Including Insulated Gate Field Effect Transistor Having Gate Surrounded By Dielectric (i.e., Floating Gate) Patents (Class 438/201)
  • Patent number: 6911690
    Abstract: A flash memory cell array comprises a substrate, a string of memory cell structures and source region/drain region. Each of memory cell structures includes a stack gate structure including a select gate dielectric layer, a select gate and a gate cap layer formed on the substrate; a spacer is set on the sidewall of the select gate; a control gate connected to the stack gate structure is set on the one side of the stack gate structure; a floating gate is set between the control gate and the substrate; an inter-gate dielectric layer is set between the control gate and the floating gate; and a tunneling dielectric layer is set between the floating gate and the substrate. The source region/drain region is set in the substrate near outer control gate and stack gate structure of the flash memory cell array.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: June 28, 2005
    Assignee: Powership Semiconductor Corp.
    Inventors: Cheng-Yuan Hsu, Chih-Wei Hung, Chi-Shan Wu, Min-San Huang
  • Patent number: 6908802
    Abstract: A circuit element that includes a ferroelectric device connected to a substrate device. The circuit element is constructed by fabricating the substrate device in a semiconductor substrate and depositing a dielectric layer over the semiconductor substrate. A via is then etched in the dielectric layer to provide access to the substrate device and filled with copper or tungsten. A layer of a conducting metallic oxide is then deposited on the conducting plug, and a layer of ferroelectric material is deposited on the layer of conducting metal oxide. The layer of conducting metallic oxide is deposited at a temperature below 450° C., preferably at room temperature.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: June 21, 2005
    Assignee: Tachyon Semiconductor Corporation
    Inventor: Ramamoorthy Ramesh
  • Patent number: 6908803
    Abstract: The invention encompasses stacked semiconductor devices including gate stacks, wordlines, PROMs, conductive interconnecting lines, and methods for forming such structures. The invention also includes a method of forming a transistor gate comprising: a) forming gate dielectric layer; b) forming a polysilicon gate layer against the gate dielectric layer; and c) doping the polysilicon gate layer with a conductivity-enhancing dopant, the dopant being provided in a concentration gradient within the polysilicon layer, the concentration gradient increasing in a direction toward the gate dielectric layer. The invention also includes a wordline comprising: a) a polysilicon line; a substantially fluorine impervious barrier layer over the polysilicon line; and a b) layer of metal-silicide over the substantially fluorine impervious barrier layer.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: June 21, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Klaus Florian Schuegraf, Carl Powell, Randhir P. S. Thakur
  • Patent number: 6906376
    Abstract: An EEPROM cell device on a substrate is achieved. The device comprises, first, a selection transistor having gate, drain, source, and channel. The drain is defined as a cell bit line. An isolation transistor has gate, drain, source, and channel. The source is defined as a cell source line. Finally, a floating gate transistor has control gate, floating gate, drain, source, and channel. The drains and sources of each transistor comprise a diffusion layer in the substrate. The channels of each transistor comprise the substrate. The floating gate transistor drain is coupled to the selection transistor source. The floating gate transistor source is coupled to the isolation transistor drain. The device is programmed and erased by charge tunneling between the floating gate and the floating gate transistor channel. The device may further comprise an isolation well underlying the diffusion layer. A two transistor EEPROM cell is disclosed. Several array architectures using the EEPROM cell are disclosed.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: June 14, 2005
    Assignee: A Plus Flash Technology, Inc.
    Inventors: Fu-Chang Hsu, Hsing-Ya Tsao
  • Patent number: 6906379
    Abstract: An array of floating gate memory cells, and a method of making same, where each pair of memory cells includes a pair of trenches formed into a surface of a semiconductor substrate, with a strip of the substrate disposed therebetween, a source region formed in the substrate strip, a pair of drain regions, a pair of channel regions each extending between the source region and one of the drain regions, a pair of floating gates each disposed in one of the trenches, and a pair of control gates. Each channel region has a first portion disposed in the substrate strip and extending along one of the trenches, a second portion extending underneath the one trench, a third portion extending along the one trench, and a fourth portion extending along the substrate surface and under one of the control gates.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: June 14, 2005
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Bomy Chen, Dana Lee, Hieu Van Tran
  • Patent number: 6902998
    Abstract: A semiconductor device is manufactured by forming a first insulating layer on a semiconductor substrate. First contact pads and second contact pads are formed that penetrate through the first insulating layer and are electrically connected to the semiconductor substrate. A second insulating layer is formed that has guide contact holes that expose upper surfaces of the first contact pads. An etch stopper is formed on bottoms and sidewalls of the guide contact holes of the second insulating layer. Bit lines are formed that are electrically connected to the semiconductor substrate by the second contact pads. The bit lines are electrically isolated from the first contact pads.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: June 7, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-hyeon Lee, Chang-hyun Cho, Yang-keun Park
  • Patent number: 6900089
    Abstract: The present invention includes a method of fabricating a non-volatile memory device having two transistors for two-bit operations to improve electron trapping efficiency and integration degree of the non-volatile memory device, and a method of driving the non-volatile memory device. The EEPROM device acccording to the present invention comprises a silicon substrate including a first and a second channel area, a first and a second conductive gate on the first and the second channel area, respectively, facing each other, a first and a second insulation layer in the bottom of the first and the second gate, and a first and a second junction area of a second conductive type between the first and the second channel area overlapping with the first and the second conductive gate.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: May 31, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seong-Gyun Kim
  • Patent number: 6900086
    Abstract: A first side-wall film is formed on the sides of a gate electrode of a high-voltage transistor, and a second side-wall film is provided on the first side-wall film. The first side-wall film has an etching rate lower that of a pre-metal dielectric, and the second side-wall film has an etching rate substantially equal to that of the of the pre-metal dielectric. The LDD of the high-voltage transistor is provided in that part of the semiconductor substrate which lies right below the first and second side-wall films. The source/drain diffusion layer of the high-voltage transistor is formed in that part of the substrate which is outside the second side-wall film. A first side-wall film having an etching rate lower than that of the pre-metal dielectric and/or a second side-wall film having an etching rate substantially equal to that of the pre-metal dielectric are provided on the sides of the gate electrode of the low voltage transistor.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: May 31, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Mori, Toshiharu Watanabe, Masataka Takebuchi, Kazuaki Isobe
  • Patent number: 6897517
    Abstract: A memory is described having a semiconductor substrate of a first conductivity type, a first and a second junction region of a second conductivity type, whereby said first and said second junction region are part of respectively a first and a second bitline. A select gate is provided which is part of a wordline running perpendicular to said first and said second bitline. Read, write and erase functions for each cell make use of only two polysilicon layers which simplifies manufacture and each memory cell has at least two locations for storing a charge representing at least one bit.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: May 24, 2005
    Assignees: Interuniversitair Microelektronica Centrum (IMEC), Infineon AG
    Inventors: Jan Van Houdt, Luc Haspeslagh
  • Patent number: 6897524
    Abstract: A non-volatile semiconductor memory device includes a semiconductor substrate, a memory cell array formed on the semiconductor substrate, and including a first gate insulator having a first thickness. The device further includes a high-voltage transistor circuit formed on the semiconductor substrate, and including a second gate insulator having a second thickness greater than the first thickness, and a peripheral circuit formed on the semiconductor substrate, and including the second gate insulator.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: May 24, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiji Kamiya
  • Patent number: 6890809
    Abstract: A method for fabricating a p-n heterojunction device is provided, the device being preferably comprised of an n-type GaN layer co-doped with silicon and zinc and a p-type AlGaN layer. The device may also include a p-type GaN capping layer. The device can be grown on any of a variety of different base substrates, the base substrate comprised of either a single substrate or a single substrate and an intermediary layer. The device can be grown directly onto the surface of the substrate without the inclusion of a low temperature buffer layer.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: May 10, 2005
    Assignee: Technologies and Deviles International, Inc.
    Inventors: Sergey Karpov, Alexander Usikov, Heikki I. Helava, Denis Tsvetkov, Vladimir A. Dmitriev
  • Patent number: 6882001
    Abstract: An electrically-programmable memory cell programmed by means of injection of channel hot electrons into a charge-storage element capacitively coupled to a memory cell channel for modulating a conductivity thereof depending on a stored amount of charge. A first and a second spaced-apart electrode regions are formed in a semiconductor layer and define a channel region there between; at least one of the first and second electrode regions acts as a programming electrode of the memory cell. A control electrode is capacitively coupled to the charge-storage element. The charge-storage element is placed over the channel to substantially extend from the first to the second electrode regions, and is separated from the channel region by a dielectric layer. The dielectric layer has a reduced thickness in a portion thereof near the at least one programming electrode.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: April 19, 2005
    Assignee: STMicroelectronics S.r.l.
    Inventor: Luigi Pascucci
  • Patent number: 6872614
    Abstract: A nonvolatile semiconductor memory device featuring a reducing operating voltage while maintaining a good disturbance characteristic and high speed in a write operation, including a gate insulating film and gate electrode stacked on a channel forming region of a semiconductor provided on the surface of a substrate and planarly dispersed charge storing means such as carrier traps in a nitride film or near the interface with the top insulating film, provided in the gate insulating film, the gate insulating film including an FN tunnel film having a dielectric constant larger than that of a silicon oxide film and exhibiting an FN electroconductivity, whereby the thickness of the gate insulating film, converted to that of a silicon oxide film, can be reduced and the voltage can be reduced.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: March 29, 2005
    Assignee: Sony Corporation
    Inventor: Ichiro Fujiwara
  • Patent number: 6869845
    Abstract: A method for manufacturing a semiconductor memory device having a memory region and a peripheral region, including forming a memory cell on the memory region and a peripheral transistor on the peripheral region, the memory cell having a first gate electrode and a first diffusion layer, the peripheral transistor having a second gate electrode and a second diffusion layer; forming a silicon nitride layer above an upper surface and a side surface of the first gate electrode of the memory cell and above an upper surface and a side surface of the second gate electrode of the peripheral transistor; removing the silicon nitride layer that is formed above the upper surface of the second gate electrode of the peripheral transistor; forming an interlayer insulating film above the memory cell and the peripheral transistor; forming a first contact hole that reaches the upper surface of the second gate electrode of the peripheral transistor by removing a portion of the interlayer insulating film; and forming a conductive
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: March 22, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Himeno, Hiroaki Tsunoda
  • Patent number: 6869837
    Abstract: A method of fabricating word-line spacers comprising the following steps. A substrate having an inchoate split-gate flash memory structure formed thereover is provided. A conductive layer is formed over the substrate and the inchoate split-gate flash memory structure. The conductive layer having: a upper portion and lower vertical portions over the inchoate split-gate flash memory structure; and lower horizontal portions over the substrate. A dual-thickness oxide layer is formed over the conductive layer and has a greater thickness over the upper portion of the conductive layer. The oxide layer is partially etched back to remove at least the oxide layer from over the lower horizontal portions of the conductive layer to expose the underlying portions of the conductive layer.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: March 22, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yuan-Hung Liu, Yeur-Luen Tu, Chin-Ta Wu, Tsung-Hsun Huang, Hsiu Ouyang, Chi-Hsin Lo, Chia-Shiung Tsai
  • Patent number: 6867082
    Abstract: Nonvolatile memory cells having a split gate structure and methods of fabricating the same are provided. The nonvolatile memory cells include active regions defined at a predetermined region of a semiconductor substrate. A portion of each of the active regions is etched to form a cell trench region. Insulated floating gates are disposed on a pair of sidewalls parallel with the direction that crosses the active region. A source region is disposed at a bottom surface of the cell trench region. A gap region between the floating gates is filled with a common source line electrically connected to the source region. The common source line is extended along the direction that crosses the active regions. The active regions, which are adjacent to the floating gates, are covered with word lines parallel with the common source line. Drain regions are disposed in the active regions adjacent to the word lines. The drain regions are electrically connected to bit lines that cross over the word lines.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: March 15, 2005
    Assignee: Samsung Electronics Co., LTD
    Inventors: Jin-Woo Kim, Dong-Jun Kim, Min-Soo Cho, Dai-Geun Kim
  • Patent number: 6864134
    Abstract: This invention provides a manufacturing method for fabricating on the same substrate both high voltage thin film transistors suitable for driving liquid crystal and low voltage drive high performance thin film transistors. In addition, this invention provides a thin film transistor substrate where the area occupied by a storage capacitor in each pixel is reduced to raise the aperture ratio of the display unit. One aspect of this invention provides a manufacturing method characterized in that the impurity regions of both high voltage thin film transistors and high performance thin film transistors which differ in the thickness of gate insulation are formed by implanting a dopant through the same two-layered film. Another aspect of this invention reduces the area occupied by the drive circuit in the display unit by utilizing an extension of one layer of the insulation film included in each thin film transistor.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: March 8, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Takeshi Satou, Toshihiko Itoga, Takeo Shiba
  • Patent number: 6864133
    Abstract: A device comprising a semiconductor film (12) formed on a substrate (11), a gate region (15), in which a gate insulating film (13) formed on the semiconductor film and a gate electrode film (14) are laminated, isolation means (A) formed on both sides of the gate region to prevent contact between the gate electrode film and other regions, and a source region and a drain region formed by baking a liquid semiconductor material (17) and disposed on regions on the substrate and on both sides of the gate region.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: March 8, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Takashi Aoki, Masahiro Furusawa, Ichio Yudasaka
  • Patent number: 6861306
    Abstract: A split-gate FLASH memory cell is formed with a floating gate that has a tip in the middle of the floating gate. The method of the present invention forms the tip to have a substantially constant radius of curvature, tip angle, and distance to the overlying tunneling oxide. As a result, the tip of the present invention increases the localized enhancement of the electric field.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: March 1, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Yuri Mirgorodski
  • Patent number: 6861305
    Abstract: The present invention provides a Group III nitride compound semiconductor with suppressed generation of threading dislocations. A GaN layer 31 is subjected to etching, so as to form an island-like structure having a shape of, for example, dot, strip, or grid, thereby providing a trench/mesa structure, and a mask 4 is formed at the bottom of the trench such that the upper surface of the mask 4 is positioned below the top surface of the GaN layer 31. A GaN layer 32 is lateral-epitaxially grown with the top surface 31a of the mesa and sidewalls 31b of the trench serving as nuclei, to thereby bury the trench, and then epitaxial growth is effected in the vertical direction. In the upper region of the GaN layer 32 formed above the mask 4 through lateral epitaxial growth, propagation of threading dislocations contained in the GaN layer is 31 can be prevented.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: March 1, 2005
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masayoshi Koike, Yuta Tezen, Toshio Hiramatsu, Seiji Nagai
  • Patent number: 6858447
    Abstract: A method for testing semiconductor chips, in particular semiconductor memory chips, is described. In which, in a chip to be tested, at least one test mode is set, the test mode is executed in the chip and test results are output from the chip. It is provided that, after the setting and before the performance of the test mode, a check mode is executed in which the status of the test mode set in the chip is read out in a defined format.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: February 22, 2005
    Assignee: Infineon Technologies AG
    Inventors: Udo Hartmann, Jochen Kallscheuer, Peter Beer
  • Patent number: 6855989
    Abstract: A fin field effect transistor includes a fin, a source region, a drain region, a first gate electrode and a second gate electrode. The fin includes a channel. The source region is formed adjacent a first end of the fin and the drain region is formed adjacent a second end of the fin. The first gate electrode includes a first layer of metal material formed adjacent the fin. The second gate electrode includes a second layer of metal material formed adjacent the first layer. The first layer of metal material has a different work function than the second layer of metal material. The second layer of metal material selectively diffuses into the first layer of metal material via metal interdiffusion.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: February 15, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Haihong Wang, Shibly S. Ahmed, Ming-Ren Lin, Bin Yu
  • Patent number: 6849552
    Abstract: A vertical type transistor and fabricating method therefor. An isolation oxide layer is formed on a field region in a silicon substrate to expose an active region, and an epitaxial silicon layer is formed on the active region of a source region is formed in the vicinity of the surface of the silicon substrate and a drain region is formed on the epitaxial silicon layer. A masking insulator spacer is formed at the side wall of stair part, and the epitaxial silicon layer exposed through the masking insulator spacer is removed. A gate insulating layer is formed along with the exposed surfaces of the epitaxial silicon layer, the source region, and the drain region. A gate electrode is formed to contact with the gate insulating layer. A planarization insulating layer is formed over whole structure, and contact holes and contact plugs are formed thereon.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: February 1, 2005
    Assignee: Dongbu Electronics Co., Ltd
    Inventor: Cheol Soo Park
  • Patent number: 6849499
    Abstract: A method is provided for forming a flash memory cell having an amorphous silicon floating gate capped by a CVD oxide, and a control gate formed over an intergate oxide layer formed over the oxide cap. Amorphous silicon is first formed over a gate oxide layer over a substrate, followed by the forming of a silicon nitride layer over the amorphous silicon layer. Silicon nitride is patterned to have a tapered opening so that the process window for aligning the floating gate with the active region of the cell is achieved with a relatively wide margin. Next, an oxide cap is formed over the floating gate. Using an oxide deposition method in place of the conventional polyoxidation method provides a less bulbous oxide formation over the floating gate, thus, yielding improved erase speed for the cell. The invention is also directed to a flash memory cell fabricated by the disclosed method.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: February 1, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Hung-Cheng Sung, Han-Ping Chen, Cheng-Yuan Hsu
  • Patent number: 6849490
    Abstract: To provide a semiconductor storage apparatus and a manufacturing method thereof in which a memory cell source area is not silicided and a resistance dispersion caused by insufficient silicidation is therefore eliminated, and in which a silicide film is prevented from being formed in the step portion of a self-aligned source structure and therefore a resistance dispersion by a disconnected silicide film is not generated. In a semiconductor storage apparatus having a memory cell portion in which a source area is formed by a self-aligned process, a silicide blocking portion is disposed in a part of the surface of a source diffusion layer such that the resistance dispersion caused by the insufficient silicidation of the source diffusion layer is not generated.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: February 1, 2005
    Assignee: NEC Electronics Corporation
    Inventor: Fumihiko Hayashi
  • Patent number: 6847078
    Abstract: A non-volatile memory device comprises an active region disposed in a predetermined region of a semiconductor substrate, a selection gate electrode crossing over the active region, and a floating gate electrode disposed on the active region parallel to the selection gate electrode and spaced apart from the selection gate electrode. The non-volatile memory device further comprises a tunnel insulating layer intervening between the active region and each of the selection gate electrode and the floating gate electrode, a separation insulating pattern intervening between the selection gate electrode and the floating gate electrode, an erasing gate electrode disposed over the floating gate electrode and crossing over the active region parallel to the selection gate electrode, and an erasing gate insulating layer intervening between the erasing gate electrode and the floating gate electrode. The selection gate electrode is formed without a photoresist pattern.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: January 25, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Suk Choi, Og-Hyun Lee
  • Patent number: 6841444
    Abstract: A nonvolatile semiconductor memory device that can be miniaturized is provided. A method of manufacturing the nonvolatile semiconductor memory device includes the steps of: forming an interlayer insulating film covering a stacked structure and a sidewall insulating film and having a top surface approximately parallel to a main surface; forming a resist pattern as a mask layer on the top surface of the interlayer insulating film; forming a groove as an opening in the interlayer insulating film to be positioned between the sidewall insulating films formed at the adjacent stacked structures; and forming a source region extending along a plurality of floating gate electrodes by implanting impurity ions from the groove to the main surface.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: January 11, 2005
    Assignee: Renesas Technology Corp.
    Inventor: Shu Shimizu
  • Publication number: 20040262664
    Abstract: A disclosed method for forming a non-volatile memory cell includes forming a component stack including an electron trapping layer on a substrate surface. A dielectric layer is formed over the component stack, and a portion is removed such that a remainder of the dielectric layer exists substantially along sidewalls of the component stack. An oxide layer is formed over a bit line in the substrate adjacent to the component stack, and an electrically conductive layer is formed over the component stack and the oxide layer. A described non-volatile memory cell includes a component stack on a substrate surface, the component stack including an electron trapping layer. Multiple dielectric spacers are positioned along sidewalls of the component stack. An oxide layer is positioned over a bit line in the substrate adjacent to the component stack, and an electrically conductive layer is positioned over the component stack and the oxide layer.
    Type: Application
    Filed: June 27, 2003
    Publication date: December 30, 2004
    Inventors: Fu-Shiung Hsu, Chen-Chin Liu
  • Patent number: 6833297
    Abstract: The present invention is a method for fabricating a memory device. In one embodiment, a first impurity concentration is deposited in a channel region of a memory device. A second impurity concentration, which overlies the first impurity concentration, is then created in the channel region. Finally, a memory array is fabricated upon the channel region. The memory array overlies the first impurity concentration and the second impurity concentration.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: December 21, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard M. Fastow, Yue-Song He, Nga-Ching Wong
  • Publication number: 20040245565
    Abstract: Semiconductor devices are disclosed utilizing at least one polysilicon structure in a stacked gate region according to the present invention. The stacked gate region includes a substrate, at least one trench, an oxide layer, at least one floating gate layer and the at least one polysilicon structure. The at least one polysilicon structure is formed adjacent to vertical edges of the at least one floating gate layer and above the oxide layer. The polysilicon structure, which includes polysilicon wings and ears, is used to increase the capacitive coupling of memory cells in memory devices, thereby allowing for further reduction or scaling in the size of memory cells and devices.
    Type: Application
    Filed: May 24, 2004
    Publication date: December 9, 2004
    Inventors: Kelly T. Hurley, Graham Wolstenholme
  • Publication number: 20040248354
    Abstract: A method for fabricating a complimentary metal-oxide semiconductor (CMOS) device (100) has the steps of providing a substrate (102) and forming a layer of Silicon-Germanium-Carbon (SiGeC) (104) over the substrate (102). The layer of SiGeC (104) has between about 0.001 to 2 percent C by weight. The C concentration in the layer of SiGeC (104) is changed while forming the layer of SiGeC (104).
    Type: Application
    Filed: July 1, 2004
    Publication date: December 9, 2004
    Inventors: Pr Chidambaram, Srinivasan Chakravarthi, Haowen Bu
  • Patent number: 6828183
    Abstract: A process for forming a high voltage oxide (HV) and a select gate poly for a split-gate flash memory is disclosed. The general difficulty of forming oxides of two different thicknesses for two different areas on the same substrate is alleviated by forming an HV oxide layer over the entire substrate just prior to the forming of the control gate of a cell area after the forming of a gate oxide layer over the peripheral area of the substrate. At an immediate subsequent step, a peripheral gate is formed over the HV oxide over the peripheral area, and, as a final step, the forming of the control gate, or the select gate of the cell area follows next.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: December 7, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Hung Cheng Sung, Han-Ping Chen, Cheng Yuan Hsu
  • Patent number: 6828184
    Abstract: Disclosed is a method of manufacturing semiconductor devices. In the process of simultaneously forming a high voltage device and a low voltage device, a photoresist film for patterning a gate oxide film in a high voltage device is removed in a wet mode using a solvent. The polysilicon film used as the gate electrode is then formed without applying a vacuum. It is thus possible to increase reliability of the gate oxide film, and prevent damage of the gate oxide film due to ozone plasma and penetration of a grain protrusion of the polysilicon film into the gate oxide film. Accordingly, the breakdown voltage characteristic of the gate oxide film is improved.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: December 7, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ihl Hyun Cho
  • Patent number: 6818944
    Abstract: A lower insulation layer, a charge storing layer, and an upper insulation layer are sequentially stacked on a substrate to form a gate insulation layer. A gate conductive layer is formed on the gate insulation layer. The gate electrode is patterned to expose a surface of the gate insulation layer. The charge storing layer is a barrier layer to oxygen diffusion during oxidization for curing etching damages caused by patterning. Thus, a gate bird's beak is prevented in the lower insulation layer. Spacers are formed on sidewalls of the gate electrode. The upper insulation layer is etched using the gate electrode and the spacers as an etch mask. Impurity ions are implanted into the substrate adjacent to the gate electrode to form an impurity region. Since an upper insulation layer is not exposed during the ion implantation process, the upper insulation layer is not damaged.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: November 16, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chang-Hyun Lee
  • Patent number: 6818511
    Abstract: Disclosed are a non-volatile memory device to protect a floating gate from charge loss and a method for forming the same. At least a pair of floating gate lines are formed on a semiconductor substrate. A portion of the substrate between the floating gate lines is etched to form a trench therein. A gap-fill dielectric layer is formed in the trench and also in the gap between the pair of floating gate lines. The gap-fill dielectric layer is implanted with impurities so that positive mobile ions that may permeate the floating gate through the gap-fill dielectric layer can be trapped in the gap-fill dielectric layer.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: November 16, 2004
    Assignee: Samsung Electronic Co., Ltd.
    Inventor: Wook-Hyoung Lee
  • Patent number: 6815761
    Abstract: In the semiconductor integrated circuit device, an AND-type flash memory is formed on a substrate in which stripe-like element separation regions 5 are formed and active regions L sandwiched between the element separation regions 5 are formed like stripes. A silicon monocrystal substrate containing nitrogen or carbon is used as the semiconductor substrate, to reduce dislocation defects and junction leakages so that the reliability and yield are improved.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: November 9, 2004
    Assignee: Renesas Technology Corporation
    Inventors: Toshiaki Nishimoto, Takashi Aoyagi, Shogo Kiyota
  • Patent number: 6815347
    Abstract: The present invention provides a method of forming a TFT and a reflective electrode having recesses or projections with reduced manufacturing cost and a reduced number of manufacturing steps, and provides a liquid crystal display device to which the method is applied. A photosensitive film 8 is formed on a metal film 7. Then, remaining portions 81, 82 and 83 are formed from the photosensitive film 8. Then, the metal film 7 is etched by using the remaining portions 81, 82 and 83 as masks. And then, a photosensitive film 9 and a reflective electrode film 10 are formed without removing the remaining portions 81, 82 and 83.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: November 9, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Naoki Sumi
  • Patent number: 6815755
    Abstract: Semiconductor device having on a single substrate (1) at least one memory cell (3) and at least one logic transistor (25); the at least one memory cell having a floating gate (5), a tunnel oxide layer (11) between the floating gate and the substrate (1), a control gate (15), and a control oxide layer (13) between the control gate (15) and the floating gate (5); the at least one logic transistor (25) having a logic transistor gate (5′, 15″) and a logic transistor gate oxide (11″) between the logic transistor gate (5′, 15″) and the substrate (1), the tunnel oxide layer (11) of the memory cell (3) and the logic transistor gate oxide (11″) having a same or substantially same predetermined first thickness. The invention also relates to a method of manufacturing such a device and to such a device that also comprises a high voltage transistor (17) which is optionally made so as to be an integral part of at least the memory cell (3).
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: November 9, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Roy Arthur Colclaser, Guido Jozef Maria Dormans, Donald Robert Wolters
  • Publication number: 20040217413
    Abstract: A method for manufacturing a semiconductor memory device having a memory region and a peripheral region, including forming a memory cell on the memory region and a peripheral transistor on the peripheral region, the memory cell having a first gate electrode and a first diffusion layer, the peripheral transistor having a second gate electrode and a second diffusion layer; forming a silicon nitride layer above an upper surface and a side surface of the first gate electrode of the memory cell and above an upper surface and a side surface of the second gate electrode of the peripheral transistor; removing the silicon nitride layer that is formed above the upper surface of the second gate electrode of the peripheral transistor; forming an interlayer insulating film above the memory cell and the peripheral transistor; forming a first contact hole that reaches the upper surface of the second gate electrode of the peripheral transistor by removing a portion of the interlayer insulating film; and forming a conductive
    Type: Application
    Filed: May 28, 2004
    Publication date: November 4, 2004
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki Himeno, Hiroaki Tsunoda
  • Patent number: 6812111
    Abstract: In methods for fabricating MOS transistors with notched gate electrodes, a notched gate electrode may be readily fabricated using a damascene process for filling a stair-shaped opening formed in a multi-layered insulation layer. In this manner, the width and a height of the notch region of the gate electrode may be readily adjusted and controlled.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: November 2, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kong-Soo Cheong, Hee-Sung Kang
  • Patent number: 6812515
    Abstract: A non-volatile memory cell includes a first insulating layer over a substrate region, and a floating gate. The floating gate includes a first polysilicon layer over the first insulating layer and a second polysilicon layer over and in contact with the first polysilicon layer. The first polysilicon layer has a predetermined doping concentration and the second polysilicon layer has a doping concentration which decreases in a direction away from an interface between the first and second polysilicon layers. A second insulating layer overlies and is in contact with the second polysilicon layer. A control gate includes a third polysilicon layer over and in contact with the second insulating layer, and a fourth polysilicon layer over and in contact with the third polysilicon layer. The fourth polysilicon layer has a predetermined doping concentration, and the third polysilicon layer has a doping concentration which decreases in a direction away from an interface between the third and fourth polysilicon layers.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: November 2, 2004
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Peter Rabkin, Hsingya Arthur Wang, Kai-Cheng Chou
  • Publication number: 20040212007
    Abstract: A semiconductor memory device and method for making the same, where a memory cell and high voltage MOS transistor are formed on the same substrate. An insulating layer is formed having a first portion that insulates the control and floating gates of the memory cell from each other, and a second portion that insulates the poly gate from the substrate in the MOS transistor. The insulating layer is formed so that its first portion has a smaller thickness than that of its second portion.
    Type: Application
    Filed: May 19, 2004
    Publication date: October 28, 2004
    Inventors: Geeng-Chuan Chern, Amitay Levi, Dana Lee
  • Patent number: 6808992
    Abstract: A method and system for providing a semiconductor device are described. The semiconductor device includes a substrate, a core and a periphery. The core includes a plurality of core gate stacks having a first plurality of edges, while the periphery a plurality of periphery gate stacks having a second plurality of edges. The method and system include providing a plurality of core spacers, a plurality of periphery spacers, a plurality of core sources and a plurality of conductive regions. The core spacers reside at the first plurality of edges and have a thickness. The periphery spacers reside at the second plurality of edges and have a second thickness greater than the first thickness. The core sources reside between the plurality of core gate stacks. The conductive regions are on the plurality of core sources. This method allows different thicknesses of the spacers to be formed in the core and the periphery so that the spacers can be tailored to the different requirements of the core and periphery.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: October 26, 2004
    Assignee: Spansion LLC
    Inventors: Kelwin Ko, Shenqing Fang, Angela T. Hui, Hiroyuki Kinoshita, Wenmei Li, Yu Sun, Hiroyuki Ogawa
  • Publication number: 20040207004
    Abstract: The non-volatile semiconductor memory device has a booster including a capacitor, and a storage circuit including a storage element. The capacitor has a lower electrode, a capacitor capacitance insulating film and an upper electrode. The lower electrode of the capacitor is shaped to have an increased surface area.
    Type: Application
    Filed: May 6, 2004
    Publication date: October 21, 2004
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventor: Nobuyuki Tamura
  • Patent number: 6806517
    Abstract: A notched gate SONOS transistor includes: a substrate having source/drain regions; a gate insulator layer on the substrate between the source/drain regions; a notched gate structure, on the gate insulator leyer, having at least one notch; and at least one ONO wedge structure in the at least one notch, respectively, of the gate structure.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: October 19, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang Su Kim, Nae-In Lee, Geum-Jong Bae, Ki Chul Kim, Hwa Sung Rhee
  • Publication number: 20040201059
    Abstract: In a nonvolatile memory cell, the floating gate (160) has an upward protruding portion. This portion can be formed as a spacer over a sidewall of the select gate (140). The spacer can be formed from a layer (160.2) deposited after the layer (160.1) which provides a lower portion of the floating gate. Alternatively, the upward protruding portion and the lower portion can be formed from the same layers or sub-layers all of which are present in both portions. The control gate (170) can be defined without photolithography. Other embodiments are also provided.
    Type: Application
    Filed: April 10, 2003
    Publication date: October 14, 2004
    Inventor: Yi Ding
  • Patent number: 6803317
    Abstract: A method of making a semiconductor device (10) includes depositing a first conductive layer (50) on a first surface (41) to control a channel (70) of the semiconductor device at a second surface (40) perpendicular to the first surface. The method further includes etching a first dielectric film (32) to form a gap (53) between the first surface and a control electrode (68) of the semiconductor device, and depositing a conductive material (56) in the gap to electrically connect the first conductive layer to the control electrode.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: October 12, 2004
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Gordon M. Grivna
  • Patent number: 6803268
    Abstract: There is provided an EEPROM semiconductor device including (a) a plurality of field insulating films each extending perpendicularly to word lines, (b) a plurality of memory cells arranged in a matrix, each memory cell having a floating gate, a control gate formed on the floating gate and doubling as a word line, and source and drain regions located at either sides of the control gate, (c) a common source line extending in parallel with the word lines and connecting source regions of the memory cells with each other, and (d) a first bit line extending perpendicularly to the word lines and connecting drain regions of the memory cells with each other. The above-mentioned EEPROM semiconductor device makes it possible to form CMOS logic circuit together with a non-volatile memory on a common semiconductor substrate without increasing fabrication steps, and also makes it possible for the non-volatile memory to write data thereinto and read data therefrom at a higher rate without an increase in a cell size.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: October 12, 2004
    Assignee: NEC Electronics Corporation
    Inventors: Takaaki Nagai, Masahiro Shinmori
  • Patent number: 6794236
    Abstract: An EEPROM device incorporates a partially encapsulated floating gate electrode in order to increase the capacitive coupling between the floating gate electrode and the control gate region of an EEPROM device. The floating gate electrode is partially encapsulated by a capacitor plate that is locally interconnected to the control gate region residing in a semiconductor substrate. The capacitor plate is electrically isolated from the floating gate electrode by a capacitor dielectric layer overlying the floating gate electrode. By partially encapsulating the floating gate electrode with a capacitor plate electrically connected to the control gate region, a high capacitance coupling is obtained between the floating gate electrode and the control gate region, while minimizing the substrate area necessary for fabrication of the capacitor portion of an EEPROM device.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: September 21, 2004
    Assignee: Lattice Semiconductor Corporation
    Inventor: YongZhong Hu
  • Patent number: 6794711
    Abstract: Non-volatile memory devices according to embodiments of the invention can include, for example, a semiconductor substrate, a source region, a drain region, an impurity region, a vertical structure, a control gate insulating layer, a control gate electrode, a gate insulating layer, and a gate electrode. The impurity region is in a floating state between the source region and the drain region. The vertical structure is formed of a tunneling layer, a charge trapping layer, and a blocking layer sequentially stacked between the source region and the impurity region. The control gate insulating layer is between the source region and the impurity region and adjacent to the vertical structure. The control gate electrode is formed on the vertical structure and the control gate insulating layer. The gate insulating layer is between the impurity region and the drain region. The gate electrode is formed on the gate insulating layer.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: September 21, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-taeg Kang, Jeong-uk Han, Soeng-gyun Kim