Component A Metal Is Group Ia, Iia Or Iiia And Component B Metal Is Group Ivb To Viib Or Viii (i.e., Alkali Metal, Alkaline Earth Metal, Be, Mg, Al, Ga, In Or Tl And Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Iron Group Or Platinum Group) (e.g., Ziegler Catalyst, Etc.) Patents (Class 502/103)
  • Patent number: 8304361
    Abstract: Fouling in a dispersed phase reactor in the presence of a phosphinimine catalyst and MAO may be reduced by reducing the loading of the phosphinimine catalyst to provide from 0.02 to 0.031 mmol of transition M per g of catalyst while still maintaining a productivity of not less than 2500 g of polymer/gram of catalyst. The catalyst may optionally be used in the presence of an antistatic agent.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: November 6, 2012
    Assignee: NOVA Chemical (International) S.A.
    Inventors: Xiaoliang Gao, Benjamin Milton Shaw, Cliff Robert Baar
  • Patent number: 8298978
    Abstract: Single site reactor/catalyst continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation may be improved by treating the support with a metal salt. The activator and catalyst are then deposited on the treated support. The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: October 30, 2012
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Billy Gaspar Santos, Peter Phung Minh Hoang, Amy Marie Jones, Benjamin Milton Shaw, Ian Ronald Jobe
  • Patent number: 8299287
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and the substituent in the 2-position of the other indenyl ligand can be any C4-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers. The activity/productivity levels of catalysts including the metallocenes of the present invention are exceptionally high.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 30, 2012
    Assignee: Lammus Novolen Technology GmbH
    Inventors: Anita Dimeska, Ralph-Dieter Maier, Nicola S. Paczkowski, Matthew Grant Thorn, Andreas Winter, Joerg Schulte, Thorsten Sell
  • Patent number: 8299188
    Abstract: Method employing a supported metallocene catalyst composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR?2)MQn??(1) or by the formula: B?(Cp?R?aR?b)(Fl?)M?Q?n???(2) In the formulas Cp and Cp? are substituted cyclopentadienyl groups, Fl and Fl? are fluorenyl groups, and B and B? are structural bridges. R? are substituents at the 2 and 7 positions, Ra and R?a are substituents distal to the bridge, and Rb and R?b are proximal to the bridge. M and M? are transition metals, Q? is a halogen or a C1-C4 alkyl group; and n? is an integer of from 0-4.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: October 30, 2012
    Assignee: Fina Technology, Inc.
    Inventors: William Gauthier, David Rauscher, Jun Tian, Nathan Williams
  • Patent number: 8298977
    Abstract: The present invention discloses a catalyst system consisting of a mono- or di-fluorinated metallocene catalyst component of formula and a fluorinated activating support.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: October 30, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Floran Prades
  • Patent number: 8299203
    Abstract: A melt phase process for making a polyester polymer melt phase product by adding an antimony containing catalyst to the melt phase, polycondensing the melt containing said catalyst in the melt phase until the It.V. of the melt reaches at least 0.75 dL/g. Polyester polymer melt phase pellets containing antimony residues and having an It.V. of at least 0.75 dL/g are obtained without solid state polymerization. The polyester polymer pellets containing antimony residues and having an It.V. of at least 0.70 dL/g obtained without increasing the molecular weight of the melt phase product by solid state polymerization are fed to an extruder, melted to produce a molten polyester polymer, and extruded through a die to form shaped articles. The melt phase products and articles made thereby have low b* color and/or high L* brightness, and the reaction time to make the melt phase products is short.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 30, 2012
    Assignee: Grupo Petrotemex, S.A. DE C.V.
    Inventors: Mary Therese Jernigan, Michael Paul Ekart, Richard Gill Bonner
  • Patent number: 8293672
    Abstract: A solid catalyst component for olefin polymerization in which the molar ratio of residual alkoxy groups to supported titanium is 0.60 or less is obtained by reacting the following compound (a1) with the following compound (b1) at a hydroxyl group/magnesium molar ratio of 1.0 or more, reacting the reaction mixture with the following compound (c1) at a halogen/magnesium molar ratio of 0.20 or more, reacting the resultant reaction mixture with the following compounds (d1) and (e) at a temperature of 120° C. or higher but 150° C.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: October 23, 2012
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Patent number: 8293856
    Abstract: [Problem] To efficiently obtain an ?-olefin polymer having a high melting point and a high molecular weight. [Solution to Problem] The process for preparing an olefin polymer of the present invention is a process for preparing an olefin polymer, comprising polymerizing at least one monomer selected from ?-olefins of 2 or more carbon atoms, wherein the polymerization is carried out at a temperature of not lower than 40° C.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: October 23, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takashi Yukita, Masahiro Yamashita, Nobukazu Yamahira, Wataru Yamada, Hiromu Kaneyoshi
  • Patent number: 8288606
    Abstract: A solid, hydrocarbon-insoluble, catalyst component useful in polymerizing olefins containing magnesium, titanium, and halogen further contains an internal electron donor comprising a compound containing electron donating substituents with a structure: wherein D1 and D2 are selected individually from and R, R1, R2, R3, R4, R5, R6, and R7 individually are hydrocarbon or substituted hydrocarbon groups containing 1 to 20 carbon atoms and R1, R2, R3, R4, R6, and R7 may be hydrogen; R4 may be —NR2; and wherein groups R1 and R2, R2 and R3, R3 and R4, R3 and R5, and groups R6 and R7 may be joined to form a cyclic structure.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: October 16, 2012
    Assignee: Ineos USA LLC
    Inventors: Roger Uhrhammer, John P. Lalka
  • Patent number: 8283424
    Abstract: The invention relates to a process for the synthesis of a Ziegler Natta procatalyst, the process comprising first treating magnesium alkoxide with a twice used mixed solvent of TiCl4 and chlorobenzene to form a first stage product, then treating the first stage product with a once used mixed solvent of TiCl4 and chlorobenzene to form a second stage product and finally treating the second stage product with mixed solvent recovered by treatment of effluent from the first treatment with benzoyl chloride so as to convert contaminant of formula TiCl3OR in the effluent to an addition complex which is precipitated, filtered off and hydrolyzed to recover ethyl benzoate and to form Ti(OH)4 as a side product, the product after final treatment being subjected to a plurality of successive washing steps with used as well as recovered hexane.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: October 9, 2012
    Assignee: Reliance Industries Limited
    Inventors: Virendrakumar Gupta, Harshad Ramdas Patil, Dhananjay Ghelabhai Naik
  • Patent number: 8283276
    Abstract: The invention relates to a coordination complex system comprising a ligand having the formula: R1—SO2—NH—P (XR2)2 (1a); or R1—SO2—N?PH (XR2)2 (1b); or R1—SO(OH)?N—P(XR2)2 (1c); wherein X is independently O, S, NH, or a bond; R1 and R2 are independently selected from hydrogen and substituted or unsubstituted alkyl or aryl; wherein at least one equivalent of the ligand is complexed to an equivalent of a metal selected from a transition metal and lanthanide. The invention also relates to the use of said coordination complexes as catalysts in the hydroformylation, hydrogenation, transfer hydrogenation, hydrocyanation, polymerization, isomerization, carbonylation, cross-coupling, metathesis, CH activation, allylic substitution, aldol condensation, or Michael addition.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: October 9, 2012
    Assignee: Universiteit van Amsterdam
    Inventors: Joost Nikolaas Hendrik Reek, Frederic William Patureau, Mark Kuil, Albertus Jacobus Sandee, Jurjen Meeuwissen
  • Patent number: 8273677
    Abstract: A production process of a pre-polymerized catalyst component, comprising steps of (i) contacting a transition metal compound defined by formula [1], an activation agent, an organometallic compound defined by formula [2], and an optional organoaluminum compound with one another, thereby forming a primary polymerization catalyst, and (ii) pre-polymerizing an olefin in the presence of the primary polymerization catalyst; and a process for producing an addition polymer, comprising a step of polymerizing an addition polymerizable monomer in the presence of a pre-polymerized catalyst component produced by the above production process, or in the presence of the pre-polymerized catalyst component and an organoaluminum compound.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: September 25, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Takuya Ogane
  • Patent number: 8268945
    Abstract: A catalyst component for ethylene polymerization, comprising an organic silicon compound of the formula (I), below wherein R1 is chosen from C3-C20 aliphatic hydrocarbyl groups, and is substituted with at least one substituent chosen from halogens, C1-C6 acyloxy groups, epoxy, amino, C1-C6 alkylamino groups, di(C1-C6 alkyl)amino groups, C1-C6 alkoxy groups, and oxo group; R2, R3 and R4, which may be the same or different, are each chosen from C1-C10 aliphatic hydrocarbyl, C3-C10 alicyclic hydrocarbyl, C6-C10 aryl, C7-C10 aralkyl, and C7-C10 alkaryl groups. A process for preparing the catalyst component and an active catalyst comprising the catalyst component and useful in polymerization, such as ethylene polymerization.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: September 18, 2012
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Taoyi Zhang, Junling Zhou, Hongtao Wang, Zifang Guo, Qingqiang Gou, Hongxu Yang, Ruixia Li, Shiyuan Xu
  • Patent number: 8268944
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: September 18, 2012
    Assignee: Chevron Phillips Company, L.P.
    Inventors: Qing Yang, Kumudini C. Jayaratne, Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Matthew G. Thorn, Jerry T. Lanier, Tony R. Crain
  • Patent number: 8268949
    Abstract: Borohydride metallocene complex of lanthanide, preparation process, catalytic system incorporating it, copolymerization of olefins employing catalytic system and ethylene/butadiene copolymer, the butadiene units comprise 1,2-cyclohexane or 1,2- and 1,4-cyclohexane links. The complex corresponds to of formulae A and/or B: where, in A two ligands Cp1 and Cp2, each of a fluorenyl group, are connected to the lanthanide Ln, where, in B, a ligand molecule, composed of two fluorenyl groups Cp1 and Cp2 are connected via bridge P of formula MR1R2, is an element from group IVa, R1 and R2, which are identical or different, represent an alkyl group comprising from 1 to 20 carbon atoms, connected to lanthanide Ln, L is alkali metal, N is molecule of a complexing solvent, x is integral or non-integral number ?0 and p is integer ?1.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: September 18, 2012
    Assignees: Michelin Recherche et Technique S.A., Total Petrochemicals France, Centre National de la Recherche Scientifique, Ecole Superieure de Chimie-Physique-Electronique de Lyon
    Inventors: Julien Thuilliez, Christophe Boisson, Roger Spitz
  • Patent number: 8258361
    Abstract: The invention provides transition metal complex compounds, high-activity olefin oligomerization catalysts containing the compounds, and olefin oligomerization processes using the catalysts. A transition metal complex compound [A] according to the invention is represented by Formula (I) or Formula (I?) below. An olefin oligomerization catalyst includes the transition metal complex compound [A]. In an olefin oligomerization process of the invention, an olefin is oligomerized in the presence of the catalyst.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: September 4, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasuhiko Suzuki, Shinsuke Kinoshita, Atsushi Shibahara, Naritoshi Yoshimura, Isao Hara, Tetsuya Hamada, Kazumori Kawamura, Kou Tsurugi, Yasunori Saito, Seiichi Ishii, Yasushi Nakayama, Naoto Matsukawa, Susumu Murata
  • Patent number: 8258247
    Abstract: The object is to provide a catalyst component for ethylene polymerization which can produce an ethylene polymer of high molecular weight which has substantially only an ethyl branch, and a process for producing the catalyst component for ethylene polymerization which can produce an ethylene polymer of high molecular weight which has substantially only an ethyl branch. A catalyst component for polymerization of ethylene obtained by contacting the following components (A), (B), (C) and (D): component (A): a meso-metallocene compound, component (B): a compound which ionizes a metallocene compound to form an ionic complex, component (C): an organoaluminum compound, and component (D): an electron donating compound, and a process for producing the ethylene polymer by polymerizing ethylene in the presence of the above catalyst component for ethylene polymerization.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: September 4, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Yasutoyo Kawashima
  • Patent number: 8252875
    Abstract: Process for the preparation of monoimine compounds, wherein a dicarbonyl compound is reacted in an aliphatic, non-aromatic solvent with aniline. Monoimine compounds having electron-withdrawing substituents in the ortho position and unsymmetric bis(imino) compounds and unsymmetric iron complexes prepared therefrom and the use thereof in the polymerization of olefins.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 28, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Benno Bildstein, Lars Kölling, Alexander Solchinger, Sascha Schlawjinski
  • Patent number: 8247588
    Abstract: Catalyst compositions for the polymerization of olefins having improved flowability properties are provided.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: August 21, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Jeevan S. Abichandani
  • Patent number: 8247587
    Abstract: The present invention relates to monohydroindacenyl complexes as active catalytic components in the copolymerization of ethylene. The complexes are suitable for direct preparation of ethylene copolymers having a narrow molecular distribution as well as the desired levels of low density and preferably a predetermined value of glass transition temperature Tg. The produced copolymers showing improved elastomeric performance can be prepared in a single step during polymerization reaction, thus avoiding a blending step following the polymerization step.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 21, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan
  • Patent number: 8242221
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: August 14, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Matthew G. Thorn, Elizabeth A. Benham
  • Publication number: 20120184431
    Abstract: Disclosed is transition metal complex that serves as a catalytic component with which 1-hexene can be produced efficiently with excellent selectivity, even under high temperature conditions, by means of an ethylene trimerization reaction. Also disclosed is a method for economically preparing a butyl-branched ethylene polymer, even under high temperature conditions, by using said transition metal complex as an ethylene trimerization catalyst, and polymerizing ethylene in the presence of an olefin polymerization catalyst that is obtained by bringing an olefin copolymerization catalyst and an activating co-catalytic component into contact with one another. Said transition metal complex is represented by the following general formula (1), wherein M1 represents a Group 4 transition metal atom, and R1 through R11 and X1 through X3 each independently represent a hydrogen atom, a halogen atom, or a specific organic group.
    Type: Application
    Filed: September 30, 2010
    Publication date: July 19, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasutoyo Kawashima, Takahiro Hino, Taichi Senda, Masaya Tanimoto
  • Patent number: 8222358
    Abstract: In a process for producing a propylene copolymer, propylene and at least one olefin monomer selected from ethylene and alpha olefins having 4 to 20 carbon atoms are contacted with a catalyst system comprising (a) a catalyst precursor comprising an organometallic compound and (b) an activator comprising a fluoroarylborate anion represented by the formula: Ct+[B(Ar)x(R)n]? where Ct+ is a cation capable of extracting an alkyl group from, or breaking a carbon-metal bond of, the organometallic compound; Ar is a fluorophenyl group; R is a fluoronaphthyl group and each of x and n is 1, 2, or 3, with the proviso that the sum of x+n=4.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: July 17, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: George Rodriguez, Bruce Allan Harrington
  • Patent number: 8222361
    Abstract: The present invention relates to a method for the production of an ethylene/propylene/diene copolymer by means of solution polymerization, and more specifically one for a copolymer whose main components are ethylene, propylene and diene monomers using a catalyst of a transition metal coordination compound; the constituent components and characteristics of the copolymer being as follows. The catalyst composition provided by the present invention, which is used to produce a copolymer of which (a) the ethylene content is from 30 wt. % to 80 wt. %, (b) the propylene content is from 19.9% to 60 wt. % and (c) the diene content is from more than 0 wt. % to 15 wt.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 17, 2012
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Byoungtak Yim, Youngwook Kim, Myungahn Ok, Jongsok Hahn, Dongcheol Shin
  • Patent number: 8222175
    Abstract: This invention relates to a process for the preparation of an olefin polymerization catalyst, to the use of the catalyst in olefin polymerization and to the catalyst and polymers obtained. In particular, the invention relates to the preparation of a catalyst comprising an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC) by a semi-continuous or continuous process.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: July 17, 2012
    Assignee: Borealis Technology Oy
    Inventors: Michael Bartke, Peter Denifl
  • Patent number: 8222174
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridged ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and an activator. The bridged ?5-cyclopentadienyl-type ligands are connected by a cyclic substituent.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: July 17, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Tony R. Crain
  • Patent number: 8216957
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerization catalyst component in particulate form having improved polymerization properties due to the use of H2 during catalyst component preparation and the use of such catalyst components in a process for polymerizing olefins.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 10, 2012
    Assignee: Borealis AG
    Inventors: Timo Leinonen, Peter Denifl, Anssi Haikarainen
  • Patent number: 8207281
    Abstract: The present invention relates to a process for preparing transition metal compounds, in particular ansa-bisindenyl-metallocenes having nitrogen, phosphor, sulfur or oxygen comprising substituents, the corresponding transition metal compounds themselves and their use in the preparation of catalyst systems and also the use of the catalyst systems in the polymerization and copolymerization of olefins.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: June 26, 2012
    Assignee: Basell Polyolefine GmbH
    Inventor: Reynald Chevalier
  • Patent number: 8207375
    Abstract: The invention relates to the hydrogenation of aromatic compounds, in particular the preparation of alicyclic polycarboxylic acids or their esters by core hydrogenation of the corresponding aromatic polycarboxylic acids or their esters, and also to catalysts suitable therefore.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: June 26, 2012
    Assignee: Evonik Oxeno GmbH
    Inventors: Michael Grass, Alfred Kaizik, Wilfried Bueschken, Axel Tuchlenski, Dietrich Maschmeyer, Kurt-Alfred Gaudschun, Frank Brocksien
  • Patent number: 8206654
    Abstract: Catalyst feed systems and processes utilizing such systems are described herein. Some embodiments disclosed herein relate to a process for improving the flowability of catalyst in a catalyst feed system, including providing a catalyst feed vessel with at least one heat exchange system for maintaining the catalyst system temperature below a critical flow temperature. Also disclosed is a catalyst feed system for the polymerization of olefins including a catalyst feed vessel; and a heat exchange system for maintaining a temperature of a catalyst within the catalyst feed vessel. Additionally disclosed is a process for polymerization of olefins including maintaining a supported catalyst in a catalyst feed vessel below a critical flow temperature of the catalyst; feeding the catalyst to a polymerization reactor; and contacting the catalyst with an olefin to form a polyolefin.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: June 26, 2012
    Assignee: Univation Technologies, LLC
    Inventors: William A. Matthews, Michael I. Hurdle, Gerardo Corona, Dung P. Le, Semra Gercek, George W. Schwarz, Jr.
  • Patent number: 8193114
    Abstract: Catalysts, catalyst systems, and methods for removing ammonia and/or carbon monoxide in flue gases are provided where ammonia is used with a selective catalytic reduction catalyst for reducing oxides of nitrogen. A dual oxidation catalyst generally comprises an alkali component, a transition metal, and a metal oxide support. This catalyst is also substantially free from precious metal components and effective for substantially simultaneously oxidizing ammonia (NH3) and carbon monoxide (CO) when placed in an exhaust gas stream. The catalyst is effective to provide low ammonia to nitrogen oxides selectivity.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: June 5, 2012
    Assignee: BASF Catalysts LLC
    Inventors: Ahmad Moini, Gerald S. Koermer, Pascaline Harrison Tran, Jacqueling S. Curran
  • Patent number: 8188200
    Abstract: Disclosed is a method of producing a polyolefin composition comprising contacting a metallocene pre-catalyst, co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; and polymerizing the first monomer for a time sufficient to form the polyolefin. The method allows for the use of minimum amounts of activating co-catalyst and metallocene pre-catalyst. Also disclosed is a method of producing a block polyolefin composition comprising contacting a metallocene pre-catalyst, a co-catalyst, and a stoichiometric excess of a metal alkyl; adding a first olefin monomer; polymerizing the first monomer for a time sufficient to form the polyolefin; adding a second monomer; and polymerizing the second olefin monomer for a time sufficient to form said block polyolefin composition. Also disclosed are amorphous atactic polymer and copolymer compositions made according to the present invention.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: May 29, 2012
    Assignee: University of Maryland, College Park
    Inventors: Lawrence R. Sita, Wei Zhang
  • Patent number: 8173828
    Abstract: Halogen substituted metallocene compounds are described and comprise one or more monocyclic or polycyclic ligands that are pi-bonded to the metal atom and include at least one halogen substituent directly bonded to an sp2 carbon atom at a bondable ring position of the ligand, wherein the or at least one ligand has one or more ring heteroatoms in its cyclic structure. When combined with a suitable activator, these compounds show activity in the polymerization of olefins, such as ethylene and propylene.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: May 8, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Alexey N. Ryabov, Mikhail V. Nikulin, Alexander V. Lygin, Dmitry V. Uborsky, Catalina L. Coker, Jo Ann M. Canich
  • Patent number: 8168556
    Abstract: A metallocene compound with the 4- and 7-positions on the indenyl moiety possessing large aromatic substituents is prepared in accordance with a method which produces substantially 100 percent racemic isomer. Advantageously, polymerization catalysts including the metallocene of the invention provide superior olefin polymerization results.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: May 1, 2012
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Joerg Schulte, Thorsten Sell, Matthew Grant Thorn, Andreas Winter, Anita Dimeska
  • Patent number: 8158733
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-(2-aryloxy)quinoline or 2-(2-aryloxy)dihydroquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: April 17, 2012
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko
  • Patent number: 8153545
    Abstract: Metal complexes, catalyst compositions containing the metal complexes, and processes for making the metal complexes and the catalyst compositions are described for the manufacture of polymers from ethylenically unsaturated addition polymerizable monomers. The metal complexes have chemical structures corresponding to one of the following formulae: wherein MI and MII are metals; T is nitrogen or phosphorus; P is a carbon, nitrogen or phosphorus atom; groups R1, R2 and R3 may be linked to each other; Y is a divalent bridging group; X, X1, and X2 are anionic ligand groups with certain exceptions; D is a neutral Lewis base ligand; and s, o, k, i, ii, p, m, a, b, c, d, c, t, and y are numbers as further described in the claims.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: April 10, 2012
    Assignee: Styron Europe GmbH
    Inventor: Sven K. H. Thiele
  • Patent number: 8148286
    Abstract: The invention relates to an activated alkaline earth metal, to a method for its production and the use of the activated alkaline earth metal for the preparation of Grignard compounds and organoalkaline earth metal compounds.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: April 3, 2012
    Assignee: Chemetall GmbH
    Inventors: Rainer Dietz, Ute Emmel, Ulrich Wietelmann, Uwe Lischka
  • Patent number: 8143183
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: March 27, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Patent number: 8143353
    Abstract: This invention relates to a propylene polymer comprising a component having a crystallinity of 10% or less and a component having a crystallinity of 20% or more, said propylene polymer having: a) a melting point of X ° C. or more where X=?0.0038(Tp)2+0.36(Tp)+150, where Tp is the temperature of polymerization in ° C.; b) an Mw of 10,000 g/mol or more; c) a heat of fusion of from 1-70 J/g; d) Stereodefects per 10,000 monomer units of Y or less where Y=2.35(Tp)?100 (where Tp is the temperature of polymerization in ° C.) for the portion of the blend that is insoluble in hexane at 23° C.; e) a dot T-Peel on Kraft paper of 1 N or more; and f) a branching factor of 0.98 or less, where the branching factor is the ratio of g? measured at Mz to g? measured at Mw, and process to produce such polymers.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: March 27, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jo Ann M. Canich, Peijun Jiang
  • Patent number: 8143184
    Abstract: The invention is directed to a process for producing an olefin polymerization catalyst wherein a solution of a soluble magnesium complex containing an element of is Group 13 or 14 of the Periodic Table (IUPAC) is contacted with a halogen containing transition metal compound of Group 3 to 10 of the Periodic Table (IUPAC) to obtain a solid catalyst complex comprising as essential components Mg, said element of is Group 13 or 14 of the Periodic Table (IUPAC) and said transition metal compound.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: March 27, 2012
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Päivi Waldvogel
  • Patent number: 8143430
    Abstract: The present invention provides polymerization catalyst compositions employing novel heterodinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins are also provided.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: March 27, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin, Gary L. Glass
  • Patent number: 8138113
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: March 20, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Kumudini C. Jayaratne, Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Matthew G. Thorn, Jerry T. Lanier, Tony R. Crain
  • Patent number: 8138285
    Abstract: Methods of forming supported catalyst systems, supported catalyst systems and polymerization processes utilizing the supported catalyst systems are described herein. The methods generally include providing an inorganic support material and contacting the inorganic support material with a support solvent to form a support solution. The methods further include contacting the support solution with a fluorine containing compound represented by the formula AlFpX3-pBq to impregnate the fluorine containing compound within the inorganic support material and form an intermediate, wherein X is selected from Cl, Br and OH?, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. In addition, the methods include drying the intermediate to remove the solvent therefrom and heating the intermediate at a temperature of at least about 300° C.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: March 20, 2012
    Assignee: Fina Technology, Inc.
    Inventor: Vladimir Marin
  • Patent number: 8133835
    Abstract: Provided are a molecular weight controllable, high 1,4-trans polybutadiene catalyst system, and more particularly, a four-component catalyst for preparing 1,4-trans polybutadiene with high yield, the catalyst comprising a cobalt compound, an organoaluminum compound, a phenol-based compound, and a phosphorus-based compound used to prepare 1,4-trans polybutadiene by polymerizing butadiene or a butadiene derivative, and capable of controlling the molecular weight of 1,4-trans polybutadiene by regulating the amount of the phosphorus-based compound. In particular, 1,4-trans polybutadiene may be efficiently applied to tires, belts, or the like since it has excellent tensile strength, tear strength, and cut & chip properties with increasing processability.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: March 13, 2012
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Hwieon Park, Gwang Hoon Kwag, Hoochae Kim, Seung Hwon Lee
  • Patent number: 8133832
    Abstract: The present invention relates to new catalyst supports comprising nanofibers, a catalyst system comprising these supports as well as a process for preparing nanocomposites and the nanocomposites prepared. The invention especially concerns a supported catalyst system for polymerization of olefins, comprising a support made of fibers or a fleece of fibers, wherein the mean fiber diameter is less than 1000 nm, preferably less than 500 nm and the mean fiber length is more than 200,000 nm, preferably more than 500,000 nm and especially preferred more than 1,000,000 nm as well as a process for polymerizing olefinic systems in the presence of these catalyst systems and the resulting nanocomposites.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: March 13, 2012
    Assignee: Basell Polyolefine GmbH
    Inventors: Marc Oliver Kristen, Rolf Mülhaupt, Georg Müller
  • Publication number: 20120059134
    Abstract: A catalyst composition comprising (a) a first metallocene complex represented by the general formula: where M1 is Ti, Zr or Hf, X1 and X2 are each independently F, Cl, Br, I, methyl, benzyl, phenyl, H, BH4, a hydrocarbyloxide group having up to 20 carbon atoms, a hydrocarbylamino group having up to 20 carbon atoms, a trihydrocarbylsilyl group having up to 20 carbon atoms, OBR?2 wherein R? may be an alkyl group having up to 12 carbon atoms or an aryl group having up to 12 carbon atoms, and SO3R? wherein R? may be an alkyl group having up to 12 carbon atoms or an aryl group having up to 12 carbon atoms, and Cp1 and Cp2 are each independently a substituted or unsubstituted cyclopentadienyl group, or a substituted or unsubstituted indenyl group, where any substituent on Cp1 and Cp2 is H, a hydrocarbyl group having up to 18 carbon atoms or a hydrocarbylsilyl group having up to 18 carbon atoms, (b) a second metallocene complex, (c) a non-group 4 metallocene transition-metal complex, (d) an activator or activato
    Type: Application
    Filed: September 7, 2010
    Publication date: March 8, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Qing YANG, Max P. MCDANIEL, Joel L. MARTIN, Errun DING, David C. ROHLFING, Tony R. CRAIN
  • Publication number: 20120058886
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Application
    Filed: November 3, 2011
    Publication date: March 8, 2012
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Patent number: 8129488
    Abstract: Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido or alcoxy group is introduced is coordinated, a method of synthesizing the same, and olefin polymerization using the transition metal complex. Compared to a conventional transition metal complex having a silicon bridge and an oxido ligand, the transition metal complex has a phenylene bridge, so that a monomer easily approaches the transition metal complex in terms of structure and a pentagon ring structure of the transition metal complex is stably maintained. The catalyst composition including the transition metal complex is used to synthesize a polyolefin copolymer having a very low density less than 0.910 g/cc.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: March 6, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Choong Hoon Lee, Eun-Jung Lee, Seungwhan Jung, Jong Joo Ha, Beomdoo Seo, Bun Yeoul Lee, Ui Gab Joung, Dae June Joe
  • Publication number: 20120053312
    Abstract: A method for making a support impregnated Ziegler-Natta-type catalyst precursor including at least two transition metals and a support material wherein the resulting catalyst precursor is free-flowing is provided. Also provided is a process for producing a Ziegler-Natta type procatalyst by halogenating the free flowing catalyst precursor. The Ziegler-Natta type procatalyst and the reaction product of at least one monomer in the presence of the Ziegler-Natta type procatalyst and cocatalyst are also provided.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Burkhard E. Wagner, Cynthia A. Hepburn
  • Patent number: 8119553
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 21, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Youlu Yu, David C. Rohlfing, Michael D. Jensen