16, 2009
    Assignee: Intel Corporation
    Inventors: Derchang Kau, Khaled Hasnat, Everett Lee
  • Patent number: 7544616
    Abstract: A method of forming word lines of a memory includes providing a substrate and forming a conductive layer on the substrate. A metal silicide layer is formed on the conductive layer, and a mask pattern is formed on the metal silicide layer. A mask liner covering the mask pattern and the surface of the metal silicide layer is formed on the substrate to shorten distances between the word line regions. An etching process is performed on the mask liner and the mask pattern until the partial surface of the metal silicide layer is exposed. The metal silicide layer and the conductive layer are etched to form word lines by utilizing the mask liner and the mask pattern as a mask. A silicon content of the metal silicide layer must be less than or equal to 2 for reducing a bridge failure rate between the word lines.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: June 9, 2009
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Chi-Pin Lu, Ling-Wu Yang
  • Patent number: 7518175
    Abstract: The present invention relates to a semiconductor memory device and a method for fabricating the same. The semiconductor memory device, including: a plurality of gate structures formed on a substrate; a contact junction region formed beneath the substrate disposed in lateral sides of the respective gate structures; a trench formed by etching a portion of the substrate disposed in the contact junction region with a predetermined thickness; a dopant diffusion barrier layer formed on sidewalls of the trench; and a contact plug filled into a space created between the gate structures and inside of the trench, wherein the dopant diffusion barrier layer prevents dopants within the contact plug from diffusing out.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: April 14, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Seung-Bum Kim, Dong-sauk Kim, Jung-Taik Cheong
  • Patent number: 7517753
    Abstract: The invention includes methods of forming pluralities of capacitors. In one implementation, a method of forming a plurality of capacitors includes anodically etching individual capacitor electrode channels within a material over individual capacitor storage node locations on a substrate. The channels are at least partially filled with electrically conductive capacitor electrode material in electrical connection with the individual capacitor storage node locations. The capacitor electrode material is incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: April 14, 2009
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7504725
    Abstract: A semiconductor memory device and a method of manufacturing the semiconductor memory device, in which a bit line can have a low resistance without an increase in the thickness of the bit line. In the semiconductor memory device, an insulating layer having a contact hole that exposes a conductive region is formed on a semiconductor substrate having the conductive region. A barrier metal layer is formed along the surface of the insulating layer and the surface of the contact hole. A grain control layer is formed between the barrier metal layer and the tungsten layer. A tungsten layer is formed on the grain control layer. A grain size of the tungsten layer is increased by the grain control layer.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: March 17, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Rak-Hwan Kim, Young-Cheon Kim, Hyeon-Deok Lee, Hyun-Young Kim, In-Sun Park
  • Patent number: 7462521
    Abstract: A dual-gate device is formed over and insulated from a semiconductor substrate which may include additional functional circuits that can be interconnected to the dual-gate device. The dual-gate device includes two semiconductor devices formed on opposite surfaces of a common active semiconductor region which is provided a thickness and material sufficient to isolate the semiconductor devices from electrostatically interacting. In one embodiment, one of the semiconductor devices includes a charge storing layer, such as an ONO layer. Such a dual-gate device is suitable for use in a non-volatile memory array.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: December 9, 2008
    Inventors: Andrew J. Walker, Maitreyee Mahajani
  • Publication number: 20080280408
    Abstract: Semiconductor devices with an improved overlay margin and methods of manufacturing the same are provided. In one aspect, a method includes forming a buried bit line in a substrate; forming an isolation layer in the substrate to define an active region, the isolation layer being parallel to the bit line without overlapping the bit line; and forming a gate line including a gate pattern and a conductive line by forming the gate pattern in the active region and forming a conductive line that extends at a right angle to the bit line across the active region and is electrically connected to the gate pattern disposed thereunder. The gate pattern and the conductive line can be integrally formed.
    Type: Application
    Filed: July 25, 2008
    Publication date: November 13, 2008
    Inventor: JOON-SOON PARK
  • Patent number: 7396750
    Abstract: A method and a structure are provided for improving the contact of two adjacent GMR memory bits. Two adjacent bit ends are connected by utilizing a single via.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: July 8, 2008
    Assignee: Northern Lights Semiconductor Corp.
    Inventors: Vicki Wilson, Guoqing Zhan, Ray Buske, James Chyi Lai
  • Patent number: 7381613
    Abstract: A semiconductor device includes a group of capacitors and a trench. Each capacitor includes a first conductive material layer, a dielectric layer, and a second conductive material layer. The dielectric layer is located between the first and second conductive material layers. The first conductive material layer coats an inside surface of a cup-shaped opening formed in an insulating layer. The trench is formed in the insulating layer. The trench extends between and crosses each of the capacitors in the group. The dielectric layer and the second conductive material layer are formed over the first conductive material layer in the cup-shaped openings and over an inside surface of the trench. The second conductive material layer extends between the capacitors of the group via the trench. Also, the second conductive material layer forms top electrodes for the capacitors of the group.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: June 3, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Kuo-Chi Tu
  • Patent number: 7365384
    Abstract: A memory device includes isolation trenches that are formed generally parallel to and along associated strips of active area. A conductive bit line is recessed within each isolation trench such that the uppermost surface of the bit line is recessed below the uppermost surface of the base substrate. A bit line contact strap electrically couples the bit line to the active area both along a vertical dimension of the bit line strap and along a horizontal dimension across the uppermost surface of the base substrate.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: April 29, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, Mark Durcan, Howard C. Kirsch
  • Patent number: 7361591
    Abstract: A method includes preparing a semiconductor substrate having a cell region, a core NMOS region, and a core PMOS region; defining a cell active region, an NMOS active region, and a PMOS active region in the cell region, the core NMOS region, and the core PMOS region, respectively, by forming an isolation layer in predetermined regions of the semiconductor substrate; forming a cell gate pattern, an NMOS gate pattern, and a PMOS gate pattern crossing the cell active region, the NMOS active region, and the PMOS active region, respectively; forming an interlayer-insulating layer on the semiconductor substrate having the gate patterns; simultaneously forming a storage node landing pad, a bit line landing pad, and NMOS landing pads; and patterning the interlayer-insulating layer of the core PMOS region to form PMOS interconnection contact holes that expose predetermined regions of the PMOS active region adjacent to the PMOS gate pattern.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: April 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Je-Min Park
  • Patent number: 7276725
    Abstract: The present invention relates to a bit line barrier metal layer for a semiconductor device and a process for preparing the same, the process comprising: forming bit line contact on an insulation layer vapor-deposited on an upper part of a substrate so as to expose an ion implantation region; vapor-depositing a first barrier metal layer of a Ti film on the entire upper surface thereof; and vapor-depositing, on the upper part of the Ti film, a second barrier metal layer of a ZrB2 film having different upper and lower Boron concentrations, by RPECVD controlling the presence/absence of H2 plasma, wherein the barrier metal layer includes the Ti film, lower ZrB2 film and upper a ZrB2 film sequentially stacked between tungsten bit lines and ion implantation region of a semiconductor substrate.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: October 2, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byung Soo Eun
  • Patent number: 7244676
    Abstract: The present invention provides a method for fabricating a semiconductor device capable of securing a bottom contact area of a storage node contact as well as of preventing losses of a bit line hard mask insulation layer. These effects are achieved by planarizing an inter-layer insulation layer, which is filled into etched portions formed between conductive patterns, with the bit line hard mask insulation layer through a CMP process. This planarization process decreases a thickness of an etch target to thereby provide more vertical etch profile compared to a typical etch profile that is tapered or inclined at a bottom contact area. As a result of the decreased thickness of the etch target and the more vertical etch profile, it is possible to obtain the wider bottom contact area and prevent losses of the bit line hard mask insulation layer.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: July 17, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung-Kwon Lee
  • Patent number: 7183188
    Abstract: The invention provides a method for fabricating contact-making connections, having the steps of: a) providing a substrate (101) with electronic circuit units (102a, 102b) arranged thereon, an intermediate layer (103) filling an interspace between the electronic circuit units (102a, 102b); an insulation layer (104) being deposited on the electronic circuit units (102a, 102b) and on the intermediate layer (103); a masking layer (105) being deposited on the insulation layer (104); and the masking layer (105) being patterned with a through-plating structure (106); b) patterning a contact-making region by means of the masking layer (105), a contact-making hole (112) being etched through the insulation layer (104) and the intermediate layer (103) as far as the substrate (101), a section of the substrate (101) being uncovered in accordance with the through-plating structure (106); c) filling the contact-making hole (112) with a through-plating material (108); d) polishing back the covering layer (107) deposited on t
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: February 27, 2007
    Assignee: Infineon Technologies AG
    Inventors: Matthias Krönke, Joachim Patzer
  • Patent number: 7176072
    Abstract: A method of fabricating strained silicon devices for transfer to glass for display applications includes preparing a wafer having a silicon substrate thereon; forming a relaxed SiGe layer on the silicon substrate; forming a strained silicon layer on the relaxed SiGe layer; fabricating an IC device on the strained silicon layer; depositing a dielectric layer on the wafer to cover a gate module of the IC device; smoothing the dielectric; implanting ions to form a defect layer; cutting the wafer into individual silicon dies; preparing a glass panel and the silicon dies for bonding; bonding the silicon dies onto the glass panel to form a bonded structure; annealing the bonded structure; splitting the bonded structure along the defect layer; removing the remaining silicon layer from the silicon substrate and relaxed SiGe layer on the silicon die on the glass panel; and completing the glass panel circuitry.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: February 13, 2007
    Assignee: Sharp Laboratories of AMerica, Inc
    Inventors: Jong-Jan Lee, Jer-Shen Maa, Sheng Teng Hsu
  • Patent number: 7045441
    Abstract: A method for forming a, single-crystal silicon layer on a transparent substrate. A transparent substrate having an amorphous silicon layer formed thereon and a silicon wafer having a hydrogen ion layer formed therein are provided. The silicon wafer is then reversed and laminated onto the amorphous silicon layer so that a layer of single-crystal silicon is between the hydrogen ion layer and the amorphous silicon layer. The laminated silicon wafer and the amorphous silicon layer are then subjected to laser or infrared light to cause chemical bonding of the single crystal silicon layer and the amorphous silicon layer and inducing a hydro-cracking reaction thereby separating the silicon wafer is and the transparent substrate at the hydrogen ion layer, and leaving the single-crystal silicon layer on the transparent substrate.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: May 16, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Chich Shang Chang, Chi-Shen Lee, Shun-Fa Huang, Jung Fang Chang, Wen-Chih Hu, Liang-Tang Wang, Chai-Yuan Sheu