Current Driving (e.g., Fan In/out, Off Chip Driving, Etc.) Patents (Class 326/82)
  • Patent number: 8872560
    Abstract: Disclosed herein is a device that includes: a first circuit configured to operate on a first power voltage to produce a first set of slew rate control signals; a second circuit configured to operate on a second power voltage to produce a second set of slew rate control signals in response to the first set of slew rate control signals; and a third circuit configured to operate on the second power voltage to produce a signal at a rate that is controllable in response to the second set of slew rate control signals.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: October 28, 2014
    Assignee: PS4 Luxco S.a.r.l.
    Inventors: Yoshihito Morishita, Tetsuya Arai
  • Patent number: 8872546
    Abstract: In one embodiment, a test apparatus includes a field programmable gate array (FPGA) including a first transmitter to communicate first signals according to current mode logic (CML) signaling and a first receiver to receive second signals according to the CML signaling, and an interface circuit to couple the FPGA to a device that is to communicate according to voltage mode signaling. The interface circuit may adapt the first signals communicated by the first transmitter according to the CML signaling to voltage mode signaling signals for receipt by the device. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 28, 2014
    Assignee: Intel Corporation
    Inventors: Peng Zou, Fenardi Thenus, David J. Harriman
  • Publication number: 20140306734
    Abstract: A data output circuit includes a data driving unit suitable for driving a data transmission line with a driving voltage corresponding to data during a data transmission operation, and a charging/discharging unit suitable for storing charges on the data transmission line and reuse the stored charges as the driving voltage.
    Type: Application
    Filed: July 5, 2013
    Publication date: October 16, 2014
    Inventor: Dong-Uk LEE
  • Patent number: 8841936
    Abstract: A differential output circuit has a current source, a voltage source, first paired transistors which, in a first operating mode, switch that current from the current source should be flown to which of paired output terminals, depending on logic levels of differential input signals, and is always turned off in a second operating mode, second paired transistors which, in the second operating mode, switch which of the paired output terminals should be applied with a voltage correlated with a voltage of the voltage source, depending on the logic levels of the differential input signals, and configured to be always turned off in the first operating mode, third paired transistors which, in the second operating mode, pass the current inputted into one of the paired output terminals toward a predetermined reference potential, and is always turned on in the first operating mode, and paired impedances.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: September 23, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yutaka Nakamura
  • Publication number: 20140266302
    Abstract: Embodiments of the invention are generally directed to elements to counter transmitter circuit performance limitations. An embodiment of an apparatus for driving data on a differential channel including a first output terminal and a second output terminal includes a differential driver circuit; and a first pre-driver and a second pre-driver, where each pre-driver has an output, wherein the first output terminal of the apparatus is coupled to the output of the first pre-driver, and the second output terminal of the apparatus is coupled to the output of the second pre-driver, where each pre-driver includes one or more capacitors, a first end of each capacitor being connected to the output of the pre-driver and a second end of each of the capacitors being connected to a sub-pre-driver circuit.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Vinayak Agrawal, Namrta Sharma, Deepak Ramapuram
  • Patent number: 8836394
    Abstract: A low-power, high-performance source-synchronous chip interface which provides rapid turn-on and facilitates high signaling rates between a transmitter and a receiver located on different chips is described in various embodiments. Some embodiments of the chip interface include, among others: a segmented “fast turn-on” bias circuit to reduce power supply ringing during the rapid power-on process; current mode logic clock buffers in a clock path of the chip interface to further reduce the effect of power supply ringing; a multiplying injection-locked oscillator (MILO) clock generator to generate higher frequency clock signals from a reference clock; a digitally controlled delay line which can be inserted in the clock path to mitigate deterministic jitter caused by the MILO clock generator; and circuits for periodically re-evaluating whether it is safe to retime transmit data signals in the reference clock domain directly with the faster clock signals.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: September 16, 2014
    Assignee: Rambus Inc.
    Inventors: Jared L. Zerbe, Brian S. Leibowitz, Hsuan-Jung Su, John Cronan Eble, III, Barry William Daly, Lei Luo, Teva J. Stone, John Wilson, Jihong Ren, Wayne D. Dettloff
  • Patent number: 8829948
    Abstract: Methods and apparatus for providing either high-speed, or lower-speed, flexible inputs and outputs. An input and output structure having a high-speed input, a high-speed output, a low or moderate speed input, and an low or moderate speed output is provided. One of the input and output circuits are selected and the others are deselected. The high-speed input and output circuits are comparatively simple, in one example having only a clear signal for a control line input, and are able to interface to lower speed circuitry inside the core of an integrated circuit. The low or moderate speed input and output circuits are more flexible, for example, having preset, enable, and clear as control line inputs, and are able to support JTAG boundary testing. These parallel high and lower speed circuits are user selectable such that the input output structure is optimized between speed and functionality depending on the requirements of the application.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 9, 2014
    Assignee: Altera Corporation
    Inventors: Bonnie I. Wang, Chiakang Sung, Joseph Huang, Khai Q. Nguyen, Philip Y. Pan
  • Patent number: 8823414
    Abstract: A multiple signal format output driver is configurable to provide a current-mode logic (CML) output signal in response to a CML value of one or more first values of the control signal. The output driver is configurable to provide a low-power, low-voltage positive emitter-coupled logic (low-power LVPECL) output signal in response to a low-power LVPECL value of the one or more first values of the control signal. The output driver is configurable to provide a low-voltage differential signaling (LVDS) output signal in response to an LVDS value of the one or more first values of the control signal. The output driver may be configurable to provide a LVPECL output signal in response to a second value of the control signal. The output driver may be configurable to provide a high-speed current steering logic (HCSL) output in response to a third value of the control signal.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 2, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Rajesh Thirugnanam, Srisai Rao Seethamraju
  • Patent number: 8816721
    Abstract: The present disclosure provides an output control circuit including a signal feedback circuit and an enable control circuit, wherein the signal feedback circuit is configured to compare an output voltage with a set output voltage threshold and to output a disable signal to an enable control circuit when the output voltage arrives at the set output voltage threshold, and wherein the enable control circuit is configured to stop an operation of a translation circuit, upon reception of the disable signal from the signal feedback circuit.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: August 26, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Lei Huang
  • Patent number: 8810278
    Abstract: A semiconductor integrated circuit device comprises I/O cells arranged around a core region. Each of the I/O cells comprises a level shifter circuit, an I/O logic circuit, and an I/O buffer circuit. An I/O logic region in which the I/O logic circuit is arranged and an I/O buffer region in which the I/O buffer circuit is arranged overlap with a region in which a pad for the I/O cell is arranged. The I/O logic region and the I/O buffer region are arranged side by side in a direction parallel to a side of the core region.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: August 19, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuo Sakamoto, Naozumi Morino, Kazuo Tanaka, Hiroyasu Ishizuka
  • Patent number: 8797063
    Abstract: A data transmission device includes a control unit and a delay chain unit. The control unit outputs a first control signal through an nth control signal, where n is a natural number. The delay chain unit includes a first switching element through an nth switching element. The switching elements receive a first data signal through an nth data signal and perform pipelining operations on the first through nth data signals based upon the first through nth control signals, respectively, to output the pipelined data signals as at least one data stream. The switching elements are connected to each other to form at least one data delay chain.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: August 5, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyo-Jin Choo, Yu-Jin Park, Yong Lim
  • Patent number: 8792256
    Abstract: A controller for a switch and a method of operating the same. In one embodiment, the controller is configured to measure a voltage of a control terminal of the switch and select a first mode of operation if the voltage of the control terminal is greater than a threshold voltage, and a second mode of operation if the voltage of the control terminal is less than the threshold voltage.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 29, 2014
    Assignee: Power Systems Technologies Ltd.
    Inventors: Ralf Schroeder genannt Berghegger, Michael Frey
  • Patent number: 8787831
    Abstract: A smart data storage apparatus and data transmitting method for the same are to combine the hard disk with the dual interface memory, and are to use radio frequency identification (RFID) technology or near field communication (NFC) technology. The information of the self-monitoring analysis and reporting technology (SMART) of the hard disk still could be received by the handheld device without the power for the hard disk. Moreover, the external hard disk could be registered with the handheld device quickly.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: July 22, 2014
    Assignee: Jogtek Corp.
    Inventors: Wei-Chun Huang, Tsung-Hsing Hsieh
  • Patent number: 8786322
    Abstract: There are provided a gate driver circuit and an operating method thereof. The gate driver circuit includes an output signal generating unit including a plurality of switch devices generating output signals, a selecting circuit unit generating a plurality of control signals according to a set selection state, and a plurality of driving circuit units receiving a reference signal and the plurality of control signals to control the plurality of switch devices, wherein the plurality of switch devices determine a level of the output signal by the plurality of control signal.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: July 22, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Chang Jae Heo, Sung Man Pang
  • Patent number: 8773163
    Abstract: Flexible, space-efficient I/O architectures for integrated circuits simplify circuit design and shorten design times. In one aspect, cells for power supply pads are eliminated, in part by locating ESD protection circuitry for these pads underneath the pads themselves, leaving only signal I/O buffers. Pads coupled to the signal I/O buffers may be defined as either signal I/O pads or power supply pads in accordance with customization circuitry. Customization circuitry also provides for flexible bank architectures, where signal I/O buffers within a bank share power supply requirements that may be different from power supply requirements of signal I/O buffers of another bank. The number of banks and the number of signal I/O buffers belonging to each bank is flexibly defined. Customization circuitry also provides for flexible pad options, whereby the IC pads may be configured for different packaging technology, for example, for wire bonding for flip-chip bonding, or for other types of bonding.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: July 8, 2014
    Assignee: Baysand Inc.
    Inventors: Jonathan C Park, Yin Hao Liew, Kok Seong Lee, Salah M Werfelli
  • Patent number: 8773162
    Abstract: An embodiment of communication cell for enabling data communication between an integrated circuit and an electronic unit distinct from the integrated circuit, comprising a contact pad unit, configured for capacitively coupling, in a first operating condition of said communication cell, to the electronic unit for receiving an input signal from said electronic unit, and for ohmically coupling, in a second operating condition of said communication cell, to the electronic unit for receiving the input signal; a receiver device, including signal-amplifying means, coupled between said contact pad unit and said integrated circuit, configured for receiving the input signal and generating an intermediate signal correlated to the input signal; signal-selection means receiving the intermediate signal, the input signal, and providing an output signal which is the intermediate signal during the first operating condition, and the input signal during the second operating condition; and an input stage, connectable between the
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: July 8, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Roberto Canegallo, Roberto Cardu, Mauro Scandiuzzo, Salvatore Valerio Cani, Luca Perugini
  • Patent number: 8772795
    Abstract: To provide a light-emitting device including the plurality of light-emitting elements having a structure in which a light-emitting area is large and defects in patterning of light-emitting elements are suppressed. To provide a lighting device including the light-emitting device. The light-emitting device includes a first wiring provided over a substrate having an insulating surface, an insulating film provided over the first wiring, a second wiring provided over the insulating film, and a light-emitting element unit including a plurality of light-emitting elements provided over the first wiring with the insulating film provided therebetween. The plurality of light-emitting elements each include a first electrode layer having a light-blocking property, a layer containing an organic compound in contact with the first electrode layer, and a second electrode layer having a light-transmitting property in contact with the layer containing an organic compound.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koji Ono, Yoshifumi Tanada
  • Patent number: 8773166
    Abstract: An apparatus includes a first output stage and a first input stage of a first single track buffer, as well as a second output stage and a second input stage of a second single track buffer. The second single track buffer is downstream from the first single track buffer. The first output stage and the second input stage are coupled to one another via bidirectional rails. The first output stage and the second input stage in combination provide a first pulse generator.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: July 8, 2014
    Assignee: Xilinx, Inc.
    Inventors: Brian C. Gaide, Steven P. Young
  • Publication number: 20140184270
    Abstract: Disclosed is a scalable input/output interface that has multiple bays and includes a housing surrounding a plurality of pairs of substrates. A first substrate of the pair of substrates may have a first contact surface and a second substrate of the pair of substrates may have a second contact surface that opposes the first contact surface, wherein each substrate has a connection edge. At least one integrated buffer can be coupled to either the first side or the second side of each substrate. A plurality of rows of contacts can be coupled to the opposing surfaces of each substrate of the pair of substrates, wherein each row of contacts can be stacked substantially parallel to the connection edge. Each connection edge can also be coupled to a separate integrated buffer.
    Type: Application
    Filed: December 6, 2011
    Publication date: July 3, 2014
    Inventors: James E. Jaussi, Bruce E. Pederson, Howard L. Heck, Stephen R. Mooney
  • Publication number: 20140184523
    Abstract: An output driver includes control logic configured to switch on a pull-up circuit and a pull-down circuit to provide an output impedance for a logic low on a transmission line. The output driver includes a variable pull-up resistor. The control logic is configured to switch on the pull-up circuit to a first value of impedance to drive a logic high on the transmission line. The control logic is configured to switch on the pull-up circuit to a second value of impedance and to switch on the pull-down circuit to provide the output impedance to drive a logic low on the transmission line. The system could alternatively be configured for the inverse to switch on a combination of pull-up and pull-down circuits for a logic high, where the pull-down circuit is switched on for a logic low.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: JAMES A. MCCALL, Kuljit S. Bains, Derek M. Conrow, Aaron Martin
  • Publication number: 20140159774
    Abstract: This disclosure provides examples of circuits, devices, systems, and methods for providing high speed operation and a high noise margin. In one implementation, a circuit includes a first buffer configured to receive an incoming signal and a control signal and to generate an output signal based on the incoming signal. The first buffer exhibits a first hysteresis range while configured in a first hysteresis state and a second hysteresis range while configured in a second hysteresis state. The first buffer is configured to transition from the first to the second hysteresis state and vice versa in response to the control signal. The circuit includes a second buffer configured to receive the incoming signal and to generate the control signal based on the incoming signal. The second buffer exhibits a third hysteresis range with a lower threshold and an upper threshold.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventor: Ekram H. Bhuiyan
  • Patent number: 8749270
    Abstract: A driver circuit of a semiconductor apparatus includes a driver and a control unit configured to vary a voltage level of a power supply terminal of the driver in response to a standby mode signal.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: June 10, 2014
    Assignee: SK Hynix Inc.
    Inventors: Myung Hwan Lee, Shin Ho Chu
  • Publication number: 20140145760
    Abstract: A transceiver includes a transmitter and receiver that form a series current path between two power-supply nodes. Powering both the transmitter and receiver with the same supply current saves power. The transmitter functions as a resistive load for the receiver, and thus performs useful work with power that would otherwise be dissipated as waste heat.
    Type: Application
    Filed: June 11, 2012
    Publication date: May 29, 2014
    Applicant: Rambus Inc.
    Inventors: Huy Nguyen, Kambiz Kaviani, Yohan Usthavvia Frans
  • Patent number: 8736306
    Abstract: Apparatuses and methods are disclosed, including an apparatus that includes a differential driver with charge injection pre-emphasis. One such apparatus includes a pre-emphasis circuit and an output stage circuit. The pre-emphasis circuit is configured to receive differential serial signals, and buffer the differential serial signals to provide buffered differential serial signals. The output stage circuit is configured to receive the buffered differential serial signals and drive the buffered differential serial signals onto differential communication paths. The pre-emphasis circuit is configured to selectively inject charge onto the differential communication paths to assist with a signal transition on at least one of the differential communication paths. Additional embodiments are disclosed.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: May 27, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Gregory King
  • Patent number: 8729925
    Abstract: In one embodiment, an internal buffer may be provided within an integrated circuit (IC) to convert a signal to an output current to be output via a pin of the IC, under control of a switch which can be controlled based on a configuration setting of the IC, and may selectively directly couple the signal to the pin when the IC is coupled to an external driver circuit.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: May 20, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: András Vince Horvath, Abdulkerim L. Coban, Pio Balmelli, Ramin Khoini-Poorfard, Alessandro Piovaccari
  • Patent number: 8723552
    Abstract: A floating gate driver circuit includes a level shifter, a pass element, a bistable circuit and a control logic circuit, to shift the voltage level of a control signal from a lower one to a higher one. The level shifter or the pass element has loads dynamically controlled by the control logic circuit to filter malfunction caused by dv/dt noise induced by a floating node.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 13, 2014
    Assignee: Richtek Technology Corp.
    Inventors: Pei-Kai Tseng, Chien-Fu Tang, Kuang-Feng Li, Isaac Y. Chen
  • Publication number: 20140125380
    Abstract: This disclosure provides examples of circuits, devices, systems, and methods for providing high speed operation with high noise immunity. In one implementation, a circuit includes a first buffer configured to receive an incoming signal and to generate a first output signal. The circuit also includes a second buffer configured to receive the incoming signal and to generate a second output signal. The second buffer exhibits hysteresis with lower and upper thresholds. The circuit also includes an output block configured to receive the first and second output signals and to generate a third output signal. The output block is configured to switch a logic state of the third output signal in response to a transition of a logic state of the first output signal, and to lock the logic state of the third output signal until the output block receives a transition of a logic state of the second output signal.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 8, 2014
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventor: Ekram H. Bhuiyan
  • Patent number: 8717063
    Abstract: A device and method for dc isolation and level shifting includes a driver circuit powered by a first voltage range, a capacitor connected to the driver circuit, and a latching circuit connected to the capacitor. The latching circuit is powered by a second voltage range and is configured to restore and/or minimize charge loss of the capacitor during a voltage transition at the capacitor. A device and method for analog isolation and measurement configured to measure an analog voltage at a second potential without requiring analog circuits at the second potential.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: May 6, 2014
    Assignee: Texas Instruments Northern Virginia Incorporated
    Inventors: Gary Stirk, Jong-Dii Jiang, John Houldsworth
  • Patent number: 8686758
    Abstract: I/O circuits and a method for transmitting different types of I/O signals are disclosed. An embodiment of the I/O circuit comprises multiple transistors with multiple switches coupled to the transistors. The switches may be used to selectively couple the transistors to a power source or to another transistor to form different transistor configurations. The transistors may be configured to form a parallel configuration or a stacked configuration. Stacking up transistors may reduce voltage swings in the transistors and subsequently reduce degradation in the transistors.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: April 1, 2014
    Assignee: Altera Corporation
    Inventors: Ket Chiew Sia, Choong Kit Wong, Boon Jin Ang
  • Patent number: 8674725
    Abstract: A transmitter circuit in which a driver circuit includes MOS transistors for bias voltage application, in which a driving current flows, cascode-connected to MOS transistors for differential signal input controlled by a voltage value of transmitted data signals, controlled by a voltage value of a bias voltage, and driver circuits include MOS transistors for bias voltage application, in which a driving current flows, cascode-connected to MOS transistors for differential signal input that is controlled by a voltage value of signals obtained by the transmitted data signals, connected to a load portion, and controlled by a voltage value of a bias voltage.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: March 18, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hiroaki Kurahashi, Tomofumi Hokari, Takashi Muto, Goichi Ono, Hiroki Yamashita
  • Publication number: 20140070846
    Abstract: In one embodiment, a test apparatus includes a field programmable gate array (FPGA) including a first transmitter to communicate first signals according to current mode logic (CML) signaling and a first receiver to receive second signals according to the CML signaling, and an interface circuit to couple the FPGA to a device that is to communicate according to voltage mode signaling. The interface circuit may adapt the first signals communicated by the first transmitter according to the CML signaling to voltage mode signaling signals for receipt by the device. Other embodiments are described and claimed.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Inventors: Peng Zou, Fenardi Thenus, David J. Harriman
  • Publication number: 20140070845
    Abstract: Disclosed herein are embodiments of a swing compensation scheme for compensating errors in a transmitter driver.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 13, 2014
    Inventors: Kathy Tian, Harry Muljono
  • Publication number: 20140062531
    Abstract: A signal driver circuit having an adjustable output voltage for a high-logic level output signal. The signal driver circuit includes a signal driver configured to output a first logic level signal having a first voltage and output a second logic level signal having a second voltage according to an input signal. A voltage controlled voltage supply coupled to the signal driver provides the first voltage for the first logic level signal. The magnitude of the first voltage provided by the voltage controlled voltage supply is based on a bias voltage. A bias voltage generator can be coupled to the voltage controlled voltage supply to provide the bias voltage.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicant: Micron Technology, Inc.
    Inventor: Seong-Hoon Lee
  • Patent number: 8659318
    Abstract: Systems and methods for implementing tristate signaling are described. The systems include an integrated circuit that further includes a tristate system. The tristate system converts an encapsulated unidirectional signal into a tristate signal. A relation between multiple unidirectional signals and the tristate signal is established by encapsulating the unidirectional signals to represent the tristate signal. The establishment of the relation facilitates control of the tristate signal by controlling the encapsulated unidirectional signals.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: February 25, 2014
    Assignee: Altera Corporation
    Inventors: Brandon Lewis Gordon, Kent Orthner, Aaron Ferrucci, David Van Brink
  • Patent number: 8653853
    Abstract: Techniques are provided for transmitting signals through a differential interface between circuits in different power supply domains. A driver circuit in a first power supply domain converts single-ended signals into differential signals. The driver circuit then transmits the differential signals to a receiver circuit in a second power supply domain. The receiver circuit converts the differential signals back into single-ended signals for transmission to circuit elements in the second power supply domain. The differential interface reduces the transmission of noise between circuit elements in the first power supply domain and circuit elements in the second power supply domain.
    Type: Grant
    Filed: December 31, 2006
    Date of Patent: February 18, 2014
    Assignee: Altera Corporation
    Inventors: Sergey Shumarayev, Tim Tri Hoang, Lawrence David Smith
  • Patent number: 8653855
    Abstract: An input buffer system with a dual-input buffer switching function includes a first input buffer, a second input buffer, and a multiplexer. The first input buffer is used for outputting a first signal when an input signal is at a logic-high voltage, and the first input buffer is turned off when the input signal is at a logic-low voltage. The second input buffer is used for outputting a second signal when the input signal is at the logic-low voltage. The multiplexer is coupled to the first input buffer and the second input buffer for outputting the first signal or the second signal according to a self refresh signal.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: February 18, 2014
    Assignee: Etron Technology, Inc.
    Inventors: Chun Shiah, Sen-Fu Hong, Chia-Ming Chen
  • Patent number: 8653597
    Abstract: Solutions for optimizing a bulk bias across a substrate of an ETSOI device are disclosed. In one embodiment, an apparatus for optimizing a bulk bias across a substrate of an ETSOI device is disclosed, including: a sensing circuit for sensing at least one predetermined circuit parameter; a charging circuit for applying a bias voltage to the substrate of the ETSOI device; and a processing circuit connected to the sensing circuit and the charging circuit, the processing circuit configured to receive an output of the sensing circuit, and adjust the bias voltage applied to substrate of the ETSOI device in response to determining whether the bias voltage deviates from a target amount.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hayden C. Cranford, Jr., Terence B. Hook
  • Patent number: 8648640
    Abstract: Apparatus and methods are provided for an extraction circuit. In one configuration, an apparatus includes: an edge extraction circuit for receiving a first clock signal and outputting a second clock signal, wherein a duty cycle of the second clock is substantially smaller than a duty cycle of the first clock; a transistor for receiving the second clock signal and outputting a current signal; a transmission line for receiving the current signal on a first end and transmitting the current signal to a second end; a termination circuit for receiving the current signal at the second end and converting the current signal into a voltage signal; and an edge detection circuit for outputting a third clock by detecting an edge of the voltage signal. In one embodiment, the edge detection circuit comprises an inverter. In another embodiment, the edge detection circuit comprises a comparator.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: February 11, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chia-Liang (Leon) Lin, Gerchih (Joseph) Chou
  • Patent number: 8643405
    Abstract: A multi-stage passive capture adapter (PCA) circuit is configured to sense and recover digital signals present on a high-speed serial bus for capture and analysis in external test equipment. A first stage of the PCA circuit includes a differentiator that functions as a high impedance probe that contacts the serial bus to capture an original input signal waveform of the high-speed digital signals. The signal waveform is fed to a dual-slope comparator/driver that includes a plurality of high-speed comparators and drivers. The second stage includes a differential receiver/shaper that converts logic levels of differential receiver outputs to input signals that set and reset a signal restorer whose output signals are fed to a driver of a driver/shaper. The output of the driver is then fed to a shaper network configured to substantially match an output signal of driver/shaper to the input signal waveform sensed from the high-speed serial bus.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: February 4, 2014
    Assignee: MCCI Corporation
    Inventors: Terrill M. Moore, Roy F. Flacco
  • Patent number: 8643401
    Abstract: A method of manufacture of an integrated circuit communication system including providing a semiconductor wafer; and fabricating a cross-over current mirror driver on the semiconductor wafer for generating a crossing point at a reference voltage.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: February 4, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: On Auyeung, Fei Xu
  • Publication number: 20140028349
    Abstract: A differential output circuit has a current source, a voltage source, first paired transistors which, in a first operating mode, switch that current from the current source should be flown to which of paired output terminals, depending on logic levels of differential input signals, and is always turned off in a second operating mode, second paired transistors which, in the second operating mode, switch which of the paired output terminals should be applied with a voltage correlated with a voltage of the voltage source, depending on the logic levels of the differential input signals, and configured to be always turned off in the first operating mode, third paired transistors which, in the second operating mode, pass the current inputted into one of the paired output terminals toward a predetermined reference potential, and is always turned on in the first operating mode, and paired impedances.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 30, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yutaka NAKAMURA
  • Patent number: 8639193
    Abstract: A tri-state control mechanism can be implemented for a line driver of a transmitter unit to switch the output impedance of the transmitter unit between a low impedance state in the transmit mode and a high impedance state in the receive mode while minimizing turn-off glitch. It may be determined whether a communication device comprising the transmitter unit is configured in a transmit operating mode or a receive operating mode. If the communication device is configured in the receive operating mode, a first bias voltage can be generated to bias output transistors of the line driver circuit in a sub-threshold state. If the communication device is configured in the transmit operating mode, a second bias voltage can be generated to bias output transistors of the line driver circuit in a saturation state.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: January 28, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Sang-Min Lee, Michael Peter Mack
  • Patent number: 8633756
    Abstract: Low voltage differential signaling (LVDS) circuitry and method for dynamically controlling the common mode voltage at the input of an LVDS receiver. The common mode voltage of the incoming LVDS signal is monitored. The common mode voltage at the input of the LVDS receiver is clamped at a clamp voltage when the common mode voltage of the incoming LVDS signal is less than a predetermined voltage, and allowed to track it otherwise.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: January 21, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Arlo J. Aude, Soumya Chandramouli
  • Patent number: 8633733
    Abstract: A voltage mode transmitter equalizer has high efficiencies, yet consumes substantially constant supply current from the power supply and provides constant back-match impedance. The voltage mode transmitter equalizer is configured such that the output voltage of the signal to be output on a pair of transmission lines can be controlled according to the input data, but its return impedance is substantially matched to the differential impedance of the transmission lines and it draws substantially constant supply current from the power supply regardless of the output voltage of the signal. Further, an equalizer for a voltage-mode transmitter provides fine-granularity equalization settings by employing a variable pull-up conductance and a variable pull-down conductance. Conductance is varied by selectively enabling a plurality of conductance channels, at least some of which have resistance values that are distinct from one another.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: January 21, 2014
    Assignee: Rambus Inc.
    Inventors: Wayne D. Dettloff, John W. Poulton, John M. Wilson
  • Patent number: 8624628
    Abstract: Described embodiments include a level shifter that provides a voltage level shift to applied signals, the amount of voltage shift being accurately controlled and independent of PVT. The level shifter has first transistor configured as a voltage follower with the gate coupled to an input terminal of the shifter and the source coupled to a node, a diode-connected transistor coupled between the node and an output terminal of the circuit, a first controlled current source coupled to the node, and a second controlled current source coupled to the output terminal. A controller receives a bandgap-stabilized voltage, squares the stabilized voltage to produce a control signal that controls the first and second controlled current sources. The voltage shift is proportional to a digitally-controlled scale factor (K) times the stabilized voltage. The ratio of the current from the first current source to the second current source is (K+1)/K.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: January 7, 2014
    Assignee: Agere Systems LLC
    Inventors: Ming Chen, Shu Dong Cheng
  • Patent number: 8624640
    Abstract: An inductive load driving device includes a first switching element, a second switching element, a counter current regeneration circuit, and a circuit element protection circuit. The first switching element is coupled between an output terminal of the power circuit and one end of the inductive load. The second switching element is coupled between the other end of the inductive load and a ground terminal. The counter current regeneration circuit is configured to supply to the output terminal of the power circuit, a counter current output from the other end of the inductive load when the first and second switching elements are in off-state. The circuit element protection circuit is configured to turn on the second switching element when a value of the output voltage of the power circuit becomes equal to or more than a threshold value.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: January 7, 2014
    Assignee: Keihin Corporation
    Inventors: Masamitsu Mori, Yasutoshi Aso
  • Patent number: 8618970
    Abstract: A DA conversion device includes a current output type DA converter, a high-speed operational amplifier operating at a low voltage and configured to generate a voltage corresponding to an output current from the DA converter, and a buffer amplifier connected to an output terminal of the high-speed operational amplifier and operating at a high voltage. The device also includes positive and negative floating power supplies separated from a power supply system and provided as power supplies for driving the DA converter and the high-speed operational amplifier. A midpoint between potentials at the floating power supplies is connected to an output terminal of the buffer amplifier to cause the DA converter and the high-speed operational amplifier to operate mainly based on an output voltage from the buffer amplifier.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: December 31, 2013
    Assignees: Advantest Corp., Hitachi Information & Teleommunication Engineering, Ltd.
    Inventors: Takamasa Sato, Ryozo Yoshino, Atsushi Higashino
  • Publication number: 20130335117
    Abstract: A pre-driver and a differential signal transmitter using the same are provided. The pre-driver includes a latch circuit and a driver buffer. The latch circuit includes latch units, first inverters, and second inverters. The latch units are coupled in series between a pair of differential input terminals and a pair of differential latch terminals, receive a pair of differential input signals through the pair of differential input terminals, and latch the pair of differential input signals according to a clock signal to provide a pair of differential latch signals through the pair of differential latch terminals. The first and second inverters are respectively coupled in series between the pair of differential latch terminals and a pair of differential output terminals. The driver buffer is coupled to the pair of differential output terminals to receive a pair of differential output signals, and accordingly provides a pair of differential pre-driver output signals.
    Type: Application
    Filed: November 2, 2012
    Publication date: December 19, 2013
    Applicant: NOVATEK MICROELECTRONICS CORP.
    Inventor: Hsiang-Chi Li
  • Patent number: 8610462
    Abstract: Circuits and techniques for operating an integrated circuit (IC) with a level shifter circuit are disclosed. A level shifter circuit with input and output terminals is operable to shift an input signal that ranges from a ground voltage to a first positive voltage to an output signal that ranges from the ground voltage to a second positive voltage. The level shifter circuit further includes a first kicker transistor having a first source-drain terminal operable to receive a buffered version of the input signal and having a second source-drain terminal coupled to the output terminal. The first kicker transistor may receive gate signals that turn on the first kicker transistor when the input signal is at the ground voltage and may pull the output terminal to the first positive voltage as the input signal transitions from the ground voltage to the first positive voltage.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: December 17, 2013
    Assignee: Altera Corporation
    Inventors: Xiaobao Wang, Chiakang Sung, Khai Nguyen, Bonnie I. Wang
  • Patent number: 8610456
    Abstract: A buffer amplifier has a power on state and a sleep state. During regular operation a coupling state of a load to an output node is detected using feedback voltage. In a sleep mode and in a power collapse mode a detection current is injected into the output node, to produce a voltage, and the coupling state of the load is detected from the voltage. Optionally, the detection current and detecting of the voltage on the output node is enables by a low duty cycle clock. Optionally, signals generated in detecting the coupling state are qualified through a debounce circuit.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 17, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Liviu Chiaburu, Shahin Mehdizad Taleie, Dongwon Seo, Roy B. Silverstein