Ceramic, Glass, Or Oxide Particles Patents (Class 361/321.1)
  • Patent number: 8385048
    Abstract: There is provided a chip type laminated capacitor, including: a ceramic body including a dielectric layer having a thickness equal to 10 or more times an average particle diameter of a grain included therein and being 3 ?m or less; first and second outer electrodes formed on both ends of the ceramic body in a length direction; first and second band parts formed to extend inwardly of the ceramic body in the length direction on a length-width (L-W) plane from the first and second outer electrodes and having different lengths; and third and fourth band parts formed to extend inwardly of the ceramic body in the length direction on a length-thickness (L-T) plane from the first and second outer electrodes and having different lengths.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: February 26, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Ghyu Ahn, Byoung Hwa Lee, Min Cheol Park, Young Hoon Song, Mi Hee Lee
  • Patent number: 8385052
    Abstract: A capacitor containing an electrochemical cell that includes ruthenium oxide electrodes and an aqueous electrolyte containing a polyprotic acid (e.g., sulfuric acid) is provided. More specifically, the electrodes each contain a substrate that is coated with a metal oxide film formed from a combination of ruthenium oxide and inorganic oxide particles (e.g., alumina, silica, etc.). Without intending to be limited by theory, it is believed that the inorganic oxide particles may enhance proton transfer (e.g., proton generation) in the aqueous electrolyte to form hydrated inorganic oxide complexes (e.g., [Al(H2O)63+] to [Al2(H2O)8(OH2)]4+). The inorganic oxide thus acts as a catalyst to both absorb and reversibly cleave water into protons and molecular bonded hydroxyl bridges. Because the anions (e.g.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: February 26, 2013
    Assignee: AVX Corporation
    Inventors: Jessica M. Smith, Lee Shinaberger, Bob Knopsnyder, Gang Ning, Bharat Rawal, Dirk Dreissig
  • Patent number: 8385049
    Abstract: Provided is a dielectric ceramic which exhibits desired high temperature load resistance characteristics even under a high electric field strength on the order of 15 kV/mm. The dielectric ceramic contains, as its main constituent, a perovskite compound represented by the general formula (Ba1-h-i-mCahSriGdm)k(Ti1-y-j-n-o-pZryHfjMgnZnoMnp)O3, 0?h?0.03, 0?i?0.03; 0.042?m?0.074; 0.94?k?1.075; 0?(y+j)?0.05; 0.015?n?0.07; 0?o?0.04; 0?p?0.05; and 1.0<m/(n+o)<4.3. The dielectric ceramic can be used advantageously as a material for a dielectric ceramic layer provided in a laminated ceramic capacitor.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: February 26, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Noriyuki Inoue, Hitoshi Nishimura, Toshihiro Okamatsu, Takafumi Okamoto
  • Publication number: 20130038983
    Abstract: There is provided a conductive paste for an internal electrode of a multilayer ceramic electronic component and a multilayer ceramic electronic component using the same. One or more nitride powders containing a nitride selected from the group consisting of silicon nitride, boron nitride, aluminum nitride, a vanadium nitride are added to the conductive paste for an internal electrode to increase a shrinkage initiation temperature of the internal electrodes. Accordingly, the reliability of the multilayer ceramic electronic component can be improved by using the conductive paste for an internal electrode.
    Type: Application
    Filed: December 21, 2011
    Publication date: February 14, 2013
    Inventors: Hyo Sub KIM, Jeong Ryeol KIM, Sang Hoon KWON, Gun Woo KIM, Chang Hoon KIM
  • Patent number: 8373967
    Abstract: The present invention includes method and apparatus for a device including two capacitors separated by a gap within one package thereby the two capacitors are coupled to each other in such a way that the impedance between them are matched with respect to the other components along a transmission path.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: February 12, 2013
    Assignee: Alcatel Lucent
    Inventor: Hans-Joachim Goetz
  • Patent number: 8363383
    Abstract: A dielectric ceramic composition includes BaTiO3 as a main component; as subcomponents, with respect to 100 moles of BaTiO3, 0.9 to 2.0 moles of an oxide of RA in terms of RA2O3, where RA is at least one selected from Dy, Gd and Tb; 0.3 to 2.0 moles of an oxide of RB in terms of RB2O3, where RB is at least one selected from Ho and Y; 0.75 to 2.5 moles of an oxide of Yb in terms of Yb2O3; and 0.5 to 2.0 moles of an oxide of Mg in terms of Mg. when contents of oxide of RA, oxide of RB and oxide of Yb with respect to 100 moles of BaTiO3 are defined as “?”, “?” and “?”, respectively, “?”, “?” and “?” satisfy relations of 0.66?(?/?)?3.0 and 0.85?(?+?)/??2.4. According to the present invention, a dielectric ceramic composition having good properties can be provided.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: January 29, 2013
    Assignee: TDK Corporation
    Inventors: Jun Sato, Takashi Kojima, Tomoya Shibasaki, Osamu Kido
  • Publication number: 20130010400
    Abstract: An method of forming a metal foil coated ceramic and a metal foil capacitor is provided in a method of making a metal foil coated ceramic comprising providing a metal foil; applying a ceramic precursor to the metal foil wherein the ceramic precursor comprises at least one susceptor and a high dielectric constant oxide and an organic binder, and sintering the ceramic precursor with a high intensity, high pulse frequency light energy to form the metal foil ceramic.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: KEMET ELECTRONICS CORPORATION
    Inventors: John E. McConnell, John Bultitude, Abhijit Gurav
  • Patent number: 8351181
    Abstract: There is provided a chip type laminated capacitor including: a ceramic body formed by laminating a dielectric layer having a thickness equal to 10 or more times an average particle diameter of a grain included therein and being 3 ?m or less; first and second outer electrodes; a first inner electrode having one end forming a first margin together with one end surface of the ceramic body at which the second outer electrode is formed and the other end leading to the first outer electrode; and a second inner electrode having one end forming a second margin together with the other end surface of the ceramic body at which the first outer electrode is formed and the other end leading to the second outer electrode, wherein the first and second margins have different widths under a condition that they are 200 ?m or less.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: January 8, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Ghyu Ahn, Byoung Hwa Lee, Min Cheol Park, Young Hoon Song, Mi Hee Lee
  • Patent number: 8351180
    Abstract: There is provided a multilayer ceramic capacitor, including: a multilayer body in which a plurality of dielectric layers are stacked in a thickness direction; and inner electrode layers formed within the multilayer body and including first and second inner electrodes disposed to be opposed to each other; wherein a ratio (MA1/CA1) of MA1 to CA1 is between 0.07 and 0.20, wherein CA1 represents an area of the multilayer body in a cross section of the multilayer body taken in a length and thickness direction, and MA1 represents an area of a first margin part in the cross section of the multilayer body taken in the length and thickness direction, the first margin part being a portion of the multilayer body, other than a first capacitance forming part thereof in which the first and second inner electrodes overlap in the thickness direction.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: January 8, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Ghyu Ahn, Byoung Hwa Lee, Min Cheol Park, Sang Soo Park, Dong Seok Park
  • Patent number: 8345405
    Abstract: Disclosed is multilayer ceramic capacitor. The multilayer ceramic capacitor includes a capacitive part including dielectric layers and first and second internal electrodes alternately laminated therein, wherein the dielectric layers include first ceramic particles having an average particle size of 0.1 ?m to 0.3 ?m, and one set of ends of the first internal electrodes and one set of ends of the second internal electrodes are exposed in a lamination direction of the dielectric layers, a protective layer formed on at least one of top and bottom surfaces of the capacitive part, including second ceramic particles and having a porosity of 2% to 4%, wherein an average particle size ratio of the second ceramic particles to the first ceramic particles ranges from 1.1 to 1.3; and first and second external electrodes electrically connected to the first and second internal electrodes exposed in the lamination direction of the dielectric layers.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: January 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji Hun Jeong, Hyo Jung Kim, Hyo Jung Kim, Dong Ik Chang, Doo Young Kim
  • Publication number: 20120326569
    Abstract: A ceramic electronic component includes two electronic-component main bodies and two metal terminals. Each of the metal terminals includes a base, ribs on left and right sides of the base, and a mounting portion below the base. The base includes two bonding portions to be bonded to respective external electrodes of the two electronic-component main bodies and cut-out portions each having a closed shape and being disposed below the respective bonding portions. The ribs are bent from the left and right sides of the base in the width direction toward the electronic-component main body. The ribs extend from the top of the base in the height direction to the vicinity of the mounting-side major surface of the mounting-side electronic-component main body and do not reach the mounting portion. The mounting portion is bent from the bottom of the base toward the electronic-component main body.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 27, 2012
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Yoji ITAGAKI, Jun KOTANI
  • Publication number: 20120327554
    Abstract: A high capacitance single layer ceramic capacitor having a ceramic dielectric body containing one or more internal electrodes electrically connected to a metallization layer applied to the side and a top or bottom surface and a metallization pad electrically isolated from the metallization side and the top or bottom surface by a castellation or a via or separated by a dielectric insulating band positioned between the electrodes around the perimeter of the ceramic body and separating the top and bottom surfaces.
    Type: Application
    Filed: May 18, 2012
    Publication date: December 27, 2012
    Inventors: Ali Moalemi, Euan Patrick Armstrong
  • Publication number: 20120327555
    Abstract: There is provided a chip type laminated capacitor, including: a ceramic body including a dielectric layer having a thickness equal to 10 or more times an average particle diameter of a grain included therein and being 3 ?m or less; first and second outer electrodes formed on both ends of the ceramic body in a length direction; first and second band parts formed to extend inwardly of the ceramic body in the length direction on a length-width (L-W) plane from the first and second outer electrodes and having different lengths; and third and fourth band parts formed to extend inwardly of the ceramic body in the length direction on a length-thickness (L-T) plane from the first and second outer electrodes and having different lengths.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 27, 2012
    Inventors: Young Ghyu AHN, Byoung Hwa Lee, Min Cheol Park, Young Hoon Song, Mi Hee Lee
  • Publication number: 20120327553
    Abstract: A high capacitance single layer ceramic capacitor structure having a ceramic dielectric body containing one or more internal electrodes electrically connected to a metallization layer applied to the side and bottom surfaces and a metallization pad electrically isolated from the metallization side and bottom surfaces positioned on a top surface of the ceramic body.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Inventors: Ali Moalemi, Euan Patrick Armstrong
  • Patent number: 8339766
    Abstract: A method of manufacturing a thin film capacitor, having: a base electrode; dielectric layers consecutively deposited on the base electrode; an internal electrode deposited between the dielectric layers; an upper electrode deposited opposite the base electrode with the dielectric layers and the internal electrode being interposed therebetween; and a cover layer deposited on the upper electrode, has depositing an upper electrode layer which is to be the upper electrode, and a cover film which is to be the cover layer on the unsintered dielectric film which is to be the dielectric layer, to fabricate a lamination component, and sintering the lamination component.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: December 25, 2012
    Assignee: TDK Corporation
    Inventors: Yoshihiko Yano, Yasunobu Oikawa
  • Publication number: 20120314339
    Abstract: A method of manufacturing a composite assembly includes providing a fluid bath and adding a ceramic material to the fluid bath. The ceramic material comprises a plurality of ceramic particles, wherein the plurality of ceramic particles is devoid of a conductive coating. The method further includes immersing at least part of a conductive substrate in the fluid bath. The method also includes applying a voltage potential between the fluid bath and the conductive substrate, whereby the ceramic material is electrodeposited onto the conductive substrate as at least a portion of a dielectric layer.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 13, 2012
    Applicant: Tyco Electronics Corporation
    Inventors: Mary Elizabeth Sullivan, Robert Daniel Hilty
  • Patent number: 8331079
    Abstract: A multilayer ceramic capacitor and a method of manufacturing the same are provided. The multilayer ceramic capacitor includes a capacitive part, a passivation layer, and first and second outer electrodes. In the capacitive part, a plurality of dielectric layers and a plurality of first and second inner electrodes are alternately laminated, and ends of the first and second inner electrodes are alternately and respectively exposed in a direction of lamination of the dielectric layers. The passivation layer is provided at either or both of the top and bottom surfaces of the capacitive part. The first and second outer electrodes are electrically connected to the first and second inner electrodes exposed in a direction of lamination of the dielectric layers. One or more inner electrodes disposed at both ends in a direction of lamination among the plurality of inner electrodes include oxide represented by Ni—Mg—O.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: December 11, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Kang Heon Hur, Doo Young Kim, Mun Su Ha, Chul Seung Lee
  • Patent number: 8331078
    Abstract: A multi-layered ceramic capacitor with at least one chip and with first base metal plates in a parallel spaced apart relationship and second base metal plates in a parallel spaced apart relationship wherein the first plates and second plates are interleaved. A dielectric is between the first base metal plates and said second base metal plates and the dielectric has a first coefficient of thermal expansion. A first termination is in electrical contact with the first plates and a second termination is in electrical contact with the second plates. Lead frames are attached to, and in electrical contact with, the terminations wherein the lead frames have a second coefficient of thermal expansion and the second coefficient of thermal expansion is higher than said first coefficient of thermal expansion. The lead frame is a non-ferrous material.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: December 11, 2012
    Assignee: Kemet Electronics Corporation
    Inventors: John E. McConnell, Reggie Phillips, Alan P. Webster, John Bultitude, Mark R. Laps, Lonnie G. Jones, Garry Renner
  • Patent number: 8325462
    Abstract: A plurality of ceramic green sheets having printed strip inner electrodes patterns, each including a thick portion at a width-direction center and thin portions at respective width-direction sides of the thick portion, are laminated so that the thin portions overlap and the thick portions do not overlap to form an unfired mother laminated body. This unfired mother laminated body is cut along predetermined cut lines that are vertical to each other to obtain a plurality of unfired ceramic element assemblies. By applying ceramic paste to cover exposed portions of inner electrode patterns exposed to lateral surfaces, side gap areas are formed between a first inner electrode pattern and first and second lateral surfaces of the unfired ceramic element assembly and between a second inner electrode pattern and the first and second lateral surfaces.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 4, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tomoro Abe, Hiroyuki Baba
  • Publication number: 20120300363
    Abstract: A bulk capacitor includes a first electrode formed of a metal foil and a semi-conductive porous ceramic body formed on the metal foil. A dielectric layer is formed on the porous ceramic body for example by oxidation. A conductive medium is deposited on the porous ceramic body filling the pores of the porous ceramic body and forming a second electrode. The capacitor can then be encapsulated with various layers and can include conventional electrical terminations. A method of manufacturing a bulk capacitor includes forming a conductive porous ceramic body on a first electrode formed of a metal foil, oxidizing to form a dielectric layer and filling the porous body with a conductive medium to form a second electrode. A thin semi-conductive ceramic layer can also be disposed between the metal foil and the porous ceramic body.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: Vishay Sprague, Inc.
    Inventors: Reuven Katraro, Nissim Cohen, Marina Kravchik-Volfson, Eli Bershadsky, John Bultitude
  • Patent number: 8315035
    Abstract: A multilayer capacitor which can prevent chattering noises from occurring and improve the packaging density and packaging yield, and a method of manufacturing a multilayer capacitor are provided. Even when an electrostrictive vibration is generated in this multilayer capacitor upon voltage application, a joint surface of a metal terminal can flex, so as to mitigate the electrostrictive vibration, thereby preventing chattering noises from occurring. The joint surface is formed with a cutout and thus can fully secure its flexibility. In this multilayer capacitor, a step formed by a terminal connecting surface, a substrate connecting surface, and the joint surface is positioned within an area overlapping a capacitor element body as seen in the laminating direction of dielectric layers. Therefore, solder fillets do not protrude out of the capacitor element body, whereby the packaging density on a mounting substrate K can be improved.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: November 20, 2012
    Assignee: TDK Corporation
    Inventors: Masaaki Togashi, Sunao Masuda, Hiroshi Abe
  • Patent number: 8315036
    Abstract: A ceramic electronic component includes a ceramic body and a plurality of external electrodes disposed at a surface of the ceramic body. The external electrodes include a plating layer containing glass particles each coated with a metal film. The plating layer is formed by co-deposition of a plating metal and the metal-coated glass particles.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 20, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Makoto Ogawa, Akihiro Motoki, Junichi Saito, Shunsuke Takeuchi, Kenichi Kawasaki
  • Patent number: 8315032
    Abstract: A ductile preform for making a drawn capacitor includes a plurality of electrically insulating, ductile insulator plates and a plurality of electrically conductive, ductile capacitor plates. Each insulator plate is stacked vertically on a respective capacitor plate and each capacitor plate is stacked on a corresponding insulator plate in alignment with only one edge so that other edges are not in alignment and so that each insulator plate extends beyond the other edges. One or more electrically insulating, ductile spacers are disposed in horizontal alignment with each capacitor plate along the other edges and the pattern is repeated so that alternating capacitor plates are stacked on alternating opposite edges of the insulator plates. A final insulator plate is positioned at an extremity of the preform. The preform may then be drawn to fuse the components and decrease the dimensions of the preform that are perpendicular to the direction of the draw.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: November 20, 2012
    Assignee: UT-Battelle, LLC
    Inventor: Enis Tuncer
  • Patent number: 8305732
    Abstract: Disclosed is a dielectric ceramic having crystal grains mainly composed of barium titanate and an intergranular phase formed among the crystal grains. The dielectric ceramic contains certain amounts of manganese and at least one rare earth element (RE) selected from magnesium, gadolinium, terbium, dysprosium, holmium and erbium, in terms of oxides, per 1 mole of barium constituting the barium titanate. The dielectric ceramic also contains a certain amount of yttrium in terms of oxides, per 100 parts by mass of the barium titanate. The crystal grains have an average grain size of 0.05-0.2 ?m. By using the dielectric ceramic as a dielectric layer, there can be obtained a capacitor having high capacity and stable capacitance temperature characteristics.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 6, 2012
    Assignee: Kyocera Corporation
    Inventor: Katsuyoshi Yamaguchi
  • Publication number: 20120262839
    Abstract: A glass film for a capacitor has a thickness of 50 ?m or less and an average surface roughness Ra of 50 ? or less. The glass film for a capacitor also has a dielectric constant at a frequency of 1 MHz of 5 or more and a dielectric dissipation factor at a frequency of 1 MHz of 0.05 or less.
    Type: Application
    Filed: July 23, 2010
    Publication date: October 18, 2012
    Inventor: Takashi Murata
  • Publication number: 20120262836
    Abstract: A capacitor includes a pair of electrodes and a metalized dielectric layer disposed between the pair of electrodes, in which the metalized dielectric layer has a plurality of metal aggregates distributed within a dielectric material. The distribution is such that a volume fraction of metal in the metalized dielectric layer is at least about 30%. Meanwhile, the plurality of metal aggregates are separated from one another by the dielectric material. A method for forming a metal-dielectric composite may include coating a plurality of dielectric particles with a metal to form a plurality of metal-coated dielectric particles and sintering the plurality of metal-coated dielectric particles at a temperature of at least about 750° C. to about 950° C. to transform the metal coatings into discrete, separated metal aggregates.
    Type: Application
    Filed: October 11, 2011
    Publication date: October 18, 2012
    Applicant: Apricot Materials Technologies, LLC
    Inventor: Liang Chai
  • Publication number: 20120257324
    Abstract: The invention provides a stacked capacitor configuration comprising subunits each with a thickness of as low as 20 microns. Also provided is combination capacitor and printed wire board wherein the capacitor is encapsulated by the wire board. The invented capacitors are applicable in micro-electronic applications and high power applications, whether it is AC to DC or DC to AC, or DC to DC.
    Type: Application
    Filed: June 20, 2012
    Publication date: October 11, 2012
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Beihai Ma, Uthamalingam Balachandran
  • Patent number: 8270144
    Abstract: The present invention relates to borosilicate glass compositions for a sintering agent, dielectric compositions containing the borosilicate glass compositions and a multilayer ceramic capacitor using the dielectric compositions. Borosilicate glass compositions for a sintering agent according to an aspect of the invention include an alkali oxide, an alkaline earth oxide and a rare earth oxide, can sinter ceramic dielectrics at low temperatures and improve the hot insulation resistance of a multilayer ceramic capacitor. Correspondingly, dielectric compositions including these borosilicate glass compositions and a multilayer ceramic capacitor using the dielectric compositions can be sintered at a low temperature of 1100° C. or less and have high hot insulation resistance, thereby ensuring high levels of reliability.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: September 18, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sung Bum Sohn, Young Tae Kim, Kang Heon Hur, Min Hee Hong, Hew Young Kim, Doo Young Kim
  • Patent number: 8270145
    Abstract: This disclosure relates to compositions and methods for using such compositions to provide protective coatings, particularly of electronic components. Fired-on-foil ceramic capacitors coated with a polybenzoxazole encapsulant which may be embedded in printed wiring boards are disclosed.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: September 18, 2012
    Assignee: CDA Processing Limited Liability Company
    Inventors: Thomas Eugene Dueber, Frank Leonard Schadt, III, John D. Summers
  • Publication number: 20120223798
    Abstract: A partial conformal coating covers the ceramic portion of leadless type electroceramic component but not the metalized terminals to improve the surface condition without altering the solderability of the component. And the methods to form the partial conformal coating to cover the desired area of the electroceramic component in simple processes suitable for mass production.
    Type: Application
    Filed: September 6, 2011
    Publication date: September 6, 2012
    Inventor: Frank Wei
  • Patent number: 8259434
    Abstract: There is provided a multilayer ceramic capacitor including: a capacitor main body formed by stacking a dielectric layer having a thickness of td and alternately stacking more than one opposing pair of a first internal electrode having a thickness of te and a second internal electrode having the same thickness as the first internal electrode, and having the dielectric layer therebetween; and a protective layer formed by stacking a second dielectric layer on at least one of an upper surface and a lower surface of the capacitor main body so that a dielectric material layer has a thickness of tc, wherein when a thickness from an end of a region where the first internal electrode and the second internal electrode oppose each other to side and end surfaces of the capacitor main body is a, it satisfies the following Equation 1 and a method of fabricating a multilayer ceramic capacitor are provided.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: September 4, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hyo Jung Kim, Ji Hun Jeong, Dong Ik Chang, Doo Young Kim
  • Patent number: 8254083
    Abstract: There are provided a ceramic electronic component and a method for producing the ceramic electronic component, where a ground electrode layer can be directly coated with lead-free solder without lowering reliabilities. Terminal electrode 3 is provided with a ground electrode layer 21 of Cu having been formed by firing, a solder layer 22 formed of a lead-free solder based on five elements of Sn—Ag—Cu—Ni—Ge, and a diffusion layer 23 having been formed by the diffusion of Ni between the ground electrode layer 21 and the solder layer 22. Because the diffusion layer 23 of Ni is formed between the ground electrode layer 21 and the solder layer 22, the diffusion layer 23, which functions as a barrier layer, suppresses the solder leach of Cu from the ground electrode layer 21. The diffusion layer 23 of Ni can also suppress the growth of fragile intermetallic compounds of Sn—Cu. Therefore, a decrease in the bonding strength between the ground electrode layer 21 and the solder layer 22 can be prevented.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: August 28, 2012
    Assignee: TDK Corporation
    Inventors: Takashi Sakurai, Shinya Yoshihara, Ko Onodera, Hisayuki Abe, Masahiko Konno, Satoshi Kurimoto, Hiroshi Shindo, Akihiro Horita, Genichi Watanabe, Yoshikazu Ito
  • Patent number: 8248752
    Abstract: A multilayer ceramic capacitor is provided. In the multilayer ceramic capacitor, a plurality of first and second inner electrodes are formed inside a ceramic sintered body. Ends of the first and second inner electrodes are alternately exposed to both ends of the ceramic sintered body. First and second outer electrodes are formed on both ends of the ceramic sintered body and connected to the first and second inner electrodes. The first and second outer electrodes include a first region having a porosity in the range of 1% to 10%, and a second region having a porosity less than that of the first region.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: August 21, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Kang Heon Hur, Sang Hoon Kwon, Doo Young Kim, Eun Sang Na, Byung Gyun Kim, Seok Joon Hwang, Kyoung Jin Jun, Hye Young Choi
  • Patent number: 8238076
    Abstract: A bulk capacitor includes a first electrode formed of a metal foil and a semi-conductive porous ceramic body formed on the metal foil. A dielectric layer is formed on the porous ceramic body for example by oxidation. A conductive medium is deposited on the porous ceramic body filling the pores of the porous ceramic body and forming a second electrode. The capacitor can then be encapsulated with various layers and can include conventional electrical terminations. A method of manufacturing a bulk capacitor includes forming a conductive porous ceramic body on a first electrode formed of a metal foil, oxidizing to form a dielectric layer and filling the porous body with a conductive medium to form a second electrode. A thin semi-conductive ceramic layer can also be disposed between the metal foil and the porous ceramic body.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: August 7, 2012
    Assignee: Vishay Sprague, Inc.
    Inventors: Reuven Katraro, Nissim Cohen, Marina Kravchik-Volfson, Eli Bershadsky, John Bultitude
  • Patent number: 8228663
    Abstract: In a laminated ceramic electronic component, external terminal electrodes include plating films directly covering exposed portions of internal electrodes on end surfaces of a ceramic element assembly. On the boundaries between the end surfaces and principal surfaces of the ceramic element assembly, substantially rounded corners are provided, and the plating films are arranged such that the ends of the plating films stop at the corners and do not project from the principal surfaces.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: July 24, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shunsuke Takeuchi, Kenichi Kawasaki, Akihiro Motoki, Makoto Ogawa, Toshiyuki Iwanaga
  • Publication number: 20120176725
    Abstract: A ceramic electronic component includes a ceramic sintered body and an electrode provided on a surface of the ceramic sintered body. The electrode contains Ag. The ceramic sintered body contain glass material made of borosilicate glass. The glass material has closed pores and open pores therein. The closed pores and the open pores have diameters decreasing as being located away from the surface of the ceramic sintered body. This ceramic electronic component can prevent delamination of the electrode from the ceramic sintered body during a process of firing a green sheet.
    Type: Application
    Filed: March 7, 2011
    Publication date: July 12, 2012
    Inventor: Noritaka Yoshida
  • Patent number: 8218287
    Abstract: A thin-film device comprises a base electrode made of a metal, a first dielectric layer, a first inner electrode, a second dielectric layer, a second inner electrode, and a third dielectric layer. Letting T1 be the thickness of the lowermost first dielectric layer in contact with the base electrode in the plurality of dielectric layers, and Tmin be the thickness of the thinnest dielectric layer in the plurality of dielectric layers excluding the first dielectric layer, T1>Tmin. Making the first dielectric layer thicker than the thinnest, dielectric layer in the other dielectric layers can increase the distance between a metal part projecting from a metal surface because of the surface roughness of the base electrode and the inner electrode mounted on the lowermost dielectric layer, thereby reducing leakage currents.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: July 10, 2012
    Assignee: TDK Corporation
    Inventors: Akira Shibue, Yoshihiko Yano, Hitoshi Saita, Kenji Horino
  • Patent number: 8217279
    Abstract: A ceramic electronic component achieves a sufficient drop resistance strength even when terminal electrodes are formed with a higher density. The ceramic electronic component includes a ceramic laminate including ceramic laminates which are laminated to each other, first terminal electrodes disposed in a peripheral portion of a bottom surface of the ceramic laminate, catch pad electrodes arranged in the ceramic laminate so as to face the respective first terminal electrodes, and sets each including at least two first via hole conductors, which electrically connect the first terminal electrodes and the respective catch pad electrodes.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: July 10, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Daigo Matsubara, Osamu Chikagawa
  • Patent number: 8213154
    Abstract: A nickel oxide that is co-doped with a first alkali metal dopant and a second metal dopant may be used, for example, to form a dielectric material in an electronic device. The dielectric material may be used, for example, in a capacitor. The second metal dopant of the nickel oxide may be, for example, tin, antimony, indium, tungsten, iridium, scandium, gallium, vanadium, chromium, gold, yttrium, lanthanum, ruthenium, rhodium, molybdenum or niobium.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: July 3, 2012
    Assignee: Agency for Science, Technology and Research
    Inventors: Michael B. Sullivan, Jian Wei Zheng, Ping Wu
  • Patent number: 8213153
    Abstract: A dielectric ceramic with stable insulation properties even after calcination under a reducing atmosphere, as is preferred for a laminated ceramic capacitor, is a CaTiO3 composition containing Sn. It is preferable for the dielectric ceramic to contain, as its main component, (Ca1-xBaxSny)TiO3 (0?x<0.2, 0.01?y<0.2) with a solution of Sn at the B site.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: July 3, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Megumi Morita, Shoichiro Suzuki, Toshikazu Takeda, Tomomi Koga
  • Patent number: 8203823
    Abstract: A metal capacitor in which an electric conductivity is significantly improved is provided. The metal capacitor includes: a metal member 11 including a plurality of grooves 11a; a metal oxide film 12 being formed on the metal member 11; a sealing electrode member 13 being formed on the metal oxide film 12 to fill in the plurality of grooves 11a; and an insulating layer 14 being formed on the sealing electrode member 13 and the metal oxide film 12 to insulate the metal member 12 and the sealing electrode member 13.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: June 19, 2012
    Inventor: Young Joo Oh
  • Patent number: 8199455
    Abstract: A glass ceramic composition is provided which can be fired at a temperature of 1,000° C. or less to form a sintered body having a low relative dielectric constant, a small temperature coefficient of resonant frequency, a small change in capacitance before and after a loading test, a high Qf value, high electrical insulating reliability, and a high flexural strength. A glass ceramic composition forming glass ceramic layers laminated to each other in a multilayer ceramic substrate is also provided. The glass ceramic composition includes a first ceramic powder containing forsterite as a primary component; a second ceramic powder containing SrTiO3 and/or TiO2 as a primary component; a third ceramic powder containing BaZrO3 as a primary component; a fourth ceramic powder containing SrZrO3 as a primary component; and a borosilicate glass which contains Li2O, MgO, B2O3, SiO2, and ZnO, and also which contains at least one of CaO, BaO, and SrO.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: June 12, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Hiroshige Adachi
  • Patent number: 8199458
    Abstract: Provided is a surface mounting type high voltage ceramic capacitor with an array structure that may form a plurality of capacitors in an array structure to thereby simultaneously mount the plurality of capacitors on a printed circuit board, and thus may reduce a work procedure and enhance a work productivity. The surface mounting type high voltage ceramic capacitor with an array structure, may include: a ceramic member 11; a common electrode member 12 being formed on one surface of the ceramic member 11; a plurality of individual electrode members 13 being arranged on another surface of the ceramic member 11; a common lead terminal 14 being connected to the common electrode member 12; a plurality of individual lead terminals 15 being connected to the plurality of individual electrode members 13, respectively, to face the common lead terminal 14; and a molding member 16 sealing the ceramic member 11, the common electrode member 12, and the plurality of individual electrode members 13.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: June 12, 2012
    Inventor: Young Joo Oh
  • Patent number: 8194390
    Abstract: A multilayer ceramic capacitor includes a capacitor body in which inner electrodes and dielectric layers are alternately laminated, and a length difference rate (D) of the inner electrodes is 7% or less. The length difference rate (D) is defined by D={L?1}/L×100, where L is a maximum length of the inner electrode, and l is a minimum length of the inner electrode.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: June 5, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hyo Jung Kim, Dong Ik Chang, Doo Young Kim, Ji Hun Jeong
  • Patent number: 8189321
    Abstract: A first inner electrode is integrally provided with a first terminal connection part connected to a first terminal electrode and a first linking connection part connected to a first linking electrode. A second inner electrode is integrally provided with a second terminal connection part connected to a second terminal electrode and a second linking connection part connected to a second linking electrode. A third inner electrode is integrally provided with a third linking connection part connected to the first linking electrode. A fourth inner electrode is integrally provided with a fourth linking connection part connected to the second linking electrode. The third inner electrode is adjacent to the first and fourth inner electrodes in a laminating direction of the plurality of dielectric layers. The first and fourth inner electrodes overlap the third inner electrode as seen in the laminating direction of the plurality of dielectric layers.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: May 29, 2012
    Assignee: TDK Corporation
    Inventors: Masaaki Togashi, Takashi Aoki
  • Patent number: 8184426
    Abstract: Provided is a dielectric element comprising a dielectric thin film formed of a layer of perovskite nanosheets. The dielectric element has the advantages of inherent properties and high-level texture and structure controllability of the perovskite nanosheets, therefore realizing both a high dielectric constant and good insulating properties in a nano-region.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 22, 2012
    Assignee: National Institute for Materials Science
    Inventors: Minoru Osada, Yasuo Ebina, Takayoshi Sasaki
  • Patent number: 8183465
    Abstract: A component built-in wiring substrate (10) which includes: a core substrate (11); a plate-shaped component (101); a resin filling portion (92); and a wiring stacking portion (31), wherein, when viewed from the core principal surface (12) side, the projected area of the mounting area (32) is larger than the projected area of the plate-shaped component (101) and the resin filling portion, and the plate-shaped component and the resin filling portion are positioned directly below the mounting area (23), and wherein a value of the coefficient of thermal expansion (CTE ?2) for a temperature range that is equal to or higher than the glass transition temperature of the resin filling portion is set to be larger than a value of the coefficient of thermal expansion of the plate-shaped component and smaller than a value of the coefficient of thermal expansion of the core substrate for the subject temperature range.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: May 22, 2012
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Shinya Suzuki, Kenichi Saita, Shinya Miyamoto, Shinji Yuri
  • Patent number: 8171607
    Abstract: In a method of manufacturing ceramic capacitor according to the present invention, a pair of interdigitated internal electrodes are arranged perpendicularly to the surface of the substrate, subsequent to which the respective end faces of this pair of internal electrodes are exposed, and a pair of external electrodes are formed at these exposed end faces. In this method of manufacturing ceramic capacitor, formation of the external electrodes on the end faces of the respective internal electrodes, with these internal electrodes being interdigitately integrally-formed and the end faces thereof being exposed, it possible to reliably and easily form the external electrodes.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 8, 2012
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Atsushi Iijima, Hiroshi Ikejima
  • Patent number: 8164880
    Abstract: There is provided a dielectric ceramic composition including a base powder expressed by a composition formula of Bam(Ti1-xZrx)O3, where 0.995?m?1.010 and 0<x?0.10, and first to fifth accessory components, and a multilayer ceramic capacitor having the same. The multilayer ceramic capacitor having the dielectric ceramic composition has a high dielectric constant and superior high-temperature reliability.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: April 24, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sung Hyung Kang, Kang Heon Hur, Sang Hoon Kwon, Joon Yeob Cho, Sang Hyuk Kim
  • Patent number: RE43868
    Abstract: This invention provides navel capacitors comprising nanofiber enhanced surface area substrates and structures comprising such capacitors, as well as methods and uses for such capacitors.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: December 25, 2012
    Assignee: Nanosys, Inc.
    Inventors: Calvin Y. H. Chow, Robert Dubrow