Carbon Or Carbide Coating Patents (Class 427/249.1)
  • Patent number: 8709539
    Abstract: A process and an apparatus for producing a composite material utilize a rotatable hollow body that is inclined with an upstream side being higher than a downstream side. A reaction zone is defined within an elongated chamber in the hollow body. Protrusions inwardly extend from an inner peripheral wall of the hollow body adjacent to the reaction zone. Base material is input into the chamber via a base material introduction port and a carbon source vapor is input into the chamber via a carbon source supply port. A heater heats the reaction zone to a temperature at which carbon nanotubes form on the base material from the carbon source vapor. The protrusions catch base material disposed on the inner peripheral wall of the hollow body when the hollow body rotates and then drop the base material through the reaction zone so that the base material contacts the carbon source vapor.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: April 29, 2014
    Assignees: Meijo University, Meijo Nano Carbon Co., Ltd., Masuoka Ceramic Materials Co., Ltd.
    Inventors: Yoshinori Ando, Mukul Kumar, Takeshi Hashimoto, Norio Kurauchi, Hirotaka Masuoka, Akira Kagohashi
  • Patent number: 8709538
    Abstract: Substantially aligned boron nitride nano-element arrays prepared by contacting a carbon nano-element array with a source of boron and nitrogen; methods for preparing such arrays and methods for their use including use as a heat sink or as a thermally conductivity interface in microelectronic devices.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: April 29, 2014
    Assignee: The Boeing Company
    Inventor: Robert W. Cumberland
  • Publication number: 20140113074
    Abstract: Improved methods for synthesizing large area thin films are disclosed, which result in films of enhanced width. The methods comprise providing a separator material which is rolled or wound up, along with the metallic foil substrate on which the thin film is to be deposited, to form a coiled composite which is then subjected to conventional chemical vapor deposition. Optionally, a winding tool may be used to aid in the rolling process. The methods enable a many-fold increase in the effective width of the substrate to be achieved.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Applicant: BLUESTONE GLOBAL TECH LTD.
    Inventors: Xuesong LI, Jia-Hung WU
  • Patent number: 8703638
    Abstract: The invention has an object of providing catalysts that are not corroded in acidic electrolytes or at high potential, have excellent durability and show high oxygen reducing ability. An aspect of the invention is directed to a process wherein metal carbonitride mixture particles or metal oxycarbonitride mixture particles are produced from an organometallic compound of a Group IV or V transition metal, a metal salt of a Group IV or V transition metal, or a mixture of these compounds using laser light as a light source.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: April 22, 2014
    Assignee: Showa Denko K.K.
    Inventors: Yasuaki Wakizaka, Toshikazu Shishikura
  • Publication number: 20140093656
    Abstract: The synthesis of nanostructures uses a catalyst that may be in the form of a thin film layer on a substrate. Precursor compounds are selected for low boiling point or already exist in gaseous form. Nanostructures are capable of synthesis with a masked substrate to form patterned nanostructure growth. The techniques further include forming metal nanoparticles with sizes <10 nm and with a narrow size distribution. Metallic nanoparticles have been shown to possess enhanced catalytic properties. The process may include plasma enhanced chemical vapor deposition to deposit Ni, Pt, and/or Au nanoparticles onto the surfaces of SiO2, SiC, and GaN nanowires. A nanostructure sample can be coated with metallic nanoparticles in approximately 5-7 minutes. The size of the nanoparticles can be controlled through appropriate control of temperature and pressure during the process. The coated nanowires have application as gas and aqueous sensors and hydrogen storage.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 3, 2014
    Applicant: University of Idaho
    Inventor: David McIlroy
  • Publication number: 20140057097
    Abstract: A preparing method for coiled nano carbon material is provided and includes forming a noble metal catalyst crystallite nucleus layer on the surface of the substrate by displacement of a noble metal catalyst, forming a composited nano carbon material on the metal layer of the substrate by using TCVD; in which the composited nano carbon material includes coiled carbon nano tubes and coiled carbon nano fiber. The measured quantity of the total coiled nano carbon tubes and coiled nano carbon fiber in the total measured quantity of nano carbon material is greater than 30%. The coiled nano carbon material can be acquired by scraping it off from the substrate surface.
    Type: Application
    Filed: March 18, 2013
    Publication date: February 27, 2014
    Applicant: NATIONAL DEFENSE UNIVERSITY
    Inventors: YIH-MING LIU, MING-DER GER, NEN-WEN PU, KUN-JU CHUNG, MING-HSIEN LIN
  • Publication number: 20140044874
    Abstract: The present invention discloses a graphene manufacturing system and the method thereof. In the prior arts, in order to grow graphene layers, a metal foil or thin film has to be prepared and disposed either on the surface or in the vicinity of the of the work piece so as to catalyze the decomposition of carbon feedstock nearby. In contrast, the present invention uses a fluid which contains catalyst metal ions as the source of catalysts and imports the catalytic particles from outside of the working chamber. The metal particles catalyze the decomposition of carbon feedstock at high temperature and cause the direct growth of graphene layers on insulator substrates. Therefore, the present invention is able to use cost-effective materials as the source of catalysts to grow graphene for practical applications.
    Type: Application
    Filed: January 29, 2013
    Publication date: February 13, 2014
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Po-Yuan Teng, Po-Wen Chiu, Chun-Chieh Lu
  • Publication number: 20140044873
    Abstract: The system and method disclosed herein provide a predetermined, variable volume argon-hydrogen gas mixture for a chemical vapor deposition (CVD)-based process, which enables the growth of single-walled carbon nanotube (SWCNT) structures. The exemplary SWCNT structures of this system and method are fabricated with a degree of control over the field emissions produced by the SWCNT and the range of diameters of each of the SWCNTs. Specifically, the predetermined diameter ranges and the field emissions of the SWCNT structure corresponds to a predetermined range of concentrations of the argon-hydrogen mixture and the argon concentration respectively. The defects and the diameter of the SWCNTs typically contribute to field emissions from the SWCNT structures at low applied voltages.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 13, 2014
    Inventors: Makarand Paranjape, Marcio Fontana
  • Publication number: 20140043615
    Abstract: A system, apparatus and method employing carbon nanotubes on substrates such as silicon, titanium, copper, stainless steel and other substrates, where the carbon nanotubes are blacker than existing paints and coatings, thereby providing an exponential increase in stray light suppression depending on the number of bounces of such treated surfaces. Additionally, the present invention is directed to techniques to better absorb and radiate unwanted energies. Further, the alternate substrates offer strength of material for numerous components and in numerous physical applications. The present invention is also directed to techniques for improving the adhesion of the nanotubes to the alternate substrate materials and also extending the wavelength of operation from the near ultraviolet to the far infrared portion of the spectrum (0.2 microns to 120 microns wavelength).
    Type: Application
    Filed: August 8, 2012
    Publication date: February 13, 2014
    Inventors: John G. Hagopian, Stephanie A. Getty, Manuel A. Quijada
  • Patent number: 8640435
    Abstract: Fabrication of fibers using links of nanotubes including slicing a first nanotube rope from a nanotube forest. The method further includes wrapping the first nanotube rope in a first plurality of circuitous turns to create a first link. The method further includes slicing a second nanotube rope from the nanotube forest. The method further includes wrapping the second nanotube rope in a second plurality of circuitous turns to create a second link, wherein the second link is interconnected to the first link in a chain.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: February 4, 2014
    Assignee: The Boeing Company
    Inventor: John R. Hull
  • Publication number: 20140030447
    Abstract: Depositing a layer of graphene or conjugate carbons on a surface of a substrate using carbon radicals generated by exposing a carbon material to radicals of a gas. The radicals of the gas are generated by injecting the gas into a plasma chamber and then applying voltage difference to electrodes within or surrounding the plasma chamber. The radicals of the gas come into contact with the carbon material (e.g., graphite) and excite carbon radicals. The excited carbon radicals are injected onto the surface of the substrate, passes through a constriction zone of the reactor assembly and are then exhausted through a discharge portion of the reactor assembly. When the excited carbon radicals come into contact with the substrate, the carbon radicals form a layer of graphene or conjugated carbons on the substrate.
    Type: Application
    Filed: January 15, 2013
    Publication date: January 30, 2014
    Applicant: Synos Technology, Inc.
    Inventors: Sang In Lee, Chang Wan Hwang
  • Patent number: 8637156
    Abstract: Layers of a passivating material and/or containing luminescent centers are deposited on phosphor particles or particles that contain a host material that is capable of capturing an excitation energy and transferring it to a luminescent center or layer. The layers are formed in an ALD process. The ALD process permits the formation of very thin layers. Coated phosphors have good resistance to ambient moisture and oxygen, and/or can be designed to emit a distribution of desired light wavelengths.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: January 28, 2014
    Inventors: Alan W. Weimer, Steven M. George, Karen J. Buochler, Joseph A. Spencer, II, Jarod McCormick
  • Patent number: 8637118
    Abstract: The present invention relates to a method of production of graphene comprising the following stages respectively: a stage of deposition of a thin layer comprising amorphous carbon on a substrate; a stage of annealing of said thin layer under photonic and/or electronic irradiation, by which a layer comprising graphene is obtained.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: January 28, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Aziz Zenasni
  • Publication number: 20140024225
    Abstract: An insulating film having features such as a low dielectric constant, a low etching rate and a high insulating property is formed. An oxycarbonitride film is formed on a substrate by performing a cycle a predetermined number of times, the cycle including: (a) supplying a gas containing an element to the substrate; (b) supplying a carbon-containing gas to the substrate; (c) supplying a nitrogen-containing gas to the substrate; and (d) supplying an oxygen-containing gas to the substrate.
    Type: Application
    Filed: September 25, 2013
    Publication date: January 23, 2014
    Applicant: Hitachi Kokusai Electric Inc.
    Inventors: Yoshiro HIROSE, Yushin TAKASAWA, Tsukasa KAMAKURA, Yoshinobu NAKAMURA, Ryota SASAJIMA
  • Publication number: 20140023783
    Abstract: Provided is a graphene film manufacturing apparatus including a source fluid supply unit for supplying a source fluid containing carbon; a gas discharge unit for receiving the source fluid from the source fluid supply unit, thermally decomposing the source fluid into a gas, and discharging the gas; a catalyst substrate disposed to contact the gas discharged from the gas discharge unit, and a heating device disposed to locally heat a region of the catalyst substrate that contacts the discharged gas.
    Type: Application
    Filed: March 14, 2012
    Publication date: January 23, 2014
    Applicant: SAMSUNG TECHWIN CO., LTD.
    Inventor: Jong-hyuk Yoon
  • Publication number: 20140011920
    Abstract: A method for fabricating a continuous vapor grown carbon fiber mat including: (a) providing a substrate which has a catalyst on its surface; (b) placing the substrate in a furnace; (c) introducing hydrogen, ammonia, or combinations thereof into the furnace; (d) adjusting a temperature of the furnace to 400° C. to 900° C. to proceed heat treatment for 15 to 90 minutes; (e) adding a carbon-containing compound into the furnace and adjusting the ratio of the carbon-containing compound and the hydrogen, ammonia, or combinations thereof; (f) adjusting the temperature of the furnace to 600° C. to 1200° C. to crack the carbon-containing compound, and thereby forming a carbon fiber mat, where time for reaction is 1 to 3 hours. A continuous vapor grown carbon fiber mat and a graphitized carbon fiber mat are also provided.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 9, 2014
    Applicant: National Cheng Kung University
    Inventors: Jyh Ming TING, Dillip Kumar MISHRA, Hsiao Ping CHUNG
  • Patent number: 8617650
    Abstract: Aligned multi-walled carbon nanotubes were grown on both sides of a metallic or metal-coated substrate by water vapor-assisted chemical vapor deposition. Aligned carbon nanotube films of thickness ranging from 1 ?m to over 100 ?m were obtained. By manipulating various operating factors—position of substrate in the reactor, amount of water vapor, amount of catalyst, reactor temperature, and growth time, the morphology and thickness of these carbon nanotube films could be adjusted.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 31, 2013
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Huan Wang, Ka Ming Ng, Xijun Hu, Jiyun Feng
  • Patent number: 8617669
    Abstract: An apparatus and method is disclosed for synthesizing graphene comprising the steps of providing a substrate and focusing a laser beam in the presence of a carbon doping gas to induce photolytic decomposition of the gas to atomic carbon. The carbon is photolytically reacted with the substrate to grow graphene.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: December 31, 2013
    Inventors: Nathaniel R. Quick, Aravinda Kar
  • Patent number: 8617652
    Abstract: Embodiments relate to depositing on one or more layers of materials on a fiber or fiber containing material using atomic layer deposition (ALD) to provide or enhance functionalities of the fibers or fiber containing material. A layer of material is deposited coated on the fibers or fiber containing textile by causing the relative movement between a fiber or the fiber containing textile and a source injector. The surface of the material is oxidized, nitrified or carbonized to increase the volume of the deposited material. By increasing the volume of the material, the material is subject to compressive stress. The compressive stress renders the fibers or the fiber containing material more rigid, stronger and more resistant against bending force, impact or tensile force.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: December 31, 2013
    Assignee: Veeco ALD Inc.
    Inventor: Sang In Lee
  • Publication number: 20130337236
    Abstract: A method for growing elongated nanostructures (7) only on the bottom (3) of a recessed structure (4), the method comprising: a. providing a substrate (5) comprising said recessed structure (4), said recessed structure (4) comprising: said bottom (3), and at least one sidewall (6), b. modifying the chemical nature of the surface of said at least one sidewall (6) so that said at least one sidewall (6) has a lower affinity than said bottom (3) for a catalyst film (2), c. providing said catalyst film (2) onto said bottom (3), d. thermally and/or plasma treating said film (2) so as to form said catalyst nanoparticles (1), and e. growing elongated nanostructures (7) in said recessed structure (4) using the catalyst nanoparticles (1).
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Inventors: Daire J. Cott, Silvia Armini
  • Publication number: 20130334472
    Abstract: Electromagnetic interference shielding structures and methods of shielding an object form electromagnetic radiation at frequencies greater than a megahertz generally include providing doped graphene sheets about the object to be shielded. The doped graphene sheets have a dopant concentration that is effective to reflect and/or absorb the electromagnetic radiation.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 19, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: PHAEDON AVOURIS, ALBERTO V. GARCIA, CHUN-YUNG SUNG, FENGNIAN XIA, HUGEN YAN
  • Patent number: 8609189
    Abstract: The method of forming carbon nanotubes from carbon-rich fly ash is a chemical vapor deposition-based method for forming carbon nanotubes from recycled carbon-rich fly ash. The method includes first ultrasonically treating the carbon-rich fly ash to produce an ultrafine powdered ash, and then reacting the ultrafine powdered ash in a low pressure chemical vapor deposition reactor to form the carbon nanotubes. The ultrasonic treatment of the carbon-rich fly ash includes the steps of dissolving the carbon-rich fly ash in water to form a solution, then sonicating the solution, separating the ultrafine powdered ash from the solution, and finally drying the ultrafine powdered ash. The method provides for total conversion of the carbon-rich fly ash to carbon nanotubes having a variety of differing diameters and lengths, including multi-walled carbon nanotubes with a high degree of wall graphitization and C?C double bonds stretching at 1635 cm?1.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: December 17, 2013
    Assignee: King Abdulaziz University
    Inventor: Numan Abdullah Salah
  • Publication number: 20130330523
    Abstract: This disclosure provides systems, methods, and apparatus related to graphene nanoribbons. In one aspect, a device includes a substrate and a first graphene nanoribbon overlying the substrate. The first graphene nanoribbon is less than about 20 nanometers wide.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 12, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Yuegang Zhang
  • Patent number: 8597738
    Abstract: The synthesis of ordered arrays of GSC's by re-growth from pre-patterned seed crystals that offer an approach for scalable fabrication of single crystal graphene devices while avoiding domain boundaries is demonstrated herein. Each graphene island is a single crystal and every graphene island is of similar size. The size of graphene island arrays can be as small as less than 1 mm2 or as large as several m2. The distance between each GSC island is also adjustable from several micrometers to millimeters. All of the graphene islands are addressable for devices and electrical circuit fabrication.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: December 3, 2013
    Inventors: Qingkai Yu, Shin-Shem Pei
  • Publication number: 20130316093
    Abstract: A method for making a carbon nanotube composite preform includes following steps. A substrate is provided. Carbon nanotubes are formed on the substrate. The carbon nanotubes and the substrate are placed in a solvent for a predetermined time. The carbon nanotubes and the substrate are drawn from the solvent. The carbon nanotubes and the substrate are dried.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 28, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: HAI-ZHOU GUO, FENG-WEI DAI, YUAN YAO, CHANG-SHEN CHANG, CHANG-HONG LIU, KAI-LI JIANG
  • Patent number: 8591989
    Abstract: A method for forming an SiCN film on target substrates placed in a process field inside a process container repeats a unit cycle a plurality of times to laminate thin films respectively formed, thereby forming the SiCN film with a predetermined thickness. The unit cycle includes performing and suspending supply of a silicon source gas, a nitriding gas, and a carbon hydride gas respectively from first, second, and third gas distribution nozzles to the process field. The unit cycle does not turn any one of the gases into plasma but heats the process field to a set temperature of 300 to 700° C. with the supply of the carbon hydride gas performed for a time period in total longer than that of the supply of the silicon source gas, so as to provide the SiCN film with a carbon concentration of 15.2% to 28.5%.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: November 26, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Pao-Hwa Chou, Kazuhide Hasebe
  • Patent number: 8591988
    Abstract: Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450° C. to about 1500° C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: November 26, 2013
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, Jane Y. Howe, Wei Wang
  • Publication number: 20130309402
    Abstract: The invention provides methods and apparatus for supporting a substrate in a chemical vapor deposition reactor, and methods and apparatus for synthesizing large area thin films. The invention provides a substrate support assembly comprising at least two interdigitable substrate support fixtures, each fixture carrying at least one finger-like formation for engaging and positioning the substrate during the deposition process that creates the thin film. When two such fixtures are interdigitated, the substrate may be positioned not only in between and around the finger-like substrate engagement members, but also on the outside of each fixture, thus achieving a many-fold increase in the effective width of the substrate.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Inventors: Xuesong Li, Yu-Ming Lin, Chun-Yung Sung
  • Publication number: 20130302592
    Abstract: A method for growing carbon nanoflakes includes inducing partial etching of graphene layers of carbon nanotubes through an adequate composition of precursor gases, CH4, H2 and Ar, while allowing carbon nanoflakes to grow at the etched site in a plane-like shape. A carbon nanoflake structure is formed by the same method. The method for growing carbon nanoflakes includes: providing a silicon substrate having carbon nanotubes; and growing carbon nanoflakes on the carbon nanotubes through a chemical vapor deposition process using a mixed gas of CH4, H2 and Ar as a precursor. During the chemical vapor deposition process, the mixed gas of CH4, H2 and Ar is in an atmosphere with excess Ar, graphene layers forming the carbon nanotubes are etched partially under the atmosphere with excess Ar, and graphene layers of carbon nanoflakes are grown at the etched site.
    Type: Application
    Filed: November 23, 2012
    Publication date: November 14, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Wook Seong LEE, Hak Joo LEE, Young Joon BAIK, Jong Keuk PARK
  • Patent number: 8580343
    Abstract: A method for fabricating composite carbon nanotube structure is presented. A carbon nanotube array is provided. A first carbon nanotube structure is drawn from the carbon nanotube array. The first carbon nanotube structure is located on the substrate. A second carbon nanotube structure is grown on a surface of the first carbon nanotube structure to form a composite carbon nanotube structure. A composite carbon nanotube structure is also presented.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: November 12, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8580342
    Abstract: A method for synthesizing carbon nanotubes (CNT) comprises the steps of providing a growth chamber, the growth chamber being heated to a first temperature sufficiently high to facilitate a growth of carbon nanotubes; and passing a substrate through the growth chamber; and introducing a feed gas into the growth chamber pre-heated to a second temperature sufficient to dissociate at least some of the feed gas into at least free carbon radicals to thereby initiate formation of carbon nanotubes onto the substrate.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 12, 2013
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Harry C. Malecki, Tushar K. Shah
  • Publication number: 20130266739
    Abstract: The present invention discloses a process for forming a carbon film or an inorganic material film on a substrate by physical vapor deposition (PVD). Through the process, a high-quality, wafer scale thin film, such as a graphene film, is directly formed on a substrate without using an additional transfer step.
    Type: Application
    Filed: August 22, 2012
    Publication date: October 10, 2013
    Applicant: ACADEMIA SINICA
    Inventors: Shih-Yen LIN, Meng-Yu Lin, Shu-Han Chen
  • Patent number: 8545936
    Abstract: Methods of forming a roughened metal surface on a substrate for nucleating carbon nanotube growth, and subsequently growing carbon nanotubes are provided. In preferred embodiments roughened surfaces are formed by selectively depositing metal or metal oxide on a substrate surface to form discrete, three-dimensional islands. Selective deposition may be obtained, for example, by modifying process conditions to cause metal agglomeration or by treating the substrate surface to provide a limited number of discontinuous reactive sites. The roughened metal surface may then be used as nucleation points for initiating carbon nanotube growth. The carbon nanotubes are grown in the same process chamber (in-situ) as the formation of the three dimensional metal islands without exposing the substrate to air.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: October 1, 2013
    Assignee: ASM International N.V.
    Inventors: Hannu A. Huotari, Suvi P. Haukka
  • Publication number: 20130251998
    Abstract: A graphene-coated steel sheet and a method for manufacturing the same are provided. The graphene-coated steel sheet includes a steel sheet and a graphene layer formed on the steel sheet. Therefore, the graphene-coated steel sheet can be useful in preventing corrosion of iron, such as oxidation of iron, and has remarkably excellent thermal conductivity and electrical conductivity, as well as excellent heat resistance resulting from thermal stability of graphene. Also, the method can be useful in manufacturing a high-quality graphene-coated steel sheet having a monocrystalline form and showing substantially no defects or impurities.
    Type: Application
    Filed: November 9, 2011
    Publication date: September 26, 2013
    Applicants: POSTECH ACADEMY-INDUSTRY FOUNDATION, POSCO
    Inventors: Chan Cuk Hwang, Yong Gyun Jung, Han Na Hwang, Jae In Jeong, Ji Hoon Yang
  • Patent number: 8541054
    Abstract: A method for synthesizing carbon nanostructures is provided. A metalorganic layer is deposited on a substrate that has a deposition mask. The mask is removed, which also removes the portion of the metalorganic precursor deposited on the mask. The remaining portions of the metal organic layer are oxidized to produce a metal growth catalyst on the substrate that can be used for synthesis of carbon nanostructures.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: September 24, 2013
    Assignee: Honda Motor Co., Ltd
    Inventor: Avetik Harutyunyan
  • Publication number: 20130244023
    Abstract: The invention pertains to a method for manufacturing crystalline carbon nanostructures and/or a network of crystalline carbon nanostructures, comprising: (i) providing a bicontinuous micro-emulsion containing metal nanoparticles having an average particle size between 1 and 100 nm; (ii) bringing said bicontinuous micro-emulsion into contact with a substrate; and (iii) subjecting said metal nanoparticles and a gaseous carbon source to chemical vapor deposition, thus forming carbon nanostructures and/or a network of carbon nanostructures. Therewith, it is now possible to obtain crystalline carbon nanostructures networks, preferably carbon nanotubes networks.
    Type: Application
    Filed: September 16, 2011
    Publication date: September 19, 2013
    Inventors: Krishna Narayan Kumar Kowlgi, Gerardus Joseph Maria Koper, Rutger Alexander David Van Raalten
  • Publication number: 20130243969
    Abstract: A method for synthesizing graphene films is disclosed. Monolayer or multilayer graphene can be directly grown on the dielectric materials. The method includes the following steps: disposing dielectric materials and metals in a reactor, introducing reaction gases into the reactor and decomposing the reaction gases by heating, thus directly depositing graphene films on the surfaces of the dielectrics. High crystalline quality and low-defect graphene films can be synthesized directly on dielectric materials, without the process of wet etching and transfer. The method opens up a more direct route to apply graphene on electronics, optoelectronics, and bio-medical devices.
    Type: Application
    Filed: August 23, 2012
    Publication date: September 19, 2013
    Inventors: Po-Yuan TENG, Yung-Chang Lin, Po-Wen Chiu
  • Patent number: 8535753
    Abstract: Methods of forming carbon nanotubes include forming a catalytic metal layer on a sidewall of an electrically conductive region, such as a metal or metal nitride pattern. A plurality of carbon nanotubes are grown from the catalytic metal layer. These carbon nanotubes can be grown from a sidewall of the catalytic metal layer. The plurality of carbon nanotubes are then exposed to an organic solvent. This step of exposing the carbon nanotubes to the organic solvent may be preceded by a step of applying centrifugal forces to the plurality of carbon nanotubes. Alternatively, the exposing step may include applying a centrifugal force to the plurality of carbon nanotubes while simultaneously exposing the plurality of carbon nanotubes to an organic solvent.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: September 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Xianfeng Wang, Hong-Sik Yoon, In-Seok Yeo
  • Patent number: 8535759
    Abstract: A method of depositing organic material is provided. A carrier gas carrying organic material is ejected from a nozzle at a flow velocity that is at least 10% of the thermal velocity of the carrier gas, such that the organic material is deposited onto a substrate. In some embodiments, the dynamic pressure in a region between the nozzle and the substrate surrounding the carrier gas is at least 1 Torr, and more preferably 10 Torr, during the ejection. In some embodiments, a guard flow is provided around the carrier gas.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: September 17, 2013
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Max Shtein
  • Patent number: 8529994
    Abstract: Ultralong carbon nanotubes can be formed by placing a secondary chamber within a reactor chamber to restrict a flow to provide a laminar flow. Inner shells can be successively extracted from multi-walled carbon nanotubes (MWNTs) such as by applying a lateral force to an elongated tubular sidewall at a location between its two ends. The extracted shells can have varying electrical and mechanical properties that can be used to create useful materials, electrical devices, and mechanical devices.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: September 10, 2013
    Assignees: The Trustees of Columbia University in the City of New York, Pohang University of Science and Technology
    Inventors: Philip Kim, Byung Hee Hong, Ju Young Lee, Kwang S. Kim
  • Patent number: 8518543
    Abstract: A sliding member is produced by forming hardening layers with two-layered structure on surface of a substrate metal with a Vickers hardness of not more than Hv300, such as aluminum or magnesium alloy for example, and then forming a DLC film having surface roughness defined as maximum height roughness Rz of 1 to 10 ?m further on the hardening layers. The above-described hardening layers are composed of a first hardening layer dispersed with heavy metal particles, preferably made of tungsten and/or tantalum in the substrate metal, and a second hardening layer formed under the first hardening layer.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: August 27, 2013
    Assignees: FujiWPC Co., Ltd., Fuji Kihan Co., Ltd.
    Inventors: Makoto Kano, Takahiro Horiuchi, Shinichi Takagi, Masao Kumagai, Eiji Shimodaira, Yoshio Miyasaka
  • Patent number: 8512807
    Abstract: A method of making cutting tool inserts with high demands on dimensional accuracy includes: mixing by milling of powders forming hard constituents and binder phase, forming the powder mixture to bodies of desired shape, sintering the formed bodies, grinding with high accuracy the sintered bodies to inserts with desired shape and dimension, optionally edge rounding of cutting edges, and providing the ground inserts with a wear resistant non-diamond or non-diamond-like coating. According to the method, the ground inserts are heat treated prior to the coating operation in an inert atmosphere or vacuum or other protective atmosphere below the solidus of the binder phase for such a time that the micro structure of the surface region is restructured without causing significant dimensional changes. In this way inserts with unexpected improvement of tool life and dimensional accuracy have been achieved.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 20, 2013
    Assignee: Seco Tools AB
    Inventors: Bo Jansson, Jacob Sjolen
  • Publication number: 20130210543
    Abstract: A golf club head is manufactured so as to be at least partially composed of martensitic stainless steel and to have an exterior surface. At least one chromium layer is deposited on at least a portion of the exterior surface of the golf club head. At least one outer layer is deposited by physical vapor deposition on at least a portion of the at least one chromium layer, the outer layer including a metal and a nonmetal.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 15, 2013
    Applicant: SRI SPORTS LIMITED
    Inventors: Nathaniel J. RADCLIFFE, Manny WANG, Samuel G. LACEY
  • Publication number: 20130199982
    Abstract: In an embodiment, a method for manufacturing a thin layer chromatography (“TLC”) plate is disclosed. The method includes forming a layer of elongated nanostructures (e.g., carbon nanotubes), priming the elongated nanostructures with one or more adhesion priming layers, and at least partially coating the elongated nanostructures with a coating. The coating includes a stationary phase and/or precursor of a stationary phase for use in chromatography. The stationary phase may be functionalized with hydroxyl groups by exposure to a base or acid. The stationary phase may further be treated with a silane (e.g., an amino silane) to improve the performance of the TLC plate. Embodiments for TLC plates and related methods are also disclosed.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Inventors: Matthew R. Linford, David Scott Jensen, Andrew E. Dadson, Robert C. Davis
  • Patent number: 8501276
    Abstract: Disclosed is a carbon film which has optical characteristics of retaining a high transparency and being high in refractive index and low in double refractivity, is excellent in electric insulating performance, can be applied to various base materials with good adhesiveness, and can be formed at low temperature. Also disclosed is a laminate including a carbon film and a method for producing the laminate.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: August 6, 2013
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Yoshinori Koga, Masataka Hasegawa, Sumio Iijima, Kazuo Tsugawa, Masatou Ishihara
  • Patent number: 8496992
    Abstract: A method of coating a substrate, with the method comprising: providing a substrate; dispersing nanodiamond powder in a liquid to provide a coating precursor; converting the liquid of the coating precursor to a vapor; introducing the coating precursor to a vapor deposition process; and operating the vapor deposition process to produce a nanocrystalline diamond-containing nanocomposite coating on the substrate, the nanocomposite coating produced using the coating precursor and comprising the nanodiamond particles.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: July 30, 2013
    Assignee: Southwest Research Institute
    Inventors: Ronghua Wei, Christopher Rincon, Kent E. Coulter
  • Patent number: 8496993
    Abstract: A method of creating adherent, fracture-toughened polycrystalline diamond coatings on carbide cutting tools or other workpiece substrates through the development of composite coatings comprising polycrystalline diamond and carbon nanotubes is described. The coating is deposited through a chemical vapor deposition process using a pre-determined hydrocarbon-hydrogen gas mixture suitable for nucleating diamond on the carbide particles and carbon nanotubes on the metallic binder. The deposited coating, which may be up to 30 micrometers in thickness, is typically characterized by a diamond or diamond-like carbon matrix in which carbon nanotubes are distributed as fiber-like filler materials.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: July 30, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Xingcheng Xiao
  • Publication number: 20130189432
    Abstract: Provided is a carbon nanotube producing apparatus comprising a reaction chamber that accommodates a substrate that forms carbon nanotubes and reactive gas supply mechanism for supplying a reactive gas to the substrate accommodated in the reaction chamber, in which the reactive gas supply mechanism has two or more shower plates having a plurality of gas ejection holes, the shower plates being overlappingly arranged so that the reactive gas passes therethrough in order and the reactive gas is supplied to a carbon nanotube forming face of the substrate and the shower plates are arranged so that the ejection holes of the shower plates that are adjacent to each other do not overlap each other in a gas ejection direction.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 25, 2013
    Applicant: Aisin Seiki Kabushiki Kaisha
    Inventor: Aisin Seiki Kabushiki Kaisha
  • Publication number: 20130189444
    Abstract: Methods of forming a graphene material on a surface are presented. A metal material is disposed on a material substrate or material layer and is infused with carbon, for example, by exposing the metal to a carbon-containing vapor. The carbon-containing metal material is annealed to cause graphene to precipitate onto the bottom of the metal material to form a graphene layer between the metal material and the material substrate/material layer and also onto the top and/or sides of the metal material. Graphene material is removed from the top and sides of the metal material and then the metal material is removed, leaving only the graphene layer that was formed on the bottom of the metal material. In some cases graphene material that formed on one or more side of the sides of the metal material is not removed so that a vertical graphene material layer is formed.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 25, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis Anderson, Boris N. Feygelson
  • Patent number: 8491964
    Abstract: The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: July 23, 2013
    Assignee: University of Puerto Rico
    Inventors: Gerardo Morell, Vladimir Makarov, Deepak Varshney, Brad Weiner