Carbon Or Carbide Coating Patents (Class 427/249.1)
  • Patent number: 8029864
    Abstract: In certain example embodiments, a coated article includes respective layers including diamond-like carbon (DLC) and zirconium nitride before heat treatment (HT). During HT, the hydrogenated DLC acts as a fuel which upon combustion with oxygen produces carbon dioxide and/or water. The high temperature developed during this combustion heats the zirconium nitride to a temperature(s) well above the heat treating temperature, thereby causing the zirconium nitride to be transformed into a new post-HT layer including zirconium oxide that is scratch resistant and durable.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: October 4, 2011
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 8029863
    Abstract: A microfluidic component comprises at least one closed microchannel filled with nanostructures. The microchannel is produced by previously forming an opening delineating a bottom wall and two opposite side walls of the microchannel in a surface of a substrate. The nanostructures filling said microchannel are formed by in situ growth to constitute a layer of metallic catalyst deposited on said side walls and on said wall bottom. The microchannel is closed, before the nanostructures are formed, by sealing a protective cover onto said surface of the substrate. Sealing is obtained by formation of an eutectic compound between a material of the cover and the metal of the catalyst used for in situ growth of the nanostructures and deposited on the surface of the substrate designed to come into contact with the cover.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: October 4, 2011
    Assignee: Commissariat à l'Energie Atomique
    Inventors: Agnès Fonverne, Jean Dijon, Florence Ricoul, Emmanuelle Rouviere
  • Publication number: 20110223333
    Abstract: According to one embodiment, a method of treating catalyst for nanocarbon production comprises, bringing a surface of a catalytic material into contact with a chemical, the catalytic material containing a metallic material and being used to produce nanocarbon, corroding the surface of the catalytic material, and drying the surface of the catalytic material.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 15, 2011
    Inventors: Masashi Yamage, Naoya Hayamizu
  • Patent number: 8017504
    Abstract: In a manufacturing flow for adapting the band gap of the semiconductor material with respect to the work function of a metal-containing gate electrode material, a strain-inducing material may be deposited to provide an additional strain component in the channel region. For instance, a layer stack with silicon/carbon, silicon and silicon/germanium may be used for providing the desired threshold voltage for a metal gate while also providing compressive strain in the channel region.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: September 13, 2011
    Assignee: Globalfoundries Inc.
    Inventors: Uwe Griebenow, Jan Hoentschel, Kai Frohberg
  • Patent number: 8017197
    Abstract: A microwave is radiated into a processing chamber (1) from a planar antenna member of an antenna (7) through a dielectric plate (6). With this, a C5F8 gas supplied into the processing chamber (1) from a gas supply member (3) is changed (activated) into a plasma so as to form a fluorine-containing carbon film of a certain thickness on a semiconductor wafer (W). Each time a film forming process of forming a film on one wafer is carried out, a cleaning process and a pre-coating process are carried out. In the cleaning process, the inside of the processing chamber is cleaned with a plasma of an oxygen gas and a hydrogen gas. In the pre-coating process, the C5F8 gas is changed into a plasma, and a pre-coat film of fluorine-containing carbon thinner than the fluorine-containing carbon film formed in the film forming process is formed.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: September 13, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Yasuo Kobayashi, Kohei Kawamura
  • Patent number: 8012535
    Abstract: The invention relates to a method for producing a coated substrate body by chemical vapor deposition at least on one layer made of a carbonitride of a metal of IVa-Vla-groups of the periodic table, wherein a monocyclic hydrocarbon is used in the gas atmosphere during the deposition, in addition to a nitrile. According to the invention, the thus produced coated substrate body has a high degree of hardness and is used, preferably, in cutting operations where the cutting speeds are ?250 m/min.
    Type: Grant
    Filed: October 7, 2006
    Date of Patent: September 6, 2011
    Assignee: Kennametal Widia Produktions GmbH & Co KG
    Inventors: Volkmar Sottke, Doris Lenk, Hartmut Westphal, Hendrikus Van Den Berg
  • Patent number: 8007875
    Abstract: In a method of forming carbon nano-tubes, a catalytic film is formed on a substrate. The catalytic film is then transformed into preliminary catalytic particles. Thereafter, the preliminary catalytic particles are transformed into catalytic particles. Carbon nano-tubes then grow from the catalytic particles. The carbon nano-tubes have relatively high conductivity and high number density.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Sik Yoon, Young-Moon Choi, Sun-Woo Lee
  • Publication number: 20110203831
    Abstract: A composite coating on metal strips or prestamped metal strips with an improved friction coefficient and/or good contact resistance and/or good friction corrosion resistance and/or good wear resistance and/or good formability includes carbon nanotubes and/or fullerenes and a metal. A method for producing a metal strip coated according to the invention with carbon nanotubes and/or fullerenes and a metal is also disclosed.
    Type: Application
    Filed: September 3, 2009
    Publication date: August 25, 2011
    Inventors: Helge Schmidt, Isabell Buresch, Udo Adler, Dirk Rode, Sonja Priggemeyer
  • Patent number: 8003165
    Abstract: Nanoparticles are coated using thick-film techniques with a catalyst to promote the growth of carbon nanotubes thereon. In one example, alumina nanoparticles are coated with a copper catalyst. Such nanoparticles can be selectively deposited onto a substrate to create a field emission cathode, which can then be utilized within field emission devices.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: August 23, 2011
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Dongsheng Mao, Yunjun Li, Richard Fink, Valerie Ginsberg, Mohshi Yang, Leif Thuesen
  • Publication number: 20110195207
    Abstract: There are provided a graphene roll-to-roll coating apparatus and a graphene roll-to-roll coating method on the basis of a continuous process.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 11, 2011
    Applicant: SUNGKYUNKWAN UNIVERSITY FOUNDATION FOR CORPORATE COLLABORATION
    Inventors: Byung Hee Hong, Young Jin Kim, Jaeboong Choi, Hyeong Keun Kim, Junmo Kang, Su Kang Bae
  • Patent number: 7993703
    Abstract: A process for making nanostructures on a support, including: supplying a support including a surface layer on one of its faces, covering the surface layer by a catalyst layer structured according to a pattern exposing areas of the surface layer covered by the catalyst and areas of the surface layer not covered by the catalyst, etching the thickness of the surface layer in the areas not covered by the catalyst layer, and selectively growing nanostructures on the areas of the surface layer covered by the catalyst. The process can also be used to make cathode structures with electrically independent nanostructures.
    Type: Grant
    Filed: May 29, 2006
    Date of Patent: August 9, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Thomas Goislard De Monsabert, Jean Dijon
  • Publication number: 20110189394
    Abstract: In order to form carbon nanotubes on a conductor covering a portion of a substrate in a short heating time, a mesh-like conductive member (102) made of Mo or the like is deposited on a substrate (101) made of glass or the like; a catalyst support, such as Al2O3, and a catalyst, such as Fe or Co, are formed on the conductive member; and the substrate (101) is placed in a carbon-source gas atmosphere and heated for only a short time by exposing the conductive member (102) to voltage or microwaves. As a result, thin carbon nanotubes (104) grow from the conductive member (102) through a catalyst support (503) and a catalyst (504). The carbon nanotubes (104) function as an emitter of a planar light-emitting device (11) and the conductive member (102) functions as a cathode.
    Type: Application
    Filed: October 28, 2009
    Publication date: August 4, 2011
    Inventors: Suguru Noda, Koji Furuichi
  • Patent number: 7988836
    Abstract: A method of making a coated article (e.g., window unit), and corresponding coated article are provided. A layer of or including diamond-like carbon (DLC) is formed on a glass substrate. Then, a protective layer is formed on the substrate over the DLC inclusive layer. During heat treatment (HT), the protective layer prevents the DLC inclusive layer from significantly burning off. Thereafter, the resulting coated glass substrate may be used as desired, it having been HT and including the protective DLC inclusive layer.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 2, 2011
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Publication number: 20110165435
    Abstract: A method for manufacturing composite bodies is provided by applying a firmly adhering layer to substrates composed of plastic or metal, particularly stainless steel, brass, aluminum, or zinc, it is provided that a layer composed of carbon is deposited on the substrate by means of chemical vapor deposition and a hard material layer is deposited on the carbon layer by means of physical vapor deposition.
    Type: Application
    Filed: March 8, 2011
    Publication date: July 7, 2011
    Inventor: Axel ROST
  • Publication number: 20110139361
    Abstract: A method for making a carbon nanotube film is disclosed. A carbon nanotube array formed on a continuously curving surface of a growing substrate is provided. A carbon nanotube segment is selected from the carbon nanotube array. The carbon nanotube segment is drawn away from the carbon nanotube array to achieve the carbon nanotube film.
    Type: Application
    Filed: August 13, 2010
    Publication date: June 16, 2011
    Applicant: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.
    Inventors: LIANG LIU, CHEN FENG
  • Patent number: 7959973
    Abstract: Method of chemical vapor infiltration of a deposable carbon material into a porous carbon fiber preform in order to densify the carbon fiber preform. The method includes the steps of: situating the porous carbon fiber preform in the reaction zone; providing a linear flow of a reactant gas comprising deposable carbon material in the reaction zone at an initial reaction pressure of at most 50 torr to produce deposition of the deposable carbon material into the preform; and adjusting the pressure of the gas to reaction pressures lower than said initial reaction pressure while deposable carbon material continues to be deposited into the porous carbon fiber preform. This method enables attainment of a target increased density in a carbon fiber preform much more quickly than known processes. A programmed pressure swing throughout the CVI/CVD run may be set in order to provide a linear increase in density.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: June 14, 2011
    Assignee: Honeywell International Inc.
    Inventors: Akshay Waghray, Terence B. Walker
  • Patent number: 7959972
    Abstract: A monomolecular carbon-based film can be placed on an aircraft part, such as the leading edge designed to directly impinge against air during flight, ascent or descent, in order to form a smooth surface having increased lubricity and reduced air friction. The aircraft part may be in the form of a helicopter rotor, wing, propeller, fin, aileron, nose cone, and the like. The monomolecular carbon-based film can be deposited on the aircraft part, for example, using a reactor that includes a bed of silica and through which emissions from a diesel engine are passed. The monomolecular carbon-based film decreases air friction and increased lift of a modified aircraft that includes an aircraft part treated with the film.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: June 14, 2011
    Inventor: Thomas C. Maganas
  • Patent number: 7955651
    Abstract: A refined method to produce textured ?-Al2O3 layers in a temperature range of 750-1000° C. with a controlled texture and substantially enhanced wear resistance and toughness than the prior art is disclosed. The ?-Al2O3 layer is formed on a bonding layer of (Ti,Al)(C,O,N) with increasing aluminum content towards the outer surface. Nucleation of ?-Al2O3 is obtained through a nucleation step composed of short pulses and purges of Ti-containing and oxidizing steps. The ?-Al2O3 layer has a thickness ranging from 1 to 20 ?m and is composed of columnar grains. The length/width ratio of the alumina grains is from 2 to 15, preferably 6 to 10. The layer is characterized by a strong (110) growth texture, measured using XRD, and by the low intensity of (012), (104), (113), (024) and (116) diffraction peaks.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: June 7, 2011
    Assignee: Seco Tools AB
    Inventor: Sakari Ruppi
  • Patent number: 7955663
    Abstract: Processes for the simultaneous and selective growth of single walled and multiwalled carbon nanotubes in a single set of experiments are disclosed. The processes may include preparing a graphite electrode rod containing catalyst selected from Fe, Co, Ni, and a mixture thereof, acting as an anode. The process may include preparing another graphite electrode rod, each electrode having a distal and a proximal end. The process may include placing the above said two electrodes parallel to each other and their axis being substantially aligned in a chamber. The process may further include creating a DC-arc discharge inside the chamber by applying a DC-current voltage. The process may further include an cooling assembly having a cooling coil that surrounds the two electrodes. The cooling assembly may be used to maintain a temperature gradient that permits the depositing of single walled and multiwalled carbon nanotubes simultaneously in one experiment.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: June 7, 2011
    Assignee: Council of Scientific and Industrial Research
    Inventors: Rakesh Behari Mathur, Chhotey Lal Nil, Tersem Lal Dhami, Bhanu Pratap Singh, Anil Kumar Gupta, Jagdish Ghawana
  • Publication number: 20110123776
    Abstract: A graphene laminate including a substrate, a binder layer on the substrate, and graphene on the binder layer, wherein the graphene is bound to the substrate by the binder layer.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 26, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyeon-jin SHIN, Jae-young CHOI, Gang-hee HAN, Young-hee LEE
  • Patent number: 7943193
    Abstract: Embodiments of the invention provide a magnetic recording medium superior in terms magnetic head flying performance, abrasion resistant reliability and corrosion resistance and a method for manufacturing the same. In one embodiment, method for manufacturing a magnetic recording medium, comprising forming at least an adhesion layer, a soft magnetic layer, a granular magnetic film and a diamond-like carbon (DLC) protective film on a nonmagnetic substrate. While the DLC protective film layer to protect the granular magnetic layer of the magnetic recording medium is formed, hydrocarbon gas is mixed with hydrogen gas and a bias voltage is applied to the substrate.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: May 17, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Naoto Endou, Shigehiko Fujimaki, Hiroyuki Matsumoto, Toshinori Ono
  • Publication number: 20110107942
    Abstract: The present invention describes a chemical vapor-phase deposition for carbon nanotube synthesis in which cement clinker is used as a ceramic matrix for anchoring transition-metal nanoparticles. Using cement clinker as nanoparticle anchoring base of transition metals allows carbon nanotubes to be generated on cement clinker particles and grains, in this way producing a kind of cement that is nanostructured with carbon nanotubes. By this process, the carbon nanotube synthesis and integration to clinker are carried out in just one continuous and large-scale stage. The process described herein can be applied to conventional cement industry whose production may be rated as tons per day. The present invention also proposes—as part of the carbon nanotube synthesis on cement clinker—several enrichment alternatives of cement clinker by using transition metals for producing such nanostructured composite, which may or not be integrated to the conventional cement industry.
    Type: Application
    Filed: April 30, 2009
    Publication date: May 12, 2011
    Inventors: Edelma Eleto Da Silva, Luiz Orlando Ladeira, Rodrigo Gribel Lacerda, Sérgio De Oliveira, André Santarosa Ferlauto, Eudes Lorencon, Erick De Souza Avila
  • Publication number: 20110111171
    Abstract: A seed crystal for silicon carbide single crystal growth (13) which is attached to the lid of a graphite crucible charged with a raw material silicon carbide powder. The seed crystal includes a seed crystal (4) formed of silicon carbide having one surface defined as a growth surface (4a) for growing a silicon carbide single crystal by a sublimation method, and a carbon film (12) formed on the surface (4b) opposite to the growth surface of the seed crystal (4). Further, the film density of the carbon film (12) is 1.2 g/cm3 to 3.3 g/cm3.
    Type: Application
    Filed: June 12, 2009
    Publication date: May 12, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Naoki Oyanagi, Hisao Kogoi
  • Patent number: 7931938
    Abstract: This present invention describes a method of coating a polymer surface with diamond-like carbon (DLC) to render it useful as a carrier for cells derived from neural crest origin, preferable neuronal cells that form dendrites. The biopolymer to be coated with the DLC will include biodegradable polymers and other implantable biopolymers to act as a carrier system for cell transplantation into the various parts of the body, including the brain, the eye, the central and peripheral nervous system, the lung, the liver, the spleen, the kidney, and the bone and cartilage. The biopolymer can be in sheet form or microparticle form, and can be imbedded with, or incorporated into during its synthesis, attachment or growth promoting reagents to enhance and support neuraonal call attachment and growth. This coating method can also augment other coating agents such as extracellular matrix (ECM) secreted by cultured bovine corneal endothelial cells, as well as adhesive molecules such as fibronectin, laminin, and RGDS.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: April 26, 2011
    Assignee: Cellular Bioengineering, Inc.
    Inventor: Ge Ming Lui
  • Publication number: 20110091646
    Abstract: The orifice chemical vapor deposition reactor provides controlled and regulated reaction gas and vapor flow in order to produce high yields of carbon nanotubes with relatively high purity. The reactor includes a first reaction chamber having an inlet and an outlet, with an input gas being injected therein. A catalyst boat is received within the first reaction chamber for receiving a volume of reaction catalyst. A second reaction chamber is provided, having an inlet and an outlet. The inlet thereof is in fluid communication with the outlet of the first reaction chamber. A flow-regulating member is positioned within the second reaction chamber adjacent the inlet thereof, with the flow-regulating member having an orifice formed therethrough for regulating gas flow. At least one product boat is received within the second reaction chamber for receiving at least one substrate upon which carbon nanotubes are formed.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 21, 2011
    Inventors: Muataz Aliatieh, Issam Thaher Amr, Mamdouh A. Al-Harthi, Adnan M. Al-Amer, Khaled Mezghani
  • Publication number: 20110091647
    Abstract: Processes for synthesizing graphene films. Graphene films may be synthesized by heating a metal or a dielectric on a substrate to a temperature between 400° C. and 1,400° C. The metal or dielectric is exposed to an organic compound thereby growing graphene from the organic compound on the metal or dielectric. The metal or dielectric is later cooled to room temperature. As a result of the above process, standalone graphene films may be synthesized with properties equivalent to exfoliated graphene from natural graphite that is scalable to size far greater than that available on silicon carbide, single crystal silicon substrates or from natural graphite.
    Type: Application
    Filed: May 5, 2010
    Publication date: April 21, 2011
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, TEXAS INSTRUMENTS, INC.
    Inventors: Luigi Colombo, Xuesong Li, Rodney S. Ruoff
  • Patent number: 7927663
    Abstract: Wear resistance of the prior-art Ti(C,N) layers can be considerably enhanced by optimizing the grain size and microstructure. This invention describes a method to obtain controlled, fine, equiaxed grain morphology in Ti(C,N) layers produced using moderate temperature CVD (MTCVD). The method includes the step of doping using CO, CO2, ZrC14 and A1C13 or combinations of these to control the grain size and shape. Doping has to be controlled carefully in order to avoid nanograined structures and oxidization. Doping is further controlled to produce grain size that is from about 50 to about 300 nm, preferably from about 50 to about 150; a lack of any strong preferred growth orientation; and a length-to-width ratio (L/W) of less than 3 and only with a slight to moderate XRD line broadening.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: April 19, 2011
    Assignee: Seco Tools AB
    Inventor: Sakari Ruppi
  • Patent number: 7923377
    Abstract: An amorphous carbon film forming apparatus includes a supporting electrode that is connected to ground and supports a substrate, a counter electrode that is disposed so as to face the supporting electrode and has a mixed-gas injection orifice, a chamber containing the supporting electrode and the counter electrode, and a DC pulse generator having a pulse source that applies a DC pulse voltage between the supporting electrode and the counter electrode. An amorphous carbon film is formed by supplying a mixed gas between the supporting electrode and the counter electrode such that the percentage of the acetylene gas relative to the carrier gas is 0.05% by volume or more and 10% by volume or less, and by generating plasma while a DC pulse voltage having a pulse width of 0.1 ?sec or more and 5.0 ?sec or less is applied to the counter electrode.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: April 12, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Takao Saito, Tatsuya Terazawa
  • Patent number: 7919143
    Abstract: A carrier for an object, preferably a substrate of a semiconductor component such as a wafer, includes a receiving element for the object and gas outlets arranged below the receiving element along the object received. At least sections of the carrier are made of a material which including stabilizing fibers and having a porosity which forms the gas outlets, in order to enable a desired gas to exit from the gas outlets in a dosed and finely distributed manner.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: April 5, 2011
    Assignee: Schunk Kohlensteofftechnik GmbH
    Inventor: Stefan Schneweis
  • Publication number: 20110076400
    Abstract: One embodiment of the forming a nanocrystalline diamond-structured carbon layer on a silicon carbide layer comprises providing a silicon carbide layer in a reaction chamber and exposing the silicon carbide layer to a chlorine containing gas for an exposure time period to form a nanocrystalline diamond-structured carbon layer from the silicon carbide layer.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 31, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Olga Kryliouk, Yuriy Melnik, Brian H. Burrows, Ronald Stevens, Jacob Grayson, Sandeep Nijhawan
  • Patent number: 7910210
    Abstract: In a method of producing a layer arrangement, a substantially carbon-comprising, electrically conductive carbon layer is formed. A protective layer is formed on the carbon layer. An electrically insulating layer is formed on the protective layer, the protective layer protecting the carbon layer from damage during the formation of the electrically insulating layer. Furthermore, a layer arrangement is provided, having a substantially carbon-comprising, electrically conductive carbon layer, a protective layer formed on the carbon layer, and an electrically insulating layer formed on the protective layer, the protective layer being used to avoid damage to the carbon layer by the electrically insulating layer.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: March 22, 2011
    Assignee: Rising Silicon, Inc.
    Inventors: Franz Kreupl, Maik Liebau, Georg Duesberg, Christian Kapteyn
  • Publication number: 20110064645
    Abstract: The present invention provides a method for producing carbon nanotubes comprising (a) providing a substrate; (b) coating a catalyst layer on said substrate; (e) heating the substrate from step (b); (d) continuously supplying a carbon source to grow carbon nanotubes; (e) interrupting the supplement of the carbon source and supplying an oxidizing gas; and (f) resupplying the carbon source to make the carbon nanotubes obtained from step (d) to re-grow at a higher growth rate. The present invention also provides carbon nanotubes fabricated by the above-mentioned method. The carbon nanotubes have extremely excellent field emission properties.
    Type: Application
    Filed: December 11, 2009
    Publication date: March 17, 2011
    Applicant: National Cheng Kung University
    Inventors: Jyh-Ming TING, Wen-Chen Lin
  • Patent number: 7901869
    Abstract: Methods to etch features in a substrate with a multi-layered double patterning mask. The multi-layered double patterning mask includes a carbonaceous mask layer, a first cap layer on the carbonaceous mask layer and a second cap layer on the first cap layer. After forming the multi-layered mask, a first lithographically defined pattern is etched into the second cap layer. A double pattern that is a composition of the first lithographically defined pattern etched in the second cap layer and a second lithographically defined pattern is then etched into the first cap layer and the carbonaceous mask layer. The double pattern formed in the carbonaceous mask layer is then transferred to a substrate layer and any portion of the multi-layered mask remaining is then removed.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: March 8, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Christopher D. Bencher, Huixiong Dai
  • Patent number: 7897209
    Abstract: An apparatus of the present invention for producing an aligned carbon-nanotube aggregate is an apparatus for producing an aligned carbon-nanotube aggregate by synthesizing the aligned carbon-nanotube aggregate on a base material having a catalyst on a surface thereof, the apparatus including: a formation unit that processes a formation step of causing an environment surrounding the catalyst to be an environment of a reducing gas and heating at least either the catalyst or the reducing gas; a growth unit that processes a growth step of synthesizing the aligned carbon-nanotube aggregate by causing the environment surrounding the catalyst to be an environment of a raw material gas and by heating at least either the catalyst or the raw material gas; and a transfer unit that transfers the base material at least from the formation unit to the growth unit.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: March 1, 2011
    Assignees: Zeon Corporation, National Institute of Advanced Industrial Science and Technology
    Inventors: Akiyoshi Shibuya, Keiichi Kawata, Kohei Arakawa, Kenji Hata, Motoo Yumura
  • Patent number: 7892604
    Abstract: In certain example embodiments, a coated article includes respective layers including diamond-like carbon (DLC) and zirconium nitride before heat treatment (HT). During HT, the hydrogenated DLC acts as a fuel which upon combustion with oxygen produces carbon dioxide and/or water. The high temperature developed during this combustion heats the zirconium nitride to a temperature(s) well above the heat treating temperature, thereby causing the zirconium nitride to be transformed into a new post-HT layer including zirconium oxide that is scratch resistant and durable.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: February 22, 2011
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 7887884
    Abstract: A method for atomic layer deposition. The method includes providing a substrate having a surface region and exposing the surface region of the substrate to an atmospheric pressure. The method also maintains at least the substrate at about the atmospheric pressure and forms a film overlying the surface region using atomic layer deposition, while the substrate is maintained at about atmospheric pressure. Preferably, the film is grown at a rate of greater than about 1 nanometer per minute.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: February 15, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Fumitake Mieno
  • Publication number: 20110033688
    Abstract: Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). In certain example embodiments, graphene thin films grown on large areas hetero-epitaxially, e.g., on a catalyst thin film, from a hydrocarbon gas (such as, for example, C2H2, CH4, or the like). The graphene thin films of certain example embodiments may be doped or undoped. In certain example embodiments, graphene thin films, once formed, may be lifted off of their carrier substrates and transferred to receiving substrates, e.g., for inclusion in an intermediate or final product. Graphene grown, lifted, and transferred in this way may exhibit low sheet resistances (e.g., less than 150 ohms/square and lower when doped) and high transmission values (e.g., at least in the visible and infrared spectra).
    Type: Application
    Filed: August 7, 2009
    Publication date: February 10, 2011
    Inventor: Vijayen S. Veerasamy
  • Patent number: 7883750
    Abstract: An object of the present invention is to provide a method of forming a thin film of excellent quality by generating discharge plasma using gaseous raw material including a carbon source under an atmosphere of a relatively high pressure of 100 Torr or higher. A substrate 6 is mounted on at least one of opposing electrodes 4 and 5. A pulse voltage is applied on the opposing electrodes 4 and 5 under a pressure of 100 to 1600 Torr in an atmosphere containing gaseous raw material “A” including a carbon source to generate discharge plasma. A thin film 7 is thus formed on the substrate 6. The pulse voltage has a pulse duration of 10 to 1000 nsec.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: February 8, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Takao Saito, Yukinori Nakamura, Yoshimasa Kondo, Naoto Ohtake
  • Patent number: 7879398
    Abstract: A carbon-nano tube (CNT) structure comprises a substrate and a plurality of CNTs, each CNT comprising a plurality of first CNTs grown perpendicular to the substrate and a plurality of second CNTs grown on sidewalls of the first CNTs. A method of manufacturing CNTs includes growing first CNTs on a substrate on which a catalyst material layer is formed, and growing second CNTs on surfaces of the first CNTs from a catalyst material on surfaces of the first CNTs. The second CNTs grown on the sidewalls of the first CNTs emit electrons at a low voltage. In addition, the CNT structure exhibits high electron emission current due to the second CNTs being used as electron emission sources, and exhibits uniform field emission due to the uniform diameter of the first CNTs. A display device incorporates the above-described structure.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: February 1, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ha-Jin Kim, In-Taek Han
  • Patent number: 7879396
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of layers and coatings on various substrates. The method and apparatus are useful in the fabrication of biotechnologically functional devices, Bio-MEMS devices, and in the fabrication of microfluidic devices for biological applications. In one important embodiment, oxide coatings providing hydrophilicity or oxide/polyethylene glycol coatings providing hydrophilicity can be deposited by the present method, over the interior surfaces of small wells in a plastic micro-plate in order to increase the hydrophilicity of these wells. Filling these channels with a precise amount of liquid consistently can be very difficult. This prevents a water-based sample from beading up and creating bubbles, so that well can fill accurately and completely, and alleviates spillage into other wells which causes contamination.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: February 1, 2011
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Patent number: 7879412
    Abstract: A diamond thin film coating method is provided that enables, with no need for an intermediate layer, the formation of a diamond thin film, which has conventionally been considered difficult because cobalt contained in a binding phase of a cemented carbide provides a catalysis for the formation of graphite. Cobalt in a binding phase (11) present in a surface of a cemented carbide substrate member comprised of a hard phase of a carbide (2) and a binding phase (1) containing cobalt, is silicidated into silicide (3), and thereafter the diamond thin film is formed.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: February 1, 2011
    Assignees: The University of Electro-Communications, Campus Create Co., Ltd.
    Inventor: Hideo Isshiki
  • Publication number: 20110020211
    Abstract: A system is provided for forming carbon nanotubes comprising growing carbon nanotubes using a hot filament CVD system.
    Type: Application
    Filed: March 9, 2009
    Publication date: January 27, 2011
    Applicant: UNIVERSITY OF TOLEDO
    Inventor: Ahalapitiya H. Jayatissa
  • Publication number: 20110014368
    Abstract: The growth temperature of carbon nanotubes on a catalyst distributed on a substrate is reduced by controlling graphene layer formation on the catalyst and catalyst deactivation by catalytic oxidation.
    Type: Application
    Filed: July 14, 2009
    Publication date: January 20, 2011
    Applicant: CFD RESEARCH CORPORATION
    Inventor: Aleksey V. Vasenkov
  • Patent number: 7858147
    Abstract: A method of fabricating an interconnect structure is described. A substrate is provided. A patterned interfacial metallic layer is formed on the substrate. An amorphous carbon insulating layer or a carbon-based insulating layer is formed covering the substrate and the interfacial metallic layer. A conductive carbon line or plug is formed in the amorphous carbon or carbon-based insulating layer electrically connected with the interfacial metallic layer. An interconnect structure is also described, including a substrate, a patterned interfacial metallic layer on the substrate, an amorphous carbon insulating layer or a carbon-based insulating layer on the substrate, and a conductive carbon line or plug disposed in the amorphous carbon or carbon-based insulating layer and electrically connected with the interfacial metallic layer.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: December 28, 2010
    Assignee: National Tsing Hua University
    Inventors: Yu-Tsung Wu, Jen-Hong Huang, Chung-Min Tsai, Huan-Chieh Su, Tri-Rung Yew
  • Publication number: 20100323207
    Abstract: The invention relates to the growth of carbon nanotubes on a substrate, in particular a carbon or metal substrate on which the growth of such nanotubes is usually difficult. Accordingly, the invention includes a first phase that comprises depositing a ceramic sub-layer, followed by a second phase that comprises depositing carbon nanotubes on said sub-layer in a single step and in a single and same growth reactor. The growth can advantageously be carried out by chemical vapour deposition.
    Type: Application
    Filed: February 17, 2009
    Publication date: December 23, 2010
    Applicant: Commissariat A L'Energie Atomique
    Inventors: Mathieu Pinault, Mathieu Delmas, Martine Mayne L'Hermite
  • Publication number: 20100316873
    Abstract: Tin powder is heated in a flowing stream of an inert gas, such as argon, containing a small concentration of carbon-containing gas, at a temperature to produce metal vapor. The tin deposits as liquid on a substrate, and reacts with the carbon-containing gas to form carbon nanotubes in the liquid tin. Upon cooling and solidification, a composite of tin nanowires bearing coatings of carbon nanotubes is formed.
    Type: Application
    Filed: August 19, 2010
    Publication date: December 16, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC
    Inventors: Xueliang Sun, Ruying Li, Yuqin Zhou, Mei Cai, Hao Liu
  • Publication number: 20100314005
    Abstract: A highly corrosion-resistant member that is equipped with: a substrate made of stainless steel; an intermediate layer coated on at least a part of a surface of the substrate; and an amorphous carbon film coated on at least a part of a surface of the intermediate layer is completed by forming the intermediate layer and amorphous carbon film at such a low temperature that a temperature of the surface of the substrate is 450° C. or less. Another highly corrosion-resistant member that is equipped with: a substrate made of stainless steel, substrate whose superficial-layer portion is subjected to nitriding treatment; and an amorphous carbon film coated on at least a part of a surface of the superficial-layer portion is completed by carrying out the nitriding treatment and a formation of the amorphous carbon film at such a low temperature that a temperature of a surface of said substrate is 450° C. or less.
    Type: Application
    Filed: November 9, 2007
    Publication date: December 16, 2010
    Applicants: JTEKT Corporation, CNK Co., Ltd.
    Inventors: Toshiyuki Saito, Masahiro Suzuki, Hiroyuki Hashitomi
  • Patent number: 7846851
    Abstract: A semiconductor wafer having no photoresist craters at the completion of a two-step post-apply resist bake (soft bake) in the fabrication of an integrated circuit. A process and method for soft baking the semiconductor wafer so that photoresist layers are free of surface voids or craters. The semiconductor wafer is coated with resist and then baked at both a low-bake temperature and a high-bake temperature. It is theorized that the lower temperature bake either hardens the resist layer before trapped air expands through the resist or displaces the trapped air while the resist layer remains fluid and returns to its conformal shape.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: December 7, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Paul Shirley, Gordon Haller
  • Patent number: 7842622
    Abstract: A method of forming a conformal amorphous hydrogenated carbon layer on an irregular surface of a semiconductor substrate includes: vaporizing a hydrocarbon-containing precursor; introducing the vaporized precursor and an argon gas into a CVD reaction chamber inside which the semiconductor substrate is placed; depositing a conformal amorphous hydrogenated carbon layer on the irregular surface of the semiconductor substrate by plasma CVD; and controlling the deposition of the conformal ratio of the depositing conformal amorphous hydrogenated carbon layer. The controlling includes (a) adjusting a step coverage of the conformal amorphous hydrogenated carbon layer to about 30% or higher as a function of substrate temperature, and (b) adjusting a conformal ratio of the conformal amorphous hydrogenated carbon layer to about 0.9 to about 1.1 as a function of RF power and/or argon gas flow rate.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: November 30, 2010
    Assignee: ASM Japan K.K.
    Inventors: Woo-Jin Lee, Atsuki Fukazawa
  • Publication number: 20100291297
    Abstract: This invention provides a method for forming a catalyst layer for carbon nanostructure growth, which can eliminate the influence of water in a liquid for catalyst layer formation, can grow homogeneous and highly oriented carbon nanostructures over the whole area of a substrate and can realize mass production of the carbon nanostructures, and a liquid for catalyst layer formation for use in the method, and a process for producing carbon nanostructures using the catalyst layer formed by the method. The catalyst layer for use in the production of CNTs is formed by preparing a catalyst metal salt solution of a catalyst metal-containing metal compound (a catalyst metal salt) dispersed or dissolved in a solvent having an ample wettability towards the substrate and coating the catalyst metal salt solution onto the substrate to a form a thin film. The thin film is then heat treated to form a catalyst layer.
    Type: Application
    Filed: September 19, 2008
    Publication date: November 18, 2010
    Inventors: Takeshi Nagasaka, Masahiro Yamamura, Yoshito Watanabe, Masaki Kondo, Yoshikazu Nakayama