With Ferroelectric Capacitor (epo) Patents (Class 257/E21.664)
  • Patent number: 11942133
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various examples are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For instance, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: March 26, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 11910618
    Abstract: A configuration for efficiently placing a group of capacitors with one terminal connected to a common node is described. The capacitors are stacked and folded along the common node. In a stack and fold configuration, devices are stacked vertically (directly or with a horizontal offset) with one terminal of the devices being shared to a common node, and further the capacitors are placed along both sides of the common node. The common node is a point of fold. In one example, the devices are capacitors. N number of capacitors can be divided in L number of stack layers such that there are N/L capacitors in each stacked layer. The N/L capacitors are shorted together with an electrode (e.g., bottom electrode). The electrode can be metal, a conducting oxide, or a combination of a conducting oxide and a barrier material. The capacitors can be planar, non-planar or replaced by memory elements.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: February 20, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Patent number: 11908704
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: February 20, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, Fnu Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11894304
    Abstract: The present disclosure relates to a semiconductor device with an air gap below a landing pad and a method for forming the semiconductor device. The semiconductor device includes a first lower plug and a second lower plug disposed over a semiconductor substrate. The semiconductor device also includes a first landing pad disposed over a top surface and upper sidewalls of the first lower plug, and a first upper plug disposed over the first landing pad and electrically connected to the first lower plug. A width of the first lower plug is greater than a width of the first upper plug. The semiconductor device further includes a dielectric layer disposed over the semiconductor substrate. The first lower plug, the second lower plug, the first landing pad and the first upper plug are disposed in the dielectric layer, and the dielectric layer includes an air gap disposed between the first lower plug and the second lower plug.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: February 6, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Chih-Tsung Wu
  • Patent number: 11854593
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various examples are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For instance, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: December 26, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 11832451
    Abstract: Non lead-based perovskite ferroelectric devices for high density memory and logic applications and methods of fabrication are described. While various embodiments are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For example, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: November 28, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Debraj Guhabiswas, Maria Isabel Perez, Jason Y. Wu, James David Clarkson, Gabriel Antonio Paulius Velarde, Niloy Mukherjee, Noriyuki Sato, Amrita Mathuriya, Sasikanth Manipatruni, Ramamoorthy Ramesh
  • Patent number: 11812599
    Abstract: Examples herein relate to a memory device comprising an eDRAM memory cell, the eDRAM memory cell can include a write circuit formed at least partially over a storage cell and a read circuit formed at least partially under the storage cell; a compute near memory device bonded to the memory device; a processor; and an interface from the memory device to the processor. In some examples, circuitry is included to provide an output of the memory device to emulate output read rate of an SRAM memory device comprises one or more of: a controller, a multiplexer, or a register. Bonding of a surface of the memory device can be made to a compute near memory device or other circuitry. In some examples, a layer with read circuitry can be bonded to a layer with storage cells. Any layers can be bonded together using techniques described herein.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: November 7, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek Sharma, Noriyuki Sato, Sarah Atanasov, Huseyin Ekin Sumbul, Gregory K. Chen, Phil Knag, Ram Krishnamurthy, Hui Jae Yoo, Van H. Le
  • Patent number: 11769790
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: September 26, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, Fnu Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11741428
    Abstract: A method for monetizing ferroelectric process development is described. In at least one embodiment, the method comprises procuring a target material based on a model driven selection which is based on charge, mass and magnetic moment, and/or mass of the atomic constituents of the target material. The method further comprises applying the target material to a fabrication process to build a ferroelectric device. The method further comprises generating a notification indicative of procurement of the target material and application of the target material. The method further comprises electronically transmitting the notification to a customer, wherein the notification includes an invoice having a line item associated with a cost of the procuring of the target material and application of the target material.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: August 29, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Niloy Mukherjee, Noriyuki Sato, Tanay Gosavi, Somilkumar J. Rathi, James David Clarkson, Rajeev Kumar Dokania, Debo Olaosebikan, Amrita Mathuriya
  • Patent number: 11688448
    Abstract: Methods, systems, and devices for digit line management for a memory array are described. A memory array may include a plate that is common to a plurality of memory cells. Each memory cell associated with the common plate may be coupled with a respective digit line. One or more memory cells common to the plate may be accessed by concurrently selecting the plate and each digit line associated with the plate. Concurrent selection of all digit lines associated with the plate may be supported by shield lines between the selected digit lines. Additionally or alternatively, selection of all digit lines associated with the plate may be supported by improved sensing schemes and related amplifier configurations.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: June 27, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Xinwei Guo, Daniele Vimercati
  • Patent number: 11569382
    Abstract: A transistor device and the manufacturing methods are described. The device includes a gate structure having a gate layer and a ferroelectric layer, source and drain terminals, and a crystalline channel portion. The source and drain terminals are disposed at opposite sides of the gate structure. The crystalline channel portion extends between the source and drain terminals. The source and drain terminals are disposed on the crystalline channel portion and the gate structure is disposed on the crystalline channel portion. The crystalline channel portion includes a first material containing a Group III element and a Group V element, the gate layer includes a second material containing a Group III element and a rare-earth element, and the ferroelectric layer includes a third material containing a Group III element, a rare-earth element and a Group V element.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: January 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Georgios Vellianitis
  • Patent number: 11507301
    Abstract: A semiconductor memory module for shared memory access implements memory-centric structures using a quasi-volatile memory. In one embodiment, the memory module for shared memory access includes a memory cube providing high capacity memory coupled to multiple multi-port memories to support simultaneous memory access at multiple memory interfaces. In other embodiments, a memory module incorporates a processor to implement computational memory architecture. In some embodiments, a mini core memory system implements a memory architecture for providing direct and parallel memory access to a mini processor core array.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: November 22, 2022
    Assignee: SUNRISE MEMORY CORPORATION
    Inventor: Robert D. Norman
  • Patent number: 11489106
    Abstract: A structure comprising a semiconductor substrate and a layer of PZT (lead zirconate titanate) is etched by performing a first plasma etch step with a first etch process gas mixture. The first etch process gas mixture comprises at least one fluorine containing species. The first plasma etch step is performed so that involatile metal etch products are deposited onto interior surfaces of the chamber. The structure is further etched by performing a second plasma etch step with a second etch process gas mixture. The second etch process gas mixture comprises at least one fluorocarbon species. The second plasma etch step is performed so that a fluorocarbon polymer layer is deposited onto interior surfaces of the chamber to overlay involatile metal etch products deposited in the first plasma etch step and to provide a substrate on which further involatile metal etch products can be deposited.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: November 1, 2022
    Assignee: SPTS Technologies Limited
    Inventors: Huma Ashraf, Kevin Riddell, Codrin Prahoveanu
  • Patent number: 11398809
    Abstract: An elastic wave device includes a piezoelectric substrate including first and second primary surfaces opposing one another, a via electrode extending through the piezoelectric substrate, and a wiring electrode on the first primary surface of the piezoelectric substrate. The via electrode is connected at one end to the wiring electrode, and the via electrode includes a locking section at the one end, on the wiring electrode side. The locking section extends on the first primary surface of the piezoelectric substrate.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: July 26, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Daisuke Sekiya, Taku Kikuchi
  • Patent number: 11244715
    Abstract: Memory cells are described that include two reference voltages that may store and sense three distinct memory states by compensating for undesired intrinsic charges affecting a memory cell. Although embodiments described herein refer to three memory states, it should be appreciated that in other embodiments, the memory cell may store or sense more than three charge distributions using the described methods and techniques. In a first memory state, a programming voltage or a sensed voltage may be higher than a first reference voltage and a second reference voltage. In a second memory state, the applied voltage or the sensed voltage may be between the first and the second reference voltages. In a third memory state, the applied voltage or the sensed voltage may be lower than the first and the second reference voltages. As such, the memory cell may store and retrieve three memory states.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: February 8, 2022
    Assignee: Micron Technology, Inc.
    Inventor: Daniele Vimercati
  • Patent number: 11158797
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device architecture, that includes a thin single layer of a conductive etch-stop layer between a lower metal interconnect and a bottom electrode of an RRAM cell. The conductive etch-stop layer provides simplicity in structure and the etch-selectivity of this layer provides protection to the underlying layers. The conductive etch stop layer can be etched using a dry or wet etch to land on the lower metal interconnect. In instances where the lower metal interconnect is copper, etching the conductive etch stop layer to expose the copper does not produce as much non-volatile copper etching by-products as in traditional methods. Compared to traditional methods, some embodiments of the disclosed techniques reduce the number of mask step and also reduce chemical mechanical polishing during the formation of the bottom electrode.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 10635007
    Abstract: Embodiments of the disclosure provides an apparatus for aligning layers of an integrated circuit (IC), the apparatus including: an insulator layer positioned above a semiconductor substrate; a first diffraction grating within a first region of the insulator layer, the first diffraction grating including a first grating material within the first region of the insulator layer; and a second diffraction grating within a second region of the insulator layer, the second grating including a second grating material within the second region of the insulator layer, wherein the second grating material is different from the first grating material, and wherein an optical contrast between the first and second grating materials is greater than an optical contrast between the second grating material and the insulator layer.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: April 28, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Dongyue Yang, Keith H. Tabakman, Guanchen He, Xintuo Dai, Xueli Hao
  • Patent number: 10541191
    Abstract: A field-effect transistor (FET) and method of manufacture thereof include a gate, a doped semiconductor structure formed on top of the planar source and drain regions, and a sheath of conducting materials flanking the formed doped semiconductor structure, where the sheath is perpendicular to a surface of the planar source and drain regions.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: January 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Guy Cohen, Christian Lavoie, Ahmet Serkan Ozcan, Paul Solomon
  • Patent number: 10468187
    Abstract: A thin-film ceramic capacitor includes a body in which dielectric layers and first and second electrode layers are alternately disposed on a substrate, and first and second electrode pads disposed on external surfaces of the body. A plurality of vias are disposed in the body. Each of a plurality of first vias connects the first electrode layers and the first electrode pad to each other. Each of a plurality of second vias connects the second electrode layers and the second electrode pad to each other. A separation slit is disposed to penetrate from an upper surface of the body and extend to the substrate, and the pluralities of first and second vias are disposed symmetrically with respect to the separation slit.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: November 5, 2019
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Hyun Ho Shin, Woong Do Jung, Young Seok Yoon, Dong Sik Yoo, No Il Park, Seung Mo Lim, Il Ro Lee
  • Patent number: 10304513
    Abstract: Methods, systems, and devices for multiple plate line architecture for multideck memory arrays are described. A memory device may include two or more three-dimensional arrays of ferroelectric memory cells overlying a substrate layer that includes various components of support circuitry, such as decoders and sense amplifiers. Each memory cell of the array may have a ferroelectric container and a selector device. Multiple plate lines or other access lines may be routed through the various decks of the device to support access to memory cells within those decks. Plate lines or other access lines may be coupled between support circuitry and memory cells through on pitch via (OPV) structures. OPV structures may include selector devices to provide an additional degree of freedom in multideck selectivity. Various number of plate lines and access lines may be employed to accommodate different configurations and orientations of the ferroelectric containers.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: May 28, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Ferdinando Bedeschi
  • Patent number: 10304512
    Abstract: A selected ferroelectric memory cell of a ferroelectric memory is electrically connected to a first bit line, a second bit line, a first word line, a second word line and a plate line. The selected ferroelectric memory cell includes a first field effect transistor (“FET”), a second FET and a ferroelectric capacitor. A control terminal and a first access terminal of the first FET are electrically connected to the first word line and the first bit line, respectively. A control terminal and a first access terminal of the second FET are electrically connected to the second word line and the second bit line, respectively. A second access terminal of the first FET is electrically connected to a first capacitor electrode of the ferroelectric capacitor and a second terminal of the second FET. A second capacitor electrode of the ferroelectric capacitor is electrically connected to the plate line.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: May 28, 2019
    Assignee: NUSTORAGE TECHNOLOGY CO., LTD.
    Inventors: Fu-Chou Liu, Yung-Tin Chen
  • Patent number: 9972374
    Abstract: A ferroelectric random access memory (FeRAM) array includes (a) a first section of FeRAM cells sharing a first plate line and a word line; and (b) a second section of FeRAM cells sharing a second plate line and the word line, wherein the first plate line and the second plate line are electrically unconnected, and wherein only the first section of FeRAM cells or the second section of FeRAM cells, but not both, are selected for a read operation at any given time. In each section of the FeRAM cells, a plate line selection cell connects the corresponding plate line to a plate line selection line. Each FeRAM cell in each section is read or written over a pair of bit lines running in a direction transverse to the word line of the section, and the plate line selection line runs along a direction parallel to the bit lines.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: May 15, 2018
    Assignee: AUCMOS TECHNOLOGIES USA, INC.
    Inventor: Tianhong Yan
  • Patent number: 9537093
    Abstract: A memory structure is disclosed. The memory structure comprises a phase change material layer, a first electrode, a second electrode, and conductive spacers. The second electrode and the first electrode are electrically connected to an upper surface and a lower surface of the phase change material layer respectively. The conductive spacers are separated from each other and on side surfaces of the phase change material layer.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: January 3, 2017
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Erh-Kun Lai, Hsiang-Lan Lung
  • Patent number: 9536844
    Abstract: The disclosed antenna structures and electronic microsystems are capable of physically disappearing in a controlled, triggerable manner. Some variations provide an on-chip transient antenna comprising a semiconductor substrate containing ion-implanted hydrogen atoms and a conductor network comprising metals bridged by low-melting-temperature metals. Some variations provide an off-chip transient antenna comprising a flexible substrate containing a polymer, nanoporous silicon particles, and an oxidant for silicon, and a conductor network comprising metals bridged by low-melting-temperature metals. Other variations provide a method of introducing physical transience to a semiconductor integrated circuit, comprising thinning a substrate from the back side, implanting hydrogen ions into the thinned substrate to introduce latent structural flaws, depositing a semiconductor integrated circuit or sensor chip, and providing a controllable heating source capable of activating the latent structural flaws.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: January 3, 2017
    Assignee: HRL Laboratories, LLC
    Inventors: Peter D. Brewer, Dana C. Wheeler, Tahir Hussain, Kyung-Ah Son, Hyok J. Song, Harris P. Moyer, Joseph S. Colburn, James H. Schaffner
  • Patent number: 9401196
    Abstract: Read-only (“RO”) data to be permanently imprinted in storage cells of a memory array are written to the memory array. One or more over-stress conditions such as heat, over-voltage, over-current and/or mechanical stress are then applied to the memory array or to individual storage cells within the memory array. The over-stress condition(s) act upon one or more state-determining elements of the storage cells to imprint the RO data. The over-stress condition permanently alters a value of a state-determining property of the state-determining element without incapacitating normal operation of the storage cell. The altered value of the state-determining property biases the cell according to the state of the RO data bit. The bias is detectable in the cell read-out signal. A pre-written ferroelectric random-access memory (“FRAM”) array is baked. Baking traps electric dipoles oriented in a direction corresponding to a state of the pre-written data and forms am RO data imprint.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: July 26, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Chiraag Juvekar, Joyce Kwong, Clive Bittlestone, Srinath Ramaswamy, Stephen K. Heinrich-Barna
  • Patent number: 9336869
    Abstract: A memory cell and the associated array circuits are disclosed. The memory array circuit includes a plurality of memory units, in which each of the memory units includes a storage device and a field-effect transistor. The storage device includes a top electrode, a bottom electrode and an oxide-based dielectric layer. The top electrode is formed by metal or metallic oxide dielectrics and connected to a word line. The bottom electrode is formed by metal, and the oxide-based dielectric layer is placed between the top electrode and the bottom electrode. The field-effect transistor includes a gate terminal connected to the bottom electrode, a source terminal connected to a ground line, and a drain terminal connected to a bit line. The resistance of the storage device is configured to be adjusted according to a first voltage applied to the word line and a second voltage applied to the bit line.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: May 10, 2016
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Steve S. Chung, E-Ray Hsieh
  • Patent number: 9035458
    Abstract: An integrated circuit contains lower components in the substrate, a PMD layer, upper components over the PMD layer, lower contacts in the PMD layer connecting some upper components to some lower components, an ILD layer over the upper components, metal interconnect lines over the ILD layer, and upper contacts connecting some upper components to some metal interconnect lines, and also includes annular stacked contacts of lower annular contacts aligned with upper annular contacts. The lower contacts and upper contacts each have a metal liner and a contact metal on the liner. The lower annular contacts have at least one ring of liner metal and contact metal surrounding a pillar of PMD material, and the upper contacts have at least one ring of liner metal and contact metal surrounding a pillar of ILD material. The annular stacked contacts connect the metal interconnects to the lower components.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: May 19, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Scott Robert Summerfelt, Hasibur Rahman, John Paul Campbell
  • Patent number: 8980647
    Abstract: A method of manufacturing a semiconductor device includes: forming a conductive film over a semiconductor substrate; forming a first ferroelectric film over the conductive film; forming an amorphous second ferroelectric film over the first ferroelectric film; forming a transition metal oxide material film containing ruthenium over the second ferroelectric film; forming a first conductive metal oxide film over the transition metal oxide material film without exposing the transition metal oxide material film to the air; annealing and crystallizing the second ferroelectric film; and patterning the first conductive metal oxide film, the first ferroelectric film, the second ferroelectric film, and the conductive film to form a ferroelectric capacitor.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 8981440
    Abstract: A semiconductor-storage-device manufacturing method of the present invention is a method for manufacturing a semiconductor storage device provided with a ferroelectric capacitor including a lower electrode, a ferroelectric film, and an upper electrode, and the method includes a step of embedding a first metal plug and a second metal plug in an insulating layer; a step of forming a covering layer that covers at least the second metal plug while securing apart that comes into electric contact with the first metal plug; a step of forming a deposit structure by sequentially depositing a material for the lower electrode, a material for the ferroelectric film, and a material for the upper electrode after forming the covering layer; and a step of forming the ferroelectric capacitor by etching and removing other parts except a part of the deposit structure such that the part of the deposit structure remains on the first metal plug.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: March 17, 2015
    Assignee: Rohm Co., Ltd.
    Inventor: Yuichi Nakao
  • Patent number: 8956881
    Abstract: A lower electrode film, a ferroelectric film, and an upper electrode film are formed on an insulation film covering a transistor formed on a semiconductor substrate. Furthermore, a Pt film is formed as a cap layer on the upper electrode film. Then, a hard mask (a TiN film and an SiO2 film) of a predetermined pattern is formed on the Pt film, and the Pt film and the upper electrode film are etched. Then, an insulating protective film is formed on an entire surface, and a side surface of the upper electrode film is covered with the insulating protective film. Next, the ferroelectric film and the lower electrode film are etched, thus forming a ferroelectric capacitor.
    Type: Grant
    Filed: February 16, 2013
    Date of Patent: February 17, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hideaki Kikuchi, Kouichi Nagai
  • Patent number: 8901704
    Abstract: An integrated circuit and a manufacturing method thereof are provided. A chip size can be reduced by forming a memory device in which a ferroelectric capacitor region is laminated on a DRAM. The integrated circuit includes a cell array region having a capacitor, a peripheral circuit region, and a ferroelectric capacitor region being formed on an upper layer of the cell array region and the peripheral circuit region, and having a ferroelectric capacitor device.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 2, 2014
    Assignee: SK Hynix Inc.
    Inventor: Hee Bok Kang
  • Patent number: 8877521
    Abstract: A manufacturing method for a semiconductor device, the method including forming a thin film transistor by forming a polysilicon thin film on an insulating substrate, forming a gate electrode via a gate insulating film, and forming source/drain regions and a channel region by ion implantation in the polysilicon thin film by using the gate electrode as a mask, forming an interconnection layer on an interlayer dielectric film covering this thin film transistor and forming a first contact to be connected to the thin film transistor through the interlayer dielectric film, forming a silicon hydronitride film on the interlayer dielectric film so as to cover the interconnection layer, forming a lower electrode on this silicon hydronitride film and forming a second contact to be connected to the interconnection layer through the silicon hydronitride film, and forming a ferroelectric layer on the lower electrode.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: November 4, 2014
    Assignee: Gold Charm Limited
    Inventor: Hiroshi Tanabe
  • Patent number: 8871574
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode comprising metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: October 28, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8872149
    Abstract: A memory cell and method includes a first electrode formed in an opening in a first dielectric layer, the first dielectric layer being formed on a substrate including a metal layer, the opening being configured to allow physical contact between the first electrode and the metal layer, the first electrode having a first width W1 and extending a distance beyond a region defined by the opening, a resistive layer formed on the first electrode and having substantially the first width W1, a capping layer, having a second width W2 less than the first width W1, formed on the resistive layer, a second electrode formed on the capping layer and having substantially the second width W2, a first composite spacer region having at least two different dielectric layers formed on the resistive layer between the first width W1 and the second width W2, and a via coupled to the second electrode.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Pei Hsieh, Fu-Ting Sung, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 8866244
    Abstract: A semiconductor device includes: a spin torque written in-plane magnetization magnetoresistive element, placed over the main surface of a semiconductor substrate, whose magnetization state can be changed according to the direction of a current flow; and a first wiring electrically coupled with the magnetoresistive element and extended toward the direction along the main surface. The aspect ratio of the magnetoresistive element as viewed in a plane is a value other than 1. In a memory cell area where multiple memory cells in which the magnetoresistive element and a switching element are electrically coupled with each other are arranged, the following measure is taken: multiple magnetoresistive elements adjoining to each other in the direction of length of each magnetoresistive element as viewed in a plane are so arranged that they are not on an identical straight line extended in the direction of length.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: October 21, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Fumihiko Nitta
  • Patent number: 8822235
    Abstract: An electronic component is provided on a substrate. A thin-film capacitor is attached to the substrate, the thin-film capacitor includes a pyrochlore or perovskite dielectric layer between a plurality of electrode layers, the electrode layers being formed from a conductive thin-film material. A reactive barrier layer is deposited over the thin-film capacitor. The reactive barrier layer includes an oxide having an element with more than one valence state, wherein the element with more than one valence state has a molar ratio of the molar amount of the element that is in its highest valence state to its total molar amount in the barrier of 50% to 100%. Optionally layers of other materials may intervene between the capacitor and reactive barrier layer. The reactive barrier layer may be paraelectric and the electronic component may be a tunable capacitor.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 2, 2014
    Assignee: BlackBerry Limited
    Inventors: Marina Zelner, Mircea Capanu, Paul Bun Cheuk Woo, Susan C. Nagy
  • Patent number: 8815612
    Abstract: A ferroelectric memory device includes a field effect transistor formed on a semiconductor substrate, an interlayer insulation film formed on the semiconductor substrate so as to cover the field effect transistor, a conductive plug formed in the interlayer insulation film in contact with the first diffusion region, and a ferroelectric capacitor formed over the interlayer insulation in contact with the conductive plug, wherein the ferroelectric capacitor includes a ferroelectric film and upper and lower electrodes sandwiching the ferroelectric film respectively from above and below, the lower electrode being connected electrically to the conductive plug, a layer containing oxygen being interposed between the conductive plug and the lower electrode, a layer containing nitrogen being interposed between the layer containing oxygen and the lower electrode, a self-aligned layer being interposed between the layer containing nitrogen and the lower electrode.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: August 26, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoya Sashida
  • Patent number: 8778700
    Abstract: An integrated circuit containing a FeCap array. The FeCap array is at least partially surrounded on the sides by hydrogen barrier walls and on the top by a hydrogen barrier top plate. A method for at least partially enclosing a FeCap array with hydrogen barrier walls and a hydrogen barrier top plate.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: July 15, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Scott R. Summerfelt, Ted S. Moise, Manoj K. Jain
  • Patent number: 8779485
    Abstract: An integrated circuit containing a FeCap array. The FeCap array is at least partially surrounded on the sides by hydrogen barrier walls and on the top by a hydrogen barrier top plate. A method for at least partially enclosing a FeCap array with hydrogen barrier walls and a hydrogen barrier top plate.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: July 15, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Scott R. Summerfelt, Ted S. Moise, Manoj K. Jain
  • Patent number: 8772050
    Abstract: The use of a monolayer or partial monolayer sequencing process, such as atomic layer deposition (ALD), to form a zirconium substituted layer of barium titanium oxide, produces a reliable ferroelectric structure for use in a variety of electronic devices such as a dielectric in nonvolatile random access memories (NVRAM), tunable dielectrics for multi layer ceramic capacitors (MLCC), infrared sensors and electro-optic modulators. In various embodiments, structures can be formed by depositing alternating layers of barium titanate and barium zirconate by ALD on a substrate surface using precursor chemicals, and repeating to form a sequentially deposited interleaved structure of desired thickness and composition. The properties of the dielectric may be tuned by adjusting the percentage of zirconium to titanium to optimize properties such as a dielectric constant, Curie point, film polarization, ferroelectric property and a desired relaxor response.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: July 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 8742479
    Abstract: A transistor is formed on a semiconductor substrate, and thereafter a first insulating film is formed. Subsequently, a ferroelectric capacitor is formed on the first insulating film, and then a second insulating film is formed on the ferroelectric capacitor. Thereafter, the upper surface of the second insulating film is planarized. Subsequently, a contact hole which reaches one of impurity regions of the transistor is formed, and thus a plug is formed by embedding a conductor in the contact hole. Thereafter, a hydrogen barrier layer is formed of aluminum oxide or the like. Then, a third insulating film is formed on the hydrogen barrier layer. Subsequently, contact holes which are connected to the ferroelectric capacitor and the plug are formed. Thereafter, a conductor is embedded in the contact holes, and thus interconnections are formed.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: June 3, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 8723240
    Abstract: A manufacturing method for a semiconductor device, the method including forming a thin film transistor by forming a polysilicon thin film on an insulating substrate, forming a gate electrode via a gate insulating film, and forming source/drain regions and a channel region by ion implantation in the polysilicon thin film by using the gate electrode as a mask, forming an interconnection layer on an interlayer dielectric film covering this thin film transistor and forming a first contact to be connected to the thin film transistor through the interlayer dielectric film, forming a silicon hydronitride film on the interlayer dielectric film so as to cover the interconnection layer, forming a lower electrode on this silicon hydronitride film and forming a second contact to be connected to the interconnection layer through the silicon hydronitride film, and forming a ferroelectric layer on the lower electrode.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 13, 2014
    Assignee: Gold Charm Limited
    Inventor: Hiroshi Tanabe
  • Publication number: 20140084352
    Abstract: Device structures, fabrication methods, and design structures for a capacitor of a memory cell of ferroelectric random access memory device. The capacitor may include a first electrode comprised of a first conductor, a ferroelectric layer on the first electrode, a second electrode on the ferroelectric layer, and a cap layer on an upper surface of the second electrode. The second electrode may be comprised of a second conductor, and the cap layer may have a composition that is free of titanium. The second electrode may be formed by etching a layer of a material formed on a layer of the second conductor to define a hardmask and then modifying the remaining portion of that material in the hardmask to have a comparatively less etch rate, when exposed to a chlorine-based reactive ion etch chemistry, than when initially formed.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James E. Beecher, William J. Murphy, James S. Nakos, Bruce W. Porth
  • Patent number: 8652855
    Abstract: An integrated circuit contains lower components in the substrate, a PMD layer, upper components over the PMD layer, lower contacts in the PMD layer connecting some upper components to some lower components, an ILD layer over the upper components, metal interconnect lines over the ILD layer, and upper contacts connecting some upper components to some metal interconnect lines, and also includes annular stacked contacts of lower annular contacts aligned with upper annular contacts. The lower contacts and upper contacts each have a metal liner and a contact metal on the liner. The lower annular contacts have at least one ring of liner metal and contact metal surrounding a pillar of PMD material, and the upper contacts have at least one ring of liner metal and contact metal surrounding a pillar of ILD material. The annular stacked contacts connect the metal interconnects to the lower components.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: February 18, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Scott Robert Summerfelt, Hasibur Rahman, John Paul Campbell
  • Patent number: 8614104
    Abstract: A ferroelectric capacitor is formed over a semiconductor substrate (10), and thereafter, interlayer insulating films (48, 50, 52) covering the ferroelectric capacitor are formed. Next, a contact hole (54) reaching a top electrode (40) is formed in the interlayer insulating films (48, 50, 52). Next, a wiring (58) electrically connected to the top electrode (40) through the contact hole (54) is formed on the interlayer insulating films (48, 50, 52). At the time of forming the top electrode (40), conductive oxide films (40a, 40b) are formed, and then a cap film (40c) composed of a noble metal exhibiting less catalytic action than Pt and having a thickness of 150 nm or less is formed on the conductive oxide films (40a, 40b).
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 24, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 8586961
    Abstract: A device that incorporates teachings of the present disclosure may include, for example, a memory array having a first array of nanotubes, a second array of nanotubes, and a resistive change material located between the first and second array of nanotubes. Other embodiments are disclosed.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: November 19, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventor: Eric Pop
  • Patent number: 8582343
    Abstract: A ferroelectric capacitor comprising a transistor layer superimposed on a semiconductor substrate, a ferroelectric capacitor layer provided superior to the transistor layer, a wiring layer provided superior to the ferroelectric capacitor layer, and a passivation film. Further, at least one layer of barrier film capable of inhibiting penetration of moisture and hydrogen into the underlayer is provided between the ferroelectric capacitor layer and the passivation film, and the passivation film is characterized by containing a novolac resin.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: November 12, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 8558294
    Abstract: A semiconductor device includes a semiconductor substrate formed with an active element, an oxidation resistant film formed over the semiconductor substrate so as to cover the active element, a ferroelectric capacitor formed over the oxidation resistance film, the ferroelectric capacitor having a construction of consecutively stacking a lower electrode, a ferroelectric film and an upper electrode, and an interlayer insulation film formed over the oxidation resistance film so as to cover the ferroelectric capacitor, wherein there are formed, in the interlayer insulation film, a first via-plug in a first contact hole exposing the first electrode and a second via-plug in a second contact hole exposing the lower electrode, and wherein there is formed another conductive plug in the interlayer insulation film in an opening exposing the oxidation resistant film.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 15, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoya Sashida
  • Patent number: 8552484
    Abstract: The semiconductor device according to the present invention comprises: a ferroelectric capacitor 42 formed above a semiconductor substrate 10 and including a lower electrode 36, a ferroelectric film 38 formed on the lower electrode 36 and an upper electrode 40 formed on the ferroelectric film 38; a silicon oxide film 60 formed above the semiconductor substrate 10 and the ferroelectric capacitor 42 and having the surface planarized; a flat barrier film 62 formed on the silicon oxide film 60 with a silicon oxide film 61 formed therebetween, for preventing the diffusion of hydrogen or water; a silicon oxide film 64 formed above the barrier film 62 and having the surface planarized; and a flat barrier film 78 formed on the silicon oxide film 74 with a silicon oxide film 76 formed therebetween, for preventing the diffusion of hydrogen or water.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 8, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 8535953
    Abstract: Processes for selectively patterning a magnetic film structure generally include selectively etching an exposed portion of a freelayer disposed on a tunnel barrier layer by a wet process, which includes exposing the freelayer to an etchant solution comprising at least one acid and an organophosphorus acid inhibitor or salt thereof, stopping on the tunnel barrier layer.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Solomon Assefa, Eugene J. O'Sullivan