Plural Doping Steps Patents (Class 438/306)
  • Publication number: 20030153138
    Abstract: Semiconductor processing methods of forming integrated circuitry are described. In one embodiment, memory circuitry and peripheral circuitry are formed over a substrate. The peripheral circuitry comprises first and second type MOS transistors. Second type halo implants are conducted into the first type MOS transistors in less than all of the peripheral MOS transistors of the first type. In another embodiment, a plurality of n-type transistor devices are formed over a substrate and comprise memory array circuitry and peripheral circuitry. At least some of the individual peripheral circuitry n-type transistor devices are partially masked, and a halo implant is conducted for unmasked portions of the partially masked peripheral circuitry n-type transistor devices. In yet another embodiment, at least a portion of only one of the source and drain regions is masked, and at least a portion of the other of the source and drains regions is exposed for at least some of the peripheral circuitry n-type transistor devices.
    Type: Application
    Filed: February 26, 2003
    Publication date: August 14, 2003
    Inventor: Luan C. Tran
  • Patent number: 6596594
    Abstract: Within a method for fabricating a field effect transistor (FET) device there is provided a series of ion implant methods which provide the field effect transistor (FET) device with both: (1) a source region asymmetrically doped with respect to a drain region; and (2) an asymmetrically doped channel region. The field effect transistor (FET) device is fabricated with enhanced performance.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: July 22, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventor: Jyh-Chyurn Guo
  • Publication number: 20030132466
    Abstract: Field effect transistors include a semiconductor substrate having a channel region of first conductivity type therein extending adjacent a surface thereof. Source and drain regions of second conductivity type are also provided at opposite ends of the channel region. The source and drain regions extend in the semiconductor substrate and form P-N rectifying junctions with the channel region. A gate electrode extends on the channel region and comprises a first electrically conductive material having a first work function. A first sub-gate electrode extends on the channel region and comprises a second electrically conductive material having a second work function that is unequal to the first work function.
    Type: Application
    Filed: March 17, 2003
    Publication date: July 17, 2003
    Inventors: Hyung-Cheol Shin, Jong-Ho Lee, Sang-Yeon Han
  • Publication number: 20030129792
    Abstract: Conventionally, when an electric potential of a supporting substrate is fixed, there arises a problem in that impact ions are generated even in the vicinity of embedded insulating film in the proximity of a drain due to generation of a parasitic transistor using the supporting substrate as a gate so as to be likely to cause a parasitic bipolar operation.
    Type: Application
    Filed: October 9, 2002
    Publication date: July 10, 2003
    Inventors: Miwa Wake, Yoshifumi Yoshida
  • Patent number: 6586332
    Abstract: A method for blocking formation of a reacted metal layer on a structure in an integrated circuit. The integrated circuit has a source region, a drain region, a gate, an isolation area formed of a material, and a protective layer formed of substantially the same material as the isolation area. The protective layer overlies at least the source region and the drain region. The method is accomplished while reducing an amount of the material of the isolation area that is removed when the material of the protective layer is removed. A blocking layer is deposited on the integrated circuit. The blocking layer is formed of a material that is substantially different from the material of the isolation area and the protective layer. The blocking layer is patterned to selectively cover portions of the blocking layers that overlie at least the structure and selectively expose portions of the blocking layer that overlie at least the source region, the drain region, and the gate.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: July 1, 2003
    Assignee: LSI Logic Corporation
    Inventor: Ming-Yi Lee
  • Publication number: 20030119269
    Abstract: The present invention relates to a method for fabricating a semiconductor transistor device. The method comprises: forming a first conductive type well in a semiconductor substrate having a device isolation film formed thereon; implanting first conductive type impurity ions into the first conductive type well, so as to form a punch-through stopper region; implanting the first conductive type impurity ions into the upper portion of the resulting structure at fixed tilt angle and ion implantation energy, so as to form a channel region; forming a gate electrode including a gate insulating film on the semiconductor substrate; forming LDD regions in the semiconductor substrate at both sides of the gate electrode; forming an insulating spacer film on the side of the gate electrode; and forming source and drain regions in the semiconductor substrate at portions below the sides of the insulating spacer films.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 26, 2003
    Inventor: Tae Woo Kim
  • Patent number: 6582995
    Abstract: Within a method for fabricating a microelectronic fabrication comprising a topographic microelectronic structure formed over a substrate, there is implanted, while employing a first ion implant method and while masking a portion of the substrate adjacent the topographic microelectronic structure but not masking the topographic microelectronic structure, the topographic microelectronic structure to form an ion implanted topographic microelectronic structure without implanting the substrate. There is also implanted, while employing a second ion implant method, the portion of the substrate adjacent the topographic microelectronic substrate to form therein an ion implant structure. The method is particularly useful for fabricating source/drain regions with shallow junctions within field effect transistor (FET) devices.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: June 24, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ting-Hua Hsieh, Hung-Der Su, Carlos H. Diaz
  • Patent number: 6583060
    Abstract: A dual depth trench isolation structure formed between active devices and conductive well regions of same conductivity type which comprises a first inter-well isolation structure having a first isolation trench depth, a second inter-well isolation structure having a second isolation trench depth which combine to form a dual depth trench containing the dual depth trench isolation structure comprising the first inter-well isolation structure and the second inter-well isolation structure, with the dual depth trench isolation interposed at the boundary of an n-well conductive region and a p-well conductive region, a first intra-well isolation structure having a first isolation trench depth, the first intra-well isolation structure interposed between a pair of p-channel transistors residing in the n-well region, and a second intra-well isolation structure having a second isolation trench depth, the second intra-well isolation structure interposed between a pair of n-channel transistors residing in the p-well regio
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: June 24, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Jigish Trivedi
  • Patent number: 6583017
    Abstract: A method for creating a self-aligned channel implant with elevated source/drain areas. Forming a thin dielectric layer on top of a silicon substrate, a thick layer of oxide is deposited over this dielectric. An opening is exposed and etched through the layer of oxide, through the dielectric and into the underlying silicon substrate creating a shallow trench in the substrate. By performing the channel implant LDD implant, pocket implant, forming the gate spacers and electrode, removing the thick layer of oxide and forming the S/D regions a gate electrode has been created with elevated S/D regions. By forming the gate spacers, performing channel implant, forming the gate electrode, removing the thick layer of oxide and performing S/D implant a gate electrode has been created with elevated S/D regions and disposable spacers.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: June 24, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chu-Wei Hu, Jiue-Wen Weng, Chung-Te Lin, So-Wein Kuo
  • Patent number: 6583016
    Abstract: Semiconductor devices with improved transistor performance are fabricated by ion-implanting a dopant into the oxide liner to prevent or substantially reduce dopant out-diffusion from the shallow source/drain extensions. Embodiments include ion implanting a P-type dopant, such as B or BF2, using the gate electrode as a mask, to form shallow source/drain extensions, depositing a conformal oxide liner, and ion implanting the P-type impurity into the oxide liner at substantially the same dopant concentration as in the shallow source/drain extensions. Subsequent processing includes depositing a spacer layer, etching to form sidewall spacers, ion implanting to form deep moderate or heavy source/drain implants and activation annealing.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: June 24, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andy C. Wei, Mark B. Fuselier, Ping-Chin Yeh
  • Patent number: 6576509
    Abstract: In forming a plug 21 of a polycrystalline silicon film in a contact hole 19 to which a bit line BL is connected, the upper surface of the plug 21 is retracted downward from the upper edge of the contact hole 19, and a plug 22 of a laminate of a TiN film 26 and a W film 27 is formed on the plug 21. Then, the W film deposited on the contact hole 19 is patterned to form a bit line BL having a width narrower than the diameter of the contact hole 19. Here, the W film 27 constituting part of the plug 22 in the contact hole 19 is etched, but the TiN film 26 constituting another part of the plug 22 is not almost etched.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: June 10, 2003
    Assignees: Hitachi Ltd., Hitachi ULSI Engineering Systems Co., Ltd.
    Inventors: Shigeya Toyokawa, Takashi Hashimoto, Kenichi Kuroda, Shoji Yoshida, Toshiyuki Iwaki, Masamichi Matsuoka
  • Patent number: 6576521
    Abstract: A NMOSFET semiconductor device is formed having an LDD structure by simultaneous co-implantation of arsenic and phosphorous to form an N− layer. The co-implantation is performed subsequent to the formation of the gate structure and a thin (100 Å-300 Å) gate spacer but prior to the implantation of a highly doped N+ source/drain.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: June 10, 2003
    Assignee: Agere Systems Inc.
    Inventors: Samir Chaudhry, Sundar S. Chetlur, Hem M. Vaidya
  • Patent number: 6573166
    Abstract: A method of fabricating lightly doped drains (LDD) of different resistance values starts by providing a semiconductor wafer, the semiconductor wafer having a first active area and a second active area positioned on the substrate. Secondly, a first gate and a second gate are formed on the first active area and the second active area, respectively. A first ion implantation process is then performed to implant dopants of a first electric type on a surface of portions of the substrate within the second active area, followed by performing a second ion implantation process to implant dopants of a second electric type on a surface of portions of the substrate within the first active area and second active area. Finally, the dopants of each electric type are activated to form a first LDD and a second LDD adjacent to the first gate and the second gate, respectively, the first LDD and the second LDD being of different resistance values.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: June 3, 2003
    Assignee: United Microelectronics Corp.
    Inventor: Chin-Yang Chen
  • Patent number: 6569743
    Abstract: A method of fabricating a semiconductor device is provided. In this method, a gate insulating layer and a gate are sequentially formed on a semiconductor substrate of a first conductivity type. A first active region of a second conductivity type is formed by ion-implanting a first impurity of the second conductivity type at a first dose, using the gate as a mask. Sidewall spacers are formed of an insulating material on the sidewalls of the gate. A second active region of the second conductivity type is formed by masking a narrow region between gates and ion-implanting a second impurity of the second conductivity type at a second dose higher than the first dose. Finally, a silicide layer is formed on the exposed first and second active regions and gate. There exist no impurities in excess of their solid solubility limit, which could block the diffusion of silicon in the narrow region. As a result, a reliable silicidation is ensured.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: May 27, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong Park, Han-Soo Kim
  • Patent number: 6566216
    Abstract: To provide a semiconductor device and a process for manufacturing the same which is capable of suppressing short channel effect and preventing a current from leaking between a contact and a silicon substrate. The semiconductor device of the present invention comprises a silicon substrate on which a source/drain area (3 in FIG. 1), a silicon oxide layer (4 in FIG. 1) and a silicon nitride layer (5 in FIG. 1) are successively formed in this order, and a trench which extend through said layers to split the source/drain area. A columnar gate electrode (9 in FIG. 1) is formed within the trench in such a manner that it is spaced from the inner wall of the trench and a lightly doped drain (LDD) area (10 in FIG. 1) is formed at an area of the bottom of the trench in which no gate electrode is disposed. In such a structure, the short channel effect which occurs in association with reduction in the gate length is suppressed.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: May 20, 2003
    Assignee: NEC Corporation
    Inventor: Toshifumi Takahashi
  • Patent number: 6566210
    Abstract: The present invention provides a method of preparing a Si-based metal-insulator-semiconductor (MIS) transistor which prevents the polycrystalline grains of the gate conductor from getting significantly larger by reducing the thermal budget of the sidewall oxidation process. The thermal budget of the inventive sidewall oxidation process is reduced one or two orders of magnitude over conventional prior art sidewall oxidation processes by utilizing atomic oxygen as the oxidizing ambient. The present invention also provides Si-based MIS transistors having a gate conductor having grain sizes of about 0.1, preferably 0.05, &mgr;m or less.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: May 20, 2003
    Assignee: International Business Machines Corporation
    Inventors: Atul C. Ajmera, Omer H. Dokumaci, Bruce B. Doris, Oleg Gluschenkov
  • Patent number: 6566215
    Abstract: A novel method for forming short channel MOS transistors is described. A hard mask stack is formed over a substrate. A first opening is formed through a top portion of the hard mask stack. Oxide spacers are formed on sidewalls of the first opening thereby forming a second opening smaller than the first opening. The second opening is filled with a polysilicon layer. Thereafter, the oxide spacers are removed. First ions are implanted into the substrate underlying the removed oxide spacers to form source/drain extensions. Then, the polysilicon layer is removed wherein the first opening remains and wherein the substrate is exposed in a channel region. A gate dielectric layer is formed over the channel region. The first opening is filled with a gate electrode material that is polished back to form a gate electrode. The hard mask stack is removed using the gate electrode as a mask.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: May 20, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yung Fu Chong, Lap Chan
  • Patent number: 6562686
    Abstract: A method for fabricating a semiconductor device employing a salicide (self-aligned silicide) structure is disclosed. The method prevents a junction leakage current from being increased at a portion of a source/drain region which is adjacent to an field oxide, by forming the source/drain region comprised of a relatively deep SID region and a relatively shallow SID region, wherein the deep SID region is formed adjacent to the field oxide and the shallow SID region is formed adjacent to the insulating film spacer.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: May 13, 2003
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hi Deok Lee
  • Patent number: 6559017
    Abstract: A method of using amorphous carbon as spacer material in a disposable spacer process can include forming amorphous carbon spacers at lateral side walls of a gate structure over a substrate, implanting dopants in the substrate to form source and drain regions, ashing away the amorphous carbon spacers, and implanting dopants to form shallow structures in the substrate.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: May 6, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David E. Brown, Philip A. Fisher, Richard J. Huang, Richard C. Nguyen, Cyrus E. Tabery
  • Patent number: 6559015
    Abstract: For fabricating a field effect transistor on an active device area of a semiconductor substrate, a gate dielectric and a gate electrode are formed on a portion of the active device area. First spacers are formed on sidewalls of the gate electrode and the gate dielectric. A contact dopant is implanted into exposed regions of the active device area to form drain and source contact junctions. A contact laser thermal anneal is performed to activate the contact dopant within the drain and source contact junctions. The first spacers are removed, and an extension dopant is implanted into exposed regions of the active device area to form drain and source extension junctions. An extension laser thermal anneal is performed to activate the extension dopant within the drain and source extension junctions. The fluence of the extension laser thermal anneal is lower than the fluence of the contact laser thermal anneal.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: May 6, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Bin Yu
  • Publication number: 20030082880
    Abstract: A method of manufacturing a MOSFET semiconductor device comprises forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate; forming source/drain extensions in the substrate; forming first and second sidewall spacers; implanting dopants within the substrate to form source/drain regions in the substrate adjacent to the sidewalls spacers; laser thermal annealing to activate the source/drain regions; depositing a layer of nickel over the source/drain regions; and annealing to form a nickel silicide layer disposed on the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. The annealing is at temperatures from about 350 to 500° C.
    Type: Application
    Filed: October 25, 2001
    Publication date: May 1, 2003
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Bin Yu, Robert B. Ogle, Eric N. Paton, Cyrus E. Tabery, Qi Xiang
  • Publication number: 20030080361
    Abstract: A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
    Type: Application
    Filed: November 1, 2001
    Publication date: May 1, 2003
    Inventors: Anand Murthy, Robert S. Chau, Tahir Ghani, Kaizad R. Mistry
  • Patent number: 6555438
    Abstract: A method for fabricating MOSFETs with a recessed self-aligned silicide contact and extended source/drain junctions is described. A gate structure having a gate insulating layer, a first conductive layer and a first dielectric layer is formed on a substrate. A thermal oxide layer is formed on the substrate and on sidewalls of the first conductive layer. The first dielectric layer is removed. Extended source and drain junctions are formed in the substrate under a region covered by the first thermal oxide layer. Sidewall spacers are formed on the sidewalls of the gate structure to protect the extended source and drain junctions therebeneath from being silicided. The second thermal oxide layer is removed to form recessed regions on a substrate surface. A first metal layer is formed on the substrate after the first dielectric layer is removed. Source/drain regions under the recessed regions are formed.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: April 29, 2003
    Inventor: Shye-Lin Wu
  • Patent number: 6551885
    Abstract: A method of manufacturing an integrated circuit utilizes a thin film substrate and a high-k gate dielectric. The method includes providing a mask structure on a top surface of the thin film, depositing a semiconductor material above the top surface of the thin film and the mask structure, removing the semiconductor material to a level below the top surface of the mask structure, siliciding the semiconductor material, and providing a gate structure in an aperture formed by removing the mask structure. The transistor can be a fully depleted transistor having material for siliciding source and drain regions.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: April 22, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Bin Yu
  • Publication number: 20030071290
    Abstract: A semiconductor device and method of manufacture. A liner composed of a high-K material having a relative permittivity of greater than 10 is formed adjacent at least the sidewalls of a gate. Sidewall spacers are formed adjacent the gate and spaced apart from the gate by the liner. The liner can be removed using an etch process that has substantially no reaction with a gate dielectric of the gate.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 17, 2003
    Inventors: Bin Yu, Qi Xiang, HaiHong Wang
  • Patent number: 6541329
    Abstract: A plurality of active pixel sensors are formed on the surface of a semiconductor wafer. The semiconductor wafer comprises a P-type substrate, an active pixel sensor region and a periphery circuit region. A first active pixel sensor block mask (APSB mask) is formed to cover the active pixel sensor region, then at least one N-well on the surface of the semiconductor wafer not covered by the first APSB mask is formed. A second APSB mask and at least one N-well mask are formed to cover the active pixel sensor region and the region outside the P-well region. At least one P-well on the surface of the semiconductor wafer not covered by the second APSB mask and the N-well mask is formed. Finally, at least one photodiode and at least one complementary metal-oxide semiconductor (CMOS) transistor are formed on the surface of the active pixel sensor region.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: April 1, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Chong-Yao Chen, Chen-Bin Lin, Feng-Ming Liu
  • Patent number: 6537886
    Abstract: A method for fabricating an ultra-shallow semiconductor junction using a high energy co-implantation step; a low energy dopant implantation step, and a fast isothermal annealing step is provided. Microelectronics devices such as FET and CMOS devices containing said ultra-shallow semiconductor junction is also provided herein.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: March 25, 2003
    Assignee: International Business Machines Corporation
    Inventor: Kam Leung Lee
  • Patent number: 6537860
    Abstract: A method for manufacturing a discrete power rectifier device having a VLSI multi-cell design employs a two spacer approach to defining a P/N junction profile having good breakdown voltage characteristics. The method provides highly repeatable device characteristics at reduced cost. The active channel regions of the device are also defined using the same two spacers. The method is a self-aligned process and channel dimensions and doping characteristics may be precisely controlled despite inevitable process variations in spacer formation. Only two masking steps are required, and additional spacers for defining the body region profile can be avoided, reducing processing costs.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: March 25, 2003
    Assignees: APD Semiconductor, Inc., Fujifilm Microdevices Company, Ltd.
    Inventors: Hidenori Akiyama, Paul Chang, Geeng-Chuan Chern, Wayne Y. W. Hsueh, Haru Ohkawa, Yasuo Ohtsuki, Vladimir Rodov
  • Patent number: 6537884
    Abstract: A semiconductor device having an offset-gate structure, which can achieve a release of an electric field concentration and a lowering a transistor resistance at the same time. A semiconductor device has the offset-gate structure in which an offset region, at which a gate portion is not formed, is formed between an end of the gate portion and a drain on a silicon substrate. Surfaces of a source, the drain and a gate electrode of the gate portion are silicides to reduce a transistor resistance. Whereas a surface of the offset region formed between the gate portion and the drain does not include silicide. to prevent a potential of an end portion of the gate portion from being identical to a potential of the drain due to silicide. Therefore, it can achieve a release of an electric field concentration and a lowering a transistor resistance at the same time.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: March 25, 2003
    Assignee: Denso Corporation
    Inventors: Yukiaki Yogo, Shigemitsu Fukatsu
  • Patent number: 6531368
    Abstract: A method of fabricating a semiconductor device, having a locally-formed metal oxide high-k gate insulator, involving: nitriding a substrate to form a thin silicon nitride layer; depositing a thin metal film on the thin silicon nitride layer; forming a localized metal oxide layer from the thin metal film, wherein the a thick nitride layer is deposited on the thin metal film, the thick nitride layer is patterned, the at least one exposed thin metal film portion is locally oxidized, by heating, wherein the oxidizing is performed by local laser irradiation; forming a gate stack having the localized metal oxide layer and a gate electrode, wherein the a thick gate material is deposited in the electrode cavity and on the localized metal oxide layer; the thick gate material is polished, thereby forming the gate electrode; and the thick nitride layer along with the at least one covered thin metal film portion are removed, thereby forming the gate stack; and completing fabrication of the device, and a device thereby fo
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: March 11, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Bin Yu
  • Patent number: 6531366
    Abstract: A method of fabricating a semiconductor device (300) is disclosed. A low energy ion implantation (318) may form low voltage source and drain regions in a low voltage region (402-3) of a substrate. A low energy implant may also form a portion of source and drain regions in a high voltage region (402-2). A high energy ion implantation (322) may complete the formation of high voltage transistors in a high voltage region (402-2). A high voltage gate structure (418-2) may be exposed during a high energy ion implantation and mask a channel region.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: March 11, 2003
    Assignee: Cypress Semiconductor Corporation
    Inventor: Igor Kouznetsov
  • Patent number: 6531356
    Abstract: Embodiments include a semiconductor device including a well structure such that well areas can be formed with a higher density of integration and a plurality of high-voltage endurable transistors can be driven independently of one another with different voltages, and a method of manufacturing the semiconductor device. The semiconductor device may include a triple well comprising a first well formed in a silicon substrate and having a first conductivity type (P-type), a second well formed in adjacent relation to the first well and having a second conductivity type (N-type), and a third well formed in the second well and having the first conductivity type (P-type). A high-voltage endurable MOSFET is provided in each of the wells. Each MOSFET has an offset area in the corresponding well around a gate insulating layer. The offset area is formed of a low-density impurity layer which is provided under an offset LOCOS layer on the silicon substrate.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: March 11, 2003
    Assignee: Seiko Epson Corporation
    Inventor: Masahiro Hayashi
  • Publication number: 20030042546
    Abstract: A method is provided for forming damascene gates and local interconnects a single process. By combining the formation of a damascene gate and local interconnect into a single process, a low cost solution is provided, having the advantages of low resistance wordlines and reduced gate length while reducing or eliminating the local interconnect to gate contact resistance. Further, the present invention provides flexible layout of active area to form small memory cells based upon the damascene gate and local interconnect structure. As such, the present invention is particularly suited for the fabrication of SRAM memory devices.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 6, 2003
    Inventor: Todd R. Abbott
  • Publication number: 20030045061
    Abstract: The present invention provides a method of forming a semiconductor device spacer. In the method, a gate pattern is formed on a semiconductor substrate, and a first insulation layer, a second insulation layer, and a third insulation layer are sequentially formed over substantially the entire surface of the resultant structure. The second and third insulation layers are formed of the same material under a first pressure and a second pressure higher than the first pressure, respectively, and preferably of silicon nitride, using a low pressure chemical vapor deposition (LPCVD) technique. The third and second insulation layers are sequentially, anisotropically etched until the first insulation layer is exposed, thereby forming a spacer and a second insulation pattern. The spacer is selectively removed by an isotropic etching method, to minimize the recessed extent of the second insulation pattern. The exposed first insulation layer is etched to form a first insulation pattern.
    Type: Application
    Filed: July 16, 2002
    Publication date: March 6, 2003
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hyung-Shin Kwon, Joon-Yong Joo
  • Publication number: 20030038308
    Abstract: Low-resistance gate transistor and method for fabricating the same, in which a metal sidewall is formed at sides of a gate polysilicon layer to reduce the resistance and the height of a gate, thereby improving the characteristics of a semiconductor device, the low-resistance gate transistor of the present invention including a gate oxide film formed on a semiconductor substrate; a gate formed on the gate oxide film; a first gate sidewall having a vertical pattern in contact with a side of the gate at both sides of the gate and a horizontal pattern formed on the gate oxide film extended from the vertical pattern; second gate sidewalls formed of a material having a resistivity lower than the gate, each having one side in contact with the vertical pattern of the first gate sidewall and a bottom in contact with the horizontal pattern of the first gate sidewall with a round surface; an insulating layer formed on an entire surface including the gate and the first and second gate sidewalls; and, source/drain regions
    Type: Application
    Filed: October 23, 2002
    Publication date: February 27, 2003
    Applicant: Hynix Semiconductor, Inc.
    Inventor: Kwan Kim
  • Patent number: 6524939
    Abstract: A dual salicidation process is used on a semiconductor substrate which has a gate dielectric, a polysilicon gate conductor patterned upon a predetermined area of the gate dielectric, a sacrificial layer patterned upon the polysilicon gate conductor, and LDD areas formed within the substrate at opposed sidewall of the polysilicon gate conductor. First, an insulator spacer on the sidewall of the polysilicon gate conductor and the sacrificial layer, and then the gate dielectric not covered by the insulator spacer is removed. Next, source/drain regions are formed within the substrate at the outer lateral surfaces of the insulator spacer. Thereafter, using salicidation process, silicide structures are formed upon the source/drain regions. After removing the sacrificial layer salicidation process is used again to convert the polysilicon gate conductor into a silicide gate conductor.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: February 25, 2003
    Assignee: Vanguard International Semiconductor Corporation
    Inventor: Horng-Huei Tseng
  • Publication number: 20030036235
    Abstract: Semiconductor processing methods of forming integrated circuitry are described. In one embodiment, memory circuitry and peripheral circuitry are formed over a substrate. The peripheral circuitry comprises first and second type MOS transistors. Second type halo implants are conducted into the first type MOS transistors in less than all of the peripheral MOS transistors of the first type. In another embodiment, a plurality of n-type transistor devices are formed over a substrate and comprise memory array circuitry and peripheral circuitry. At least some of the individual peripheral circuitry n-type transistor devices are partially masked, and a halo implant is conducted for unmasked portions of the partially masked peripheral circuitry n-type transistor devices. In yet another embodiment, at least a portion of only one of the source and drain regions is masked, and at least a portion of the other of the source and drains regions is exposed for at least some of the peripheral circuitry n-type transistor devices.
    Type: Application
    Filed: October 3, 2002
    Publication date: February 20, 2003
    Inventor: Luan C. Tran
  • Patent number: 6521500
    Abstract: A thermal oxide film is formed on a silicon substrate, a polysilicon film is formed on the thermal oxide film, and further a patterned photoresist film is formed on the polysilicon. The polysilicon film and the thermal oxide film are etched using the photoresist film as a mask so as to form a gate electrode and a gate oxide film. The photoresist film is removed therefrom, and a thermal oxide film is formed in the circumference of the gate electrode, thereby to restore a constriction formed in the gate oxide film. A part of the thermal oxide film which corresponds to the gate electrode and another part thereof which corresponds to the semiconductor substrate are removed therefrom, and a side wall nitride film which adhere to the silicon substrate is formed on a side wall of the gate electrode. Thereafter, a source and drain diffusion layers corresponding to the gate electrode are formed on the silicon substrate, thereby to form metal wiring.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: February 18, 2003
    Assignee: NEC Corporation
    Inventor: Yoshiro Goto
  • Patent number: 6518138
    Abstract: An LDMOS transistor formed in an N-type substrate. A polysilicon gate is formed atop the N-type substrate. A P-type well is formed in the N-type substrate extending from the source side to under the polysilicon gate. A N+ source region is formed in the P-type well and adjacent to the polysilicon gate. A N+ drain region is formed in the N-type substrate and in the drain side of the polysilicon gate. Finally, an N-type drift region is formed between the N+ drain region and the polysilicon gate, wherein the N-type drift region does not extend to said polysilicon gate.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: February 11, 2003
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Michael R. Hsing
  • Patent number: 6518135
    Abstract: A method for forming a localized halo implant region, comprises: implanting a first dosage of ions of a first type toward a surface of a substrate having a gate electrode formed thereon, so as to form a lightly doped region adjacent to the gate electrode; forming a disposable spacer on a sidewall of the gate electrode; forming an elevated source/drain structure adjacent to the disposable spacer; implanting a second dosage of ions of the first type toward the surface of the substrate so as to form a heavily doped region adjacent to the disposable spacer; removing the disposable spacer; and tilt-angle implanting at least one dosage of ions of a second type toward a gap created by the disposable spacer having been removed so as to form a localized halo implant region in the substrate, preferably by utilizing shadow effects of the gate electrode and the elevated source/drain structure.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: February 11, 2003
    Assignee: Integrated Device Technology, Inc.
    Inventor: Jae-Gyung Ahn
  • Patent number: 6518122
    Abstract: A new method of fabricating and programming and erasing a Flash EEPROM memory cell is achieved. A semiconductor substrate is provided. A tunneling oxide layer is formed overlying said semiconductor substrate. A first polysilicon layer is deposited overlying the tunneling oxide layer. An interpoly oxide layer is deposited overlying the first polysilicon layer. A second polysilicon layer is deposited overlying the interpoly oxide layer. The second polysilicon layer, the interpoly oxide layer, the first polysilicon layer, and the tunneling oxide layer are patterned to form control gates and floating gates for planned Flash EEPROM memory cells. Ions are implanted to form drain junctions for planned Flash EEPROM memory cells in the semiconductor substrate where the drain junctions are shallow and abrupt. Ions are implanted to form angled pocket junctions adjacent to the drain junctions.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: February 11, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Tze Ho Simon Chan, Yung-Tao Lin
  • Publication number: 20030027396
    Abstract: A high voltage MOSFET device (100) has an nwell region (113) with a p-top layer (108) of opposite conductivity formed to enhance device characteristics. The p-top layer is implanted through a thin gate oxide, and is being diffused into the silicon later in the process using the source/drain anneal process. There is no field oxide grown on the top of the extended drain region, except two islands of field oxide close to the source and drain diffusion regions. This eliminates any possibility of p-top to be consumed by the field oxide, and allows to have a shallow p-top with very controlled and predictable p-top for achieving low on-resistance with maintaining desired breakdown voltage.
    Type: Application
    Filed: July 31, 2001
    Publication date: February 6, 2003
    Applicant: Semiconductor Components Industries, LLC.
    Inventors: Mohamed Imam, Joe Fulton, Zia Hossain, Masami Tanaka, Taku Yamamoto, Yoshio Enosawa, Katsuya Yamazaki, Evgueniy N. Stefanov
  • Publication number: 20030027395
    Abstract: A method of fabricating a DRAM semiconductor device including forming gate stacks in which a gate pattern and a gate sacrificial mask are sequentially deposited on a semiconductor substrate, forming an etch stopper on the semiconductor substrate, forming a lightly doped impurity region between the gate stacks, forming a gate spacer along sidewalls of the gate stacks, forming a heavily doped impurity region to contact the lightly doped impurity region and to be aligned with the gate spacer, removing the gate spacer, forming an interlevel dielectric layer to fill a gap between the gate stacks, forming a groove on a gate conductive layer by etching an exposed top surface of the etch stopper and the gate sacrificial mask, forming a contact mask pattern for filling the groove, forming a contact hole to be self-aligned with respect to the contact mask pattern, and forming a contact pad in the contact hole.
    Type: Application
    Filed: May 17, 2002
    Publication date: February 6, 2003
    Inventors: Byung-Jun Park, Yoo-Sang Hwang
  • Patent number: 6514810
    Abstract: A buried channel PMOS transistor for analog applications is integrated into a digital CMOS process. A third well region (105) is formed by implanting a region in the semiconductor substrate with all the n-type and p-type implants used to form the n-well and p-well regions for the digital CMOS process. A gate dielectric layer (50) and gate layer (109) are formed above the third well (105) and comprise the gate stack of the buried channel PMOS transistor. The implants used to form the drain extension regions and the source and drain regions of the CMOS transistors are used to complete the buried channel PMOS transistor.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: February 4, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Youngmin Kim, Amitava Chatterjee
  • Patent number: 6514827
    Abstract: A method for fabricating a dual metal gate structure for a semiconductor device including deposition of a semiconductor substrate having PMOS and NMOS regions, a first gate having a first insulating layer and a first metal layer is formed in a first region. The first region is either the PMOS or NMOS region, and the remaining region becomes a second region. A dummy gate is formed in the second region. A spacer and a source/drain region are formed for each of the first and dummy gates. The dummy gate, however, is removed to expose a portion of the substrate in the second region. A second gate constructed of a second gate insulating layer and a second metal layer is then formed on the exposed portion of the substrate in the second region.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: February 4, 2003
    Assignee: Hynix Semiconductor Inc.
    Inventors: Tae Kyun Kim, Se Aug Jang, Tae Ho Cha, In Seok Yeo
  • Patent number: 6511890
    Abstract: The present invention related to a method of fabricating a semiconductor device which prevents short channel hump due to the moisture in an insulating interlayer. The present invention includes the steps of forming a trench typed field oxide layer defining an active area in a field area of a semiconductor substrate of a first conductive type, forming a gate to the direction of device width wherein a gate oxide layer is inserted between the gate and semiconductor substrate, forming impurity regions in the semiconductor substrate at both sides of the gate by ion implantation with impurities of a second conductive type, forming an insulating interlayer covering the gate on the semiconductor substrate, and removing moisture contained in the insulating interlayer by thermal treatment.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: January 28, 2003
    Assignee: Hyundai MicroElectronics Co., Ltd.
    Inventors: Sung-Kye Park, Young-Chul Lee
  • Patent number: 6509220
    Abstract: A method for making a high voltage insulated gate field-effect transistor with one or more JFET conduction channels comprises successively implanting a dopant of a first conductivity type in a first epitaxial layer of a second conductivity type so as to form a first plurality of buried layers disposed at a different vertical depths. A second epitaxial layer is formed on the first epitaxial layer and the implant process repeated to form a second plurality of buried layers in stacked parallel relationship to the first plurality of buried layers. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: January 21, 2003
    Assignee: Power Integrations, Inc.
    Inventor: Donald Ray Disney
  • Patent number: 6506648
    Abstract: Methods of fabricating a high power RF lateral diffused MOS transistor (LDMOS) having increased reliability includes fabricating an N-drift region for the drain prior to fabrication of the gate contact and other process steps in fabricating the transistor. The resulting device has reduced adverse affects from hot carrier injection including reduced threshold voltage shift over time and reduced maximum current reduction over time. Linearity of device is maximized along with increased reliability while channel length is reduced.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: January 14, 2003
    Assignee: Cree Microwave, Inc.
    Inventors: Francois Hebert, Szehim Daniel Ng
  • Patent number: 6506649
    Abstract: An innovative MOSFET having a raised source drain (RSD) is constructed prior to implanting source-drain dopants. The RSD structure thus built has a distinct advantage in that the offset from the RSD to the MOSFET channel is fully adjustable to minimize the overlap capacitance in the device. The RSD construction uses a selective epitaxial process to effectively reduce the drain-source resistance. This improvement is even more significant in thin-film SOI technology. Using an RSD, the film outside the channel area thickens which, in turn, reduces the parasitic resistance.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: January 14, 2003
    Assignee: International Business Machines Corporation
    Inventors: Ka Hing Fung, Atul C. Ajmera, Victor Ku, Dominic J. Schepis
  • Publication number: 20030008465
    Abstract: A method of fabricating lightly doped drains (LDD) of different resistance values starts by providing a semiconductor wafer, the semiconductor wafer having a first active area and a second active area positioned on the substrate. Secondly, a first gate and a second gate are formed on the first active area and the second active area, respectively. A first ion implantation process is then performed to implant dopants of a first electric type on a surface of portions of the substrate within the second active area, followed by performing a second ion implantation process to implant dopants of a second electric type on a surface of portions of the substrate within the first active area and second active area. Finally, the dopants of each electric type are activated to form a first LDD and a second LDD adjacent to the first gate and the second gate, respectively, the first LDD and the second LDD being of different resistance values.
    Type: Application
    Filed: July 3, 2001
    Publication date: January 9, 2003
    Inventor: Chin-Yang Chen