Ion Plating Or Implantation Patents (Class 427/523)
  • Publication number: 20140050857
    Abstract: A method for using an integrated battery and device structure includes using two or more stacked electrochemical cells integrated with each other formed overlying a surface of a substrate. The two or more stacked electrochemical cells include related two or more different electrochemistries with one or more devices formed using one or more sequential deposition processes. The one or more devices are integrated with the two or more stacked electrochemical cells to form the integrated battery and device structure as a unified structure overlying the surface of the substrate. The one or more stacked electrochemical cells and the one or more devices are integrated as the unified structure using the one or more sequential deposition processes. The integrated battery and device structure is configured such that the two or more stacked electrochemical cells and one or more devices are in electrical, chemical, and thermal conduction with each other.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 20, 2014
    Applicant: Sakti3, Inc.
    Inventors: Fabio ALBANO, Chia Wei WANG, Ann Marie SASTRY
  • Patent number: 8654446
    Abstract: An optical element or module is designed to be placed in front of an optical sensor of a semiconductor component. At least one optically useful part of the element or module is provided through which the image to be captured is designed to pass. A method for obtaining such an optical element or module includes forming at least one through passage between a front and rear faces of the element or module. The front and rear faces are covered with a mask. Ion doping is introduced through the passage. As a result, the element or module has a refractive index that varies starting from a wall of the through passage and into the optically useful part. An image capture apparatus includes an optical imaging module having at least one such element or module.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: February 18, 2014
    Assignee: STMicroelectronics S.A.
    Inventors: Emmanuelle Vigier-Blanc, Guillaume Cassar
  • Publication number: 20140038080
    Abstract: There is disclosed articles for and methods of confining volatile materials in the void volume defined by crystalline void materials. In one embodiment, the hydrogen isotopes are confined inside carbon nanotubes for storage and the production of energy. There is also disclosed a method of generating various reactions by confining the volatile materials inside the crystalline void structure and releasing the confined volatile material. In this embodiment, the released volatile material may be combined with a different material to initiate or sustain a chemical, thermal, nuclear, electrical, mechanical, or biological reaction.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Inventors: William K. Cooper, James F. Loan, Christopher H. Cooper
  • Publication number: 20140037858
    Abstract: Methods of modulating a material's surface energies through the implantation of ions, such as by using a plasma processing apparatus with a plasma sheath modifier, are disclosed. Two or more ion implants may be performed, where the implant regions of two of the ion implants overlap. The species implanted by a first implant may increase the hydrophobicity of the surface, wherein the species implanted by the second implant may decrease the hydrophobicity of the surface. In this way, a workpiece can be implanted such that different portions of its surface have different surface energies.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Tristan Ma, Ludovic Godet, Christopher Hatem
  • Patent number: 8642135
    Abstract: Systems and methods for plasma doping microfeature workpieces are disclosed herein. In one embodiment, a method of implanting boron ions into a region of a workpiece includes generating a plasma in a chamber, selectively applying a pulsed electrical potential to the workpiece with a duty cycle of between approximately 20 percent and approximately 50 percent, and implanting an ion specie into the region of the workpiece.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: February 4, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Shu Qin, Allen McTeer
  • Publication number: 20140030512
    Abstract: The present invention provides a film formation method capable of forming a favorable amorphous carbon film under a low vacuum by using a bipolar-type PBII apparatus and the amorphous carbon film to be produced by the film formation method. The film formation method is carried out to form the amorphous carbon film under a low vacuum (1000 to 30000 Pa) by using a power source for the bipolar-type PBII apparatus. There are provided inside a chamber (1) a power source side electrode (3) connected to a power source (6) for the PBII apparatus and a grounding side electrode (4) opposed to the power source side electrode (3). A base material (2) is disposed on one of the power source side electrode (3) and the grounding side electrode (4). Plasma of a noble gas and that of a hydrocarbon-based gas are generated between the base material (2) and the electrode where the base material (2) is not disposed to form the amorphous carbon film on a surface of the base material (2).
    Type: Application
    Filed: April 20, 2012
    Publication date: January 30, 2014
    Applicant: NTN CORPORATION
    Inventors: Kouya Oohira, Masaki Nakanichi, Yosuke Taguchi, Setsuo Nakao
  • Publication number: 20140030442
    Abstract: A manufacturing method for a boundary acoustic wave device is capable of certainly providing the boundary acoustic wave device with desired target frequency characteristics. The manufacturing method for the boundary acoustic wave device includes a process for preparing a laminated body that includes a first medium, a second medium laminated on the first medium, and an IDT electrode that is disposed at an interface between the first and second media, and a process for implanting ions from an outer portion of the second medium and adjusting a frequency.
    Type: Application
    Filed: September 25, 2013
    Publication date: January 30, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Hajime KANDO, Mari SAJI
  • Patent number: 8632848
    Abstract: A surface coating method for an orthodontic corrective bracket is provided, in which each orthodontic bracket formed of ceramic is covered with a titanium coating layer having a predetermined thickness so as to be able to minimize a frictional force and to increase surface hardness and durability while a wire fitted into slots of the brackets applies orthodontic tension to teeth. Accordingly, when the teeth are corrected using the ceramic orthodontic brackets on whose surfaces the titanium coating layer having a predetermined thickness is formed, the frictional force can be minimized while the wire fitted into the slots of the brackets is applying the orthodontic tension to the teeth, and thus it is possible to realize a tooth movement path desired by an orthodontist and to shorten a treatment period.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: January 21, 2014
    Assignee: Hubit Co., Ltd.
    Inventor: Woo Seok Shin
  • Publication number: 20140012093
    Abstract: The present invention provides novel medical instruments and methods for fabricating them by using nano-technology processes.
    Type: Application
    Filed: March 21, 2012
    Publication date: January 9, 2014
    Applicant: CHANG HE BIO-MEDICAL SCIENCE (YANGZHOU) CO., LTD.
    Inventors: Chris C. Yu, Xuedong Du
  • Publication number: 20140003954
    Abstract: A method for modifying a wear characteristic of a rotor blade in a turbine system and a modified rotor blade for a turbine system are disclosed. The method includes implanting ions of one of a Group 6 element, a Group 14 element, or a Group 15 element through an exterior surface of a rotor blade. The rotor blade is one of a compressor blade or a turbine bucket.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Vincent Bucci, Stephen Gerard Pope, Jason Robert Parolini
  • Patent number: 8601657
    Abstract: In a piezoelectric device and a method of manufacturing thereof, after an ion implanted portion is formed in a piezoelectric single crystal substrate by implantation of hydrogen ions, an interlayer of a metal is formed on a rear surface of the piezoelectric single crystal substrate. In addition, a support member is bonded to the piezoelectric single crystal substrate with the interlayer interposed therebetween. A composite piezoelectric body in which the ion implanted portion is formed is heated at about 450° C. to about 700° C. to oxidize the metal of the interlayer so as to decrease the conductivity thereof. Accordingly, the conductivity of the interlayer is decreased, so that a piezoelectric device having excellent resonance characteristics is provided.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: December 10, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Korekiyo Ito
  • Patent number: 8597797
    Abstract: [Task] The chromium nitride ion-plating coating has a property that it is hard but is liable to peel off. Year by year, the required level of wear resistance and scuffing resistance becomes higher in a diesel engine. The property of a coating is improved to enhance the wear resistance and scuffing resistance and also to improve resistance against peeling off. [Means for Solution] (1) Composition is mainly composed of chromium, nitrogen, and carbon, and the concentration of carbon relative to the total concentration of the main components is from 4 to 8% by weight. (2) The crystal structure is that texture of the CrN (111) plane orientation is from 0.4 to 2.0 in terms of a CrN (111) structural coefficient. (3) Vickers hardness is from Hv 1600 to Hv 2000.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: December 3, 2013
    Assignee: Kabushiki Kaisha Riken
    Inventors: Takuma Sekiya, Terushige Ueda, Yuji Shima, Shigeo Inoue
  • Patent number: 8598022
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Grant
    Filed: November 19, 2011
    Date of Patent: December 3, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robert Kaim, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Publication number: 20130307372
    Abstract: In a method of manufacturing a piezoelectric device, during an isolation formation step, a supporting substrate has a piezoelectric thin film formed on its front with a compressive stress film present on its back. The compressive stress film compresses the surface on a piezoelectric single crystal substrate side of the supporting substrate, and the piezoelectric thin film compresses the back of the supporting substrate, which is opposite to the surface on the piezoelectric single crystal substrate side. Thus, the compressive stress produced by the compressive stress film and that produced by the piezoelectric thin film are balanced in the supporting substrate, which causes the supporting substrate to be free of warpage and remain flat. A driving force that induces isolation in the isolation formation step is gasification of the implanted ionized element rather than the compressive stress to the isolation plane produced by the piezoelectric thin film.
    Type: Application
    Filed: March 26, 2013
    Publication date: November 21, 2013
    Applicant: Murata Manufacturing Co., Ltd.
    Inventor: Murata Manufacturing Co., Ltd.
  • Patent number: 8586952
    Abstract: Embodiments of the invention provide a method of reducing thermal energy accumulation during a plasma ion implantation process for forming patterns including magnetic and non-magnetic domains on a magnetically susceptible surface on a substrate. In one embodiment, a method of controlling a substrate temperature during a plasma ion implantation process includes (a) performing a first portion of a plasma ion implantation process on a substrate having a magnetically susceptible layer formed thereon in a processing chamber for a first time period, wherein a temperature of the substrate is maintained below about 150 degrees Celsius, (b) cooling the temperature of the substrate after the first portion of the plasma ion implantation process has been completed, and (c) performing a second portion of the plasma ion implantation process on the substrate, wherein the temperature of the substrate is maintained below 150 degrees Celsius.
    Type: Grant
    Filed: October 31, 2010
    Date of Patent: November 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Martin A. Hilkene, Matthew D. Scotney-Castle, Peter I. Porshnev, Roman Gouk, Steven Verhaverbeke
  • Publication number: 20130287963
    Abstract: An ion implantation apparatus including a first plasma chamber, a second plasma chamber and an extraction electrode disposed therebetween. The first and second plasma chambers configured to house respective plasmas in response to the introduction of a different feed gases therein. The extraction electrode is electrically isolated from the plasma chamber. An extraction voltage is applied to the first plasma chamber above a bias potential used to generate the plasma therein. The extraction voltage drives the plasma potential to accelerate the ions in the first plasma to a desired implant energy. The accelerated ions pass through an aperture in the extraction electrode and are directed toward a substrate housed within the second plasma chamber for implantation.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Svetlana B. Radovanov, Ludovic Godet, Bon-Woong Koo, Timothy J. Miller
  • Patent number: 8563091
    Abstract: When a film containing constituent elements of a target is formed on a substrate through a vapor deposition process using plasma with placing the substrate and the target to face to each other, the film is formed with surrounding the substrate with a wall surface having the constituent elements of the target adhering thereto, and applying a physical treatment to the wall surface to cause the components adhering to the wall surface to be released into the film formation atmosphere.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 22, 2013
    Assignee: Fujifilm Corporation
    Inventors: Takamichi Fujii, Takayuki Naono
  • Publication number: 20130265572
    Abstract: An optical component includes a substrate and a fluorine-doped thin film formed on the substrate. This fluorine-doped thin film is dense, and thus very low absorbing and insensitive to various vacuum, temperature, and humidity conditions. This dense film has a high refractive index, which remains stable irrespective of environmental conditions. The fluorine-doped thin film can advantageously ensure low scattering, low reflectance, and high transmittance. Moreover, the fluorine-doped thin film is damage resistant to incident radiation density. The fluorine-doped thin film may be a fluorine-doped silicon oxide film having a thickness of approximately 1-10 nm and a fluorine concentration of 0.1% to 5%.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 10, 2013
    Applicant: KLA-Tencor Corporation
    Inventor: Gildardo Delgado
  • Publication number: 20130251087
    Abstract: Provided in one embodiment is a method comprising: disposing atoms of at least one non-metal element over a surface of a cladding material of a nuclear fuel element; and forming at least one product comprising the at least one non-metal element in, over, or both, a surface layer of the cladding material; wherein the at least one non-metal element has an electronegativity that is smaller than or equal to that of oxygen. Also provided is a nuclear fuel element comprising a modified surface layer adapted to mitigate formation of Chalk River Unidentified Deposits (CRUD) on the cladding material.
    Type: Application
    Filed: February 15, 2013
    Publication date: September 26, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
  • Publication number: 20130251913
    Abstract: Dopant source gas supply arrangements and methods are described, wherein one or more dopant source gas supply vessels is contained inside an outer enclosure of an ion implantation system, e.g., in a gas box within such enclosure. In one implementation, a dopant source gas supply vessel is positioned in remote relationship to the gas box of the ion implantation system, with a dopant source gas local vessel in the gas box, and a supply line interconnecting the dopant source gas supply vessel in supply relationship to the dopant source gas local vessel, in which the supply line is adapted to flow dopant source gas from the supply vessel to the local vessel only when the ion implantation system is in a non-operational state, and to be evacuated or filled with an inert pressurized gas when the ion implantation system is in an operational state.
    Type: Application
    Filed: November 26, 2011
    Publication date: September 26, 2013
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: W. Karl Olander, Robert Kaim, Joseph D. Sweeney, Joseph R. Despres
  • Publication number: 20130243966
    Abstract: In an ion implantation device and a method for the ion implantation of a substrate, a plasma having an ion density of at least 1010 cm?3, is generated by a plasma source in a discharge space. The discharge space is delimited in the direction of the substrate to be implanted by a plasma-delimiting wall. The plasma-delimiting wall being at plasma potential, and a pressure in the discharge space is higher than the pressure in the space in which the substrate is situated in the ion implantation device. The substrate bears on a substrate support, with its substrate surface opposite the plasma-delimiting wall. The substrate and/or the substrate support are/is utilized as a substrate electrode, which is put at a high negative potential relative to the plasma that ions are accelerated from the plasma in the direction of the substrate and implanted into the substrate.
    Type: Application
    Filed: November 17, 2011
    Publication date: September 19, 2013
    Applicant: ROTH & RAU AG
    Inventors: Uwe Schett, Joachim Mai
  • Publication number: 20130230664
    Abstract: A method of preparing an organic light-emitting device includes forming an organic emission unit on a substrate, and forming a thin film encapsulation layer that contacts an environmental element, and that includes at least one inorganic layer including a low temperature viscosity transition (LVT) inorganic material, wherein the inorganic layer is formed using a process including forming a pre-inorganic layer including the LVT inorganic material by providing the LVT inorganic material onto the organic emission unit on which the environmental element is located, performing a first healing process on the pre-inorganic layer at a temperature greater than a viscosity transition temperature of the LVT inorganic material, and performing a second healing process on the pre-inorganic layer having undergone the first healing process to increase a binding force between the environmental element and the LVT inorganic material, and to increase a binding force among the LVT inorganic material.
    Type: Application
    Filed: September 7, 2012
    Publication date: September 5, 2013
    Inventor: Jin-Woo Park
  • Patent number: 8522716
    Abstract: A flexible polymer or elastomer coated RF return strap to be used in a plasma chamber to protect the RF strap from plasma generated radicals such as fluorine and oxygen radicals, and a method of processing a semiconductor substrate with reduced particle contamination in a plasma processing apparatus. The coated RF strap minimizes particle generation and exhibits lower erosion rates than an uncoated base component. Such a coated member having a flexible coating on a conductive flexible base component provides an RF ground return configured to allow movement of one or more electrodes in an adjustable gap capacitively coupled plasma reactor chamber.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: September 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Bobby Kadkhodayan, Jon McChesney, Eric Pape, Rajinder Dhindsa
  • Publication number: 20130222941
    Abstract: In a magnetic head of a high-frequency magnetic field assisted recording system, a width of a high-frequency magnetic field from an oscillator is decreased to enhance an oscillation frequency, in order to realize a high-density recording. An oscillator provided near a main pole, which generates a recording magnetic field, for generating a high-frequency magnetic field is patterned by a conventional photolithography, and then, an oxidation, nitridation, or oxynitridation is performed on the side face in a track width direction. With this process, an oxide layer, a nitride layer, or an oxynitride layer, which is made of a material of the oscillator, is formed on the side face of the oscillator in the track width direction, and the shape of the oscillator is formed to be semi-circular.
    Type: Application
    Filed: January 7, 2013
    Publication date: August 29, 2013
    Applicant: HITACHI, LTD.
    Inventor: HITACHI, LTD.
  • Publication number: 20130202809
    Abstract: A method of forming a layer, the method including providing a substrate having at least one surface adapted for deposition thereon; providing a precursor ion beam, the precursor ion beam including ions; neutralizing at least a portion of the ions of the precursor ion beam to form a neutral particle beam, the neutral particle beam including neutral particles; and directing the neutral particle beam towards the surface of the substrate, wherein both the ions and the neutral particles have implant energies of not greater than 100 eV, and the neutral particles of the particle beam form a layer on the substrate.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 8, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventor: SEAGATE TECHNOLOGY LLC
  • Publication number: 20130189444
    Abstract: Methods of forming a graphene material on a surface are presented. A metal material is disposed on a material substrate or material layer and is infused with carbon, for example, by exposing the metal to a carbon-containing vapor. The carbon-containing metal material is annealed to cause graphene to precipitate onto the bottom of the metal material to form a graphene layer between the metal material and the material substrate/material layer and also onto the top and/or sides of the metal material. Graphene material is removed from the top and sides of the metal material and then the metal material is removed, leaving only the graphene layer that was formed on the bottom of the metal material. In some cases graphene material that formed on one or more side of the sides of the metal material is not removed so that a vertical graphene material layer is formed.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 25, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Travis Anderson, Boris N. Feygelson
  • Publication number: 20130171330
    Abstract: A method of surface treating a fluid dispenser device, said method comprising a step of modifying at least one surface to be treated of at least a portion of said device in contact with said fluid by ionic implantation using multi-charged and multi-energy ion beams, said modified surface to be treated having non-stick properties for said fluid, said multi-charged ions being selected from helium (He), nitrogen (N), oxygen (O), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe), ionic implantation being carried out to a depth of 0 ?m to 3 ?m.
    Type: Application
    Filed: July 1, 2011
    Publication date: July 4, 2013
    Applicant: APTAR FRANCE SAS
    Inventors: Zakaria Sallak, Denis Busardo, Frédéric Guernalec
  • Patent number: 8476587
    Abstract: A mass spectrometer includes an Electron Impact (“EI”) or a Chemical Ionisation (“CI”) ion source, and the ion source includes a first coating or surface. The first coating or surface is formed of a metallic carbide, a metallic boride, a ceramic or DLC, or an ion-implanted transition metal.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 2, 2013
    Assignee: Micromass UK Limited
    Inventors: Gordon A. Jones, David S. Douce, Amir Farooq
  • Publication number: 20130163117
    Abstract: A durable wear-resistant coating consists of an atomically mixed layer on the surface of the head or media which is developed by bombardment of the surface with energetic C ions with optimized parameters. This mixed layer is covered with a hard DLC overcoat. This mixed interlayer is able to strongly bond the overcoat to the head or media substrate and improve the tribological properties of the overcoat. In this method a very thin layer of a carbide former material can be used as an interlayer before bombarding the surface with C ions which provides a composite interlayer containing C and species from interlayer and substrate. This composite interlayer strongly bonds the DLC overact to the ceramic substrate of the head or the metallic substrate of the media. This interlayer by itself is protective enough to protect the head media of the hard drives against wear and corrosion.
    Type: Application
    Filed: September 7, 2011
    Publication date: June 27, 2013
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Charanjit Signh Bhatia, Ehsan Rismani-Yazdi, Sujeet Kumar Sinha
  • Publication number: 20130164454
    Abstract: A method of forming a layer, the method including providing a substrate having at least one surface adapted for deposition thereon; and directing a particle beam towards the surface of the substrate, the particle beam including small molecule molecular species, wherein the small molecule molecular species break apart upon interaction with atoms at the substrate into atomic components, each of the atomic components having implant energies from about 20 eV to about 100 eV to form a layer.
    Type: Application
    Filed: April 5, 2012
    Publication date: June 27, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Philip George Pitcher, Richard Thomas Greenlee, Huiwen Liu
  • Publication number: 20130163119
    Abstract: A hard disk drive comprising a mixed layer is provided to reduce the head-media spacing in the hard disk drive by embedding a surface of a magnetic recording medium or head of the hard disk drive with energetic ions. The mixed layer provides sufficient protection against corrosion and wear of the magnetic layer of the magnetic recording medium without requiring any DLC and/or lubricant overcoat.
    Type: Application
    Filed: September 7, 2011
    Publication date: June 27, 2013
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Charanjit Signh Bhatia, Abdul Samad Mohammed
  • Publication number: 20130164453
    Abstract: A method of forming a layer, the method including providing a substrate having at least one surface adapted for forming a layer thereon; directing a particle beam towards the surface of the substrate, the particle beam including particles, wherein the particle beam has an angle of incidence with respect to the substrate, and is configured so that the particles have implant energies that are not greater than about 100 eV; changing the angle of incidence of the particle beam, the implant energy of the particles, or a combination thereof; and directing the particle beam towards the surface of the substrate a subsequent time, wherein the particles of the particle beam form a layer on the substrate.
    Type: Application
    Filed: April 5, 2012
    Publication date: June 27, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Philip George Pitcher, Edwin Frank Rejda, Richard Thomas Greenlee
  • Publication number: 20130156939
    Abstract: The invention relates to a method for analyzing a defect of a photolithographic mask for an extreme ultraviolet (EUV) wavelength range (EUV mask) comprising the steps of: (a) generating at least one focus stack relating to the defect using an EUV mask inspection tool, (b) determining a surface configuration of the EUV mask at a position of the defect, (c) providing model structures having the determined surface configuration which have different phase errors and generating the respective focus stacks, and (d) determining a three dimensional error structure of the EUV mask defect by comparing the at least one generated focus stack of the defect and the generated focus stacks of the model structures.
    Type: Application
    Filed: June 24, 2011
    Publication date: June 20, 2013
    Inventors: Michael Budach, Tristan Bret, Klaus Edinger, Thorsten Hofmann, Heiko Feldmann, Johannes Ruoff
  • Publication number: 20130149459
    Abstract: A method of surface treating a fluid dispenser device, the method including a step of modifying, by ion implantation using multi-charged and multi-energy ion beams, at least one surface to be treated of at least a portion of the device in contact with the fluid. The modified surface has properties limiting the formation of a biofilm and thus the appearance and/or proliferation of bacteria on the modified surface, the multi-charged ions being selected from helium, boron, carbon, nitrogen, oxygen, neon, argon, krypton, and xenon, ionic implantation being carried out to a depth of 0 ?m to 3 ?m.
    Type: Application
    Filed: July 1, 2011
    Publication date: June 13, 2013
    Applicant: APTAR FRANCE SAS
    Inventors: Pascal Bruna, Denis Busardo
  • Publication number: 20130142493
    Abstract: A structure is presented for use in optic and electro-optic devices. The structure comprises at least one region of an amorphous KLTN-based material in a KLTN-based material. Also provided is a method of processing a KLTN-based material, comprising at least one of the following: bombarding said KLTN-based material with light ions: and etching said KLTN-based material when in amorphous state by an acid; thereby allowing fabrication of one or more optical components within the KLTN-based material.
    Type: Application
    Filed: November 2, 2012
    Publication date: June 6, 2013
    Applicant: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventor: Yissum Research Development Company of the H
  • Publication number: 20130139948
    Abstract: A vacuum insulated glass (VIG) panel includes a first glass panel and a second glass panel spaced from the first glass panels. A spacer is disposed between the first and second glass panels. The spacer includes first and second generally opposed faces, and a plurality of sides extending therebetween. The spacer is processed using tumbling and polishing operations to preferably round all corners of the spacer and form a circular contact footprint on opposed side faces of the spacer. The spacer surface break conditions are measured during tumbling and/or polishing operations using optical flat measuring equipment. Following the polishing operation the spacer is thermally processed to strengthen the spacer.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 6, 2013
    Applicant: RAYOTEK SCIENTIFIC, INC.
    Inventor: William Raggio
  • Publication number: 20130134981
    Abstract: Disclosed is a method for producing a crystal sensor. The method includes selecting a crystal configured to sense a property of interest. The method further includes implanting ions in the crystal using ion-implantation to produce a conductive region within the crystal where the conductive region is capable of providing a signal to sense the property of interest. Also disclosed is a method and apparatus for estimating a property of interest using the crystal sensor in a borehole penetrating the earth.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Yi Liu, Othon Monteiro, Kerry L. Sanderlin, Sebastian Csutak
  • Publication number: 20130136901
    Abstract: A curable composition that can be released from a mold simply within a short period of time after photo-curing by a small mold-releasing force is provided. The curable composition contains a gas-generating agent that generates a gas by pressure application. A method of forming a pattern is also provided. In the method, the mold can be released with a small force.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 30, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: CANON KABUSHIKI KAISHA
  • Patent number: 8448842
    Abstract: An advanced copper bonding with ceramic substrate technology includes the steps of (1) forming a copper film of thickness <1 ?m on a ceramic substrate by sputtering deposition under 1.33×10?3 torr and 150° C., (2) plating a copper layer of thickness 10˜50 ?m at room temperature, and (3) bonding a copper foil to the ceramic substrate by diffusion bonding under environments of high temperature, vacuum, and negative pressure inertia gas or H2 partial pressure.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 28, 2013
    Assignee: Vaclong Vacuum Technology Co., Ltd.
    Inventor: Rong-Fu Wu
  • Publication number: 20130113366
    Abstract: Disclosed herein are systems and method for controlling color of solid state light sources, such as OLEDs. Included here is an illumination system comprising a solid state light source optically coupled with a selectively absorbing brightness enhancing layer. Also disclosed herein are methods for making a selectively absorbing brightness enhancing film. Disclosed advantages may include adjustment of the color of a solid state light source which has undergone color shift due degradation.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Inventors: Deeder Aurongzeb, Juliana P. Reisman
  • Publication number: 20130111637
    Abstract: The present invention relates to a method for covering Atomic Force Microscopy (AFM) tips by depositing a material in the form of nanoparticles with an aggregate source.
    Type: Application
    Filed: May 4, 2011
    Publication date: May 2, 2013
    Applicant: CONSEJO SUPERIOR DE INVESTICACIONES CIENTÍFICAS (CSIC)
    Inventors: Elisa Leonor Roman Garcia, Lidia Martinez Orellana, Mercedes Diaz Lagos, Yves Huttel
  • Publication number: 20130101751
    Abstract: The present disclosure describes methods of inserting lithium into an electrochromic device after completion. In the disclosed methods, an ideal amount of lithium can be added post-fabrication to maximize or tailor the free lithium ion density of a layer or the coloration range of a device. Embodiments are directed towards a method to insert lithium into the main device layers of an electrochromic device as a post-processing step after the device has been manufactured. In an embodiment, the methods described are designed to maximize the coloration range while compensating for blind charge loss.
    Type: Application
    Filed: July 9, 2012
    Publication date: April 25, 2013
    Applicant: ITN Energy Systems Inc.
    Inventors: Brian Spencer Berland, Bruce Roy Lanning, Jonathan Mack Frey, Kathryn Suzanne Barrett, Paul DuPont, Ronald William Schaller
  • Publication number: 20130101750
    Abstract: In one aspect of the invention, a process chamber is provided. The chamber includes a plurality of sputter guns with a target affixed to one end of each of the sputter guns. Each of the plurality of sputter guns is coupled to a first power source. The first power source is operable to provide a pulsed power supply to each of the plurality of sputter guns. The pulsed power supply has a duty cycle that is less than 30%. A substrate support disposed at a distance from the plurality of sputter guns is included. The substrate support is coupled to a second power source. The second power source is operable to bias a substrate disposed on the substrate support, wherein the duty cycle of the second power source is synchronized with a duty cycle of the first power source. A method of performing a deposition process is also included.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventors: Hong Sheng Yang, Tony P. Chiang, Kent Riley Child, Chi-I Lang, ShouQian Shao
  • Publication number: 20130101749
    Abstract: In one aspect of the invention, a process chamber is provided. The process chamber includes a plurality of sputter guns with a target and a main magnet affixed to one end of each of the sputter guns. A substrate support is disposed at a distance from the plurality of sputter guns. An auxiliary magnet is disposed near the substrate. The auxiliary magnet surrounds an outer peripheral surface of the substrate support. In alternative embodiments the magnet may be disposed in a plate or holder disposed below or above the substrate support. In additional embodiments, the auxiliary magnet may be embedded within the substrate support. Furthermore, the auxiliary magnet can either be permanent magnets or electromagnets. A method of performing a deposition process is also included.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventors: Hong Sheng Yang, Chi-I Lang
  • Patent number: 8399865
    Abstract: An ion implantation system and process, in which the performance and lifetime of the ion source of the ion implantation system are enhanced, by utilizing isotopically enriched dopant materials, or by utilizing dopant materials with supplemental gas(es) effective to provide such enhancement.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: March 19, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robert Kaim, Joseph D. Sweeney, Anthony M. Avila, Richard S. Ray
  • Publication number: 20130064989
    Abstract: A surface of an insulating workpiece is implanted to form either hydrophobic or hydrophilic implanted regions. A conductive coating is deposited on the workpiece. The coating may be a polymer in one instance. This coating preferentially forms either on the implanted regions if these implanted regions are hydrophilic or on the non-implanted regions if the implanted regions are hydrophobic.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 14, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Christopher R. Hatem, Ludovic Godet, Louis Steen, Deepak A. Ramappa
  • Patent number: 8389068
    Abstract: Methods of implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. A method of manufacturing a semiconductor device including implanting boron-containing ions using fluorinated boron-containing dopant species that are more readily cleaved than boron trifluoride. Also disclosed are a system for supplying a boron hydride precursor, and methods of forming a boron hydride precursor and methods for supplying a boron hydride precursor. In one implementation of the invention, the boron hydride precursors are generated for cluster boron implantation, for manufacturing semiconductor products such as integrated circuitry.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 5, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: W. Karl Olander, Jose I. Arno, Robert Kaim
  • Publication number: 20130033779
    Abstract: In one embodiment, a magnetic head includes at least one magnetic head element for reading from and/or writing to a magnetic medium, the element having an air bearing surface (ABS) facing toward a magnetic medium, an adhesive film including silicon nitride above the ABS having a characteristic of being formed under a water vapor partial pressure, and a protective film above the adhesive film, the protective film including carbon. Also, in another embodiment, a method includes forming an ABS of a magnetic head, the ABS being a surface of the magnetic head which is closest to a magnetic medium when in use, forming an adhesive film above the ABS of the magnetic head, the adhesive film being formed under a water vapor partial pressure, and forming a protective film above the adhesive film, the protective film including carbon.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 7, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Mineaki Kodama, Hiroshi Ishizaki, Atsuko Okawa, Hiroshi Inaba
  • Publication number: 20130026364
    Abstract: A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.
    Type: Application
    Filed: April 26, 2012
    Publication date: January 31, 2013
    Applicants: Lawrence Livermore National Security LLC
    Inventors: Adam Conway, Patrick R. Beck, Robert T. Graff, Art Nelson, Rebecca J. Nikolic, Stephen A. Payne, Lars Voss, Hadong Kim
  • Patent number: 8361564
    Abstract: A method for implanting a dopant in a substrate is provided. A patterned photoresist mask is formed over the substrate, wherein the patterned photoresist mask has patterned photoresist mask features. A protective layer is deposited on the patterned photoresist mask by performing a cyclical deposition, wherein each cycle, comprises a depositing phase for depositing a deposition layer over surfaces of the patterned mask of photoresist material and a profile shaping phase for providing vertical sidewalls. A dopant is implanted into the substrate using an ion beam. The protective layer and photoresist mask are removed.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 29, 2013
    Assignee: Lam Research Corporation
    Inventors: Andrew R. Romano, S. M. Reza Sadjadi