Heart Patents (Class 600/508)
  • Patent number: 10856806
    Abstract: A system and method for monitoring lung water content of a patient. The system may include at least two microwave sensors and a processor. The system may transmit one or more microwave signals into the thorax of a patient using one or more of the microwave sensors. The system may then receive one or more of the microwave signals using one or more of the microwave sensors. The one or more received microwave signals may each have at least one associated frequency component with a magnitude and a phase. The system may analyze the phase of one or more received microwave signals to monitor changes in the lung water content. The system may analyze the magnitude of one or more received microwave signals to determine whether the lung water content is increasing or decreasing.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: December 8, 2020
    Inventors: Magdy F. Iskander, Ruthsenne R. G. Perron
  • Patent number: 10856752
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on the patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: December 8, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matt Banet, Isaac Henry, Donald Bernstein
  • Patent number: 10856938
    Abstract: Systems are provided for assessing the likelihood that a sample of cardiac tissue will spontaneously exhibit disordered electrical activity. These systems induce ventricular tachycardia or other disordered electrical activity in a sample of human and/or animal cardiac tissue either in vivo or in vitro. This system can be used to assess the ability of various pharmaceuticals, genetic modifications, electrical pacing, surgical ablation, or other therapeutic interventions to prevent or halt such disordered electrical activity. This system detects electrical activity from a plurality of points on the surface of the sample of cardiac tissue and generates one or more maps of monophasic action potential amplitude, monophasic action potential duration, local field amplitude, or other electrophysiological parameters of the cardiac tissue.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: December 8, 2020
    Assignee: THE ARIZONA BOARD OF REGENTS ON BEHAFT OF THE UNIVERSITY OF ARIZONA
    Inventors: Ikeotunye Royal Chinyere, Jen Watson Koevary, Jordan Lancaster, Steven Goldman, Russell Witte, Kyle Weigand
  • Patent number: 10842392
    Abstract: The invention provides a body-worn patch sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The patch sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: November 24, 2020
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna, Mark Dhillon
  • Patent number: 10832595
    Abstract: Disclosed is a medico-surgical simulator and to a corresponding method. The medico-surgical simulator includes a vascularization device and/or a ventilation device, as well as a regulation device. The medico-surgical simulator is arranged so as to be connected to a cadaver and to vascularize an arterial system of the cadaver via the vascularization device and/or to ventilate a respiratory system of the cadaver via the ventilation device. The regulation device controls the vascularization and ventilation devices in such a way as to simulate cardiorespiratory functions for providing surgical training carried out on the cadaver with a very high degree of realism.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: November 10, 2020
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE POITIERS, CENTRE HOSPITALIER UNIVERSITAIRE DE POITIERS, INSERM—INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
    Inventors: Jean-Pierre Richer, Jean-Pierre Faure, Denis Oriot, Cyril Breque, Pierre Olivier Delpech, Daniel-Aïham Ghazali
  • Patent number: 10806192
    Abstract: A wetsuit is provided which comprises (a) a first central region comprising a first material and having a first thickness; and (b) a second lateral region comprising a second material and having a second thickness. The buoyancy per unit area of the first region is greater than the buoyancy per unit area of the second region.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: October 20, 2020
    Assignee: ROKA SPORTS, INC
    Inventors: Robert Allen Canales, Kurt Robert Spenser
  • Patent number: 10806394
    Abstract: In an information processing method, a computer acquires a sleep state of a person existing in space, acquires detection data output from a sensor that detects entry of an object into the space, performs a first determination to determine whether or not the sleep state changes to awakening within a predetermined time from a time point at which the object is estimated to enter the space based on the sleep state and the detection data, generates, in association with the sleep state before the time point, awakening information for determining possibility that the person is awakened by entry of the object in a case where the person is in the sleep state before the time point of entry based on a result of the first determination, and presents the awakening information associated with the sleep state via a presentation device.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: October 20, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akihiro Michimori, Hiroko Sugimoto
  • Patent number: 10799148
    Abstract: A method of detecting a localization element/sheath state change with a localization system includes establishing a localization field using a plurality of localization field generators, obtaining first and second localization signals from first and second catheter-borne localization elements within the localization field, respectively, comparing the quadrature components of the first and second localization signals, and detecting a localization element/sheath state change for one of the catheter-borne localization elements based on the comparison between quadrature components. For example, withdrawal of a localization element into an introducer sheath can be detected when the comparison between quadrature components exceeds a preset amount. Conversely, re-emergence of the localization element from the introducer sheath can be detected when the comparison between quadrature components returns below the preset amount.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: October 13, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Artem Mosesov, Anthony D. Hill, Birin Yucesan, Timothy G. Curran
  • Patent number: 10796714
    Abstract: The present invention extends to methods, systems, for diagnosing coronary artery disease (CAD) in patients by using their voice signal comprising receiving voice signal data indicative of speech from the patient.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: October 6, 2020
    Assignee: VOCALIS HEALTH LTD.
    Inventors: Yoram Levanon, Yotam Luz
  • Patent number: 10765329
    Abstract: Provided is a system and method of generating an aggregated stability map of one or more rotational sources associated with a heart rhythm disorder. In accordance therewith, a plurality of rotational area profile maps is accessed for a plurality of analysis intervals. Each of the rotational area profile maps includes rotation intensity values for a plurality of locations associated with rotation of the one or more rotational sources. Thereafter, an aggregated stability map is generated map based on the plurality of rotational area profile maps, wherein the aggregated stability map includes a plurality of locations. Each location includes a rotation intensity value based at least on a filter level of highest rotation intensity values for that location from corresponding locations of the plurality of rotational area profile maps.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: September 8, 2020
    Assignee: Topera, Inc.
    Inventors: William Robert Macneil, Carey Robert Briggs, Christopher Todd Schuster, Heather A. Drury
  • Patent number: 10765873
    Abstract: A system for supplementing communications capabilities of a patient monitoring device, the system including an interface device configured to communicably couple with and to receive the patient monitoring information from the patient monitoring device, a memory device hosted by the interface device and configured to store at least a portion of the patient monitoring information, a wireless transceiver hosted by the interface device, a database hosted by the interface device; and a processor communicably coupled to the wireless transceiver and the asset management database, the processor configured to format the patient monitoring information into one or more data objects, each of the one or more data objects associated with an EMS incident during which the patient monitoring information was gathered, the processor further configured to store the one or more data objects to the database and to transmit the one or more data objects with the wireless transceiver.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: September 8, 2020
    Assignee: ZOLL Medical Corporation
    Inventors: Michael Scott Martin, Chad Ashmore, Eric A. Deines, Gary A. Freeman, Joseph L. Helmick, Thomas E. Kaib, Richard A. Rattanni, C. Shane Reid, Jeremy Ryan Soller, Shane S. Volpe, Gary Ruggiero, Frederick J. Geheb
  • Patent number: 10758191
    Abstract: A graphical representation may be displayed including at least a plurality of transducer graphical elements, each transducer graphical element of the plurality of transducer graphical elements representative of a respective transducer of a plurality of transducers of a transducer-based device. A set of user input may be received including an instruction set to reposition a first transducer graphical element in a state in which the first transducer graphical element is located at a first location in the graphical representation and a second transducer graphical element is located at a second location in the graphical representation, the second location closer to a predetermined location in the graphical representation than the first location. In response to conclusion of receipt of the set of user input, the first transducer graphical element may be repositioned from the first location in the graphical representation to the predetermined location in the graphical representation.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: September 1, 2020
    Assignee: KARDIUM INC.
    Inventors: Saar Moisa, Michael Hermann Weber
  • Patent number: 10758162
    Abstract: A system for monitoring a person may include a person-worn sensor device including at least one sensor (e.g., at least one accelerometer, magnetometer, altimeter, etc.) configured to collect sensor data and a processor to process data from the person-worn sensor device. The processor may be configured to determine or access an orientation of a physical support apparatus (e.g., bed, table, wheelchair, chair, sofa, or other structure for supporting the person), receive sensor data collected by the person-worn sensor device, calculate an orientation of the person relative to the physical support apparatus based on (a) the orientation of the physical support apparatus and (b) the sensor data collected by the person-worn sensor device, and identify, based on the determined orientation of the person relative to the physical support apparatus, a physical support apparatus exit condition indicating an occurrence or anticipated occurrence of the person exiting the physical support apparatus.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 1, 2020
    Assignee: LEAF HEALTHCARE, INC.
    Inventors: Daniel Shen, Barrett Larson, Mark Weckwerth
  • Patent number: 10751006
    Abstract: A graphical representation may be displayed including at least a plurality of transducer graphical elements, each transducer graphical element of the plurality of transducer graphical elements representative of a respective transducer of a plurality of transducers of a transducer-based device. A set of user input may be received including an instruction set to reposition a first transducer graphical element in a state in which the first transducer graphical element is located at a first location in the graphical representation and a second transducer graphical element is located at a second location in the graphical representation, the second location closer to a predetermined location in the graphical representation than the first location. In response to conclusion of receipt of the set of user input, the first transducer graphical element may be repositioned from the first location in the graphical representation to the predetermined location in the graphical representation.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: August 25, 2020
    Assignee: KARDIUM INC.
    Inventors: Saar Moisa, Michael Hermann Weber
  • Patent number: 10751003
    Abstract: Vital sign monitors are plagued by noisy photoplethysmography (PPG) data, making it difficult for the monitors to output consistently accurate readings. Noise in PPG signals is often caused by motion. The present disclosure provides improved techniques for reducing motion-related artifacts in optical/PPG measurements for vital signs monitoring. In general, techniques described herein are based on using measurements of reference sensors that include sensors other than optical sensors used for the optical measurements, e.g., biopotential sensors, bioimpedance sensors, and/or capacitive sensors. In particular, techniques described herein aim to filter PPG signals using substantially only the noise components of signals generated by reference sensors, by attenuating or altogether eliminating components of the signals generated by reference sensors which are indicative of the parameter the reference sensors are designed to measure.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: August 25, 2020
    Assignee: ANALOG DEVICES GLOBAL UNLIMITED COMPANY
    Inventors: Roberto Munoz, Guillermo Serrano Leon, Carlos Millan Navarro
  • Patent number: 10746852
    Abstract: A method for monitoring periodic motions of one or more subjects uses signal reflections from the subjects. The method includes emitting a transmitted signal from a transmitting antenna and receiving a received signal at one or more receiving antennas. The received signal includes a combination of a number of reflections of the transmitted signal, at least some of which are associated with the subjects. The received signal, including the reflections, is processed to determine an estimate of a fundamental frequency of the periodic motions.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: August 18, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Fadel Adib, Zachary Edward Kabelac, Dina Katabi
  • Patent number: 10740634
    Abstract: A computer-implemented method is disclosed. The method includes preparing a base of an anomaly detection model for generating a score that indicates an estimation of a concentration decline. The anomaly detection model has parameters affecting the score. The method also includes preparing a set of training data, each of which includes a sequence of sensor data relating to activity performed by an individual. The method also includes optimizing the parameters of the anomaly detection model using the set of the training data so as to make a score for longer cumulative activity high as compared to shorter cumulative activity. The method further includes outputting the parameters of the anomaly detection model, in which the anomaly detection model having the parameters is used for detecting a concentration decline of a target individual.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takayuki Katsuki, Kun Zhao, Takayuki Yoshizumi
  • Patent number: 10741290
    Abstract: Measurement of circulating ST2 and natriuretic peptide (e.g., NT-proBNP) concentrations is useful for the prognostic evaluation of subjects, in particular for the prediction of adverse clinical outcomes, e.g., mortality, transplantation, and heart failure.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: August 11, 2020
    Assignee: Critical Care Diagnostics, Inc.
    Inventors: James V. Snider, Robert W. Gerwien, Sven Jacobson
  • Patent number: 10729357
    Abstract: A system for monitoring medical conditions including pressure ulcers, pressure-induced ischemia and related medical conditions comprises at least one sensor adapted to detect one or more patient characteristic including at least position, orientation, temperature, acceleration, moisture, resistance, stress, heart rate, respiration rate, and blood oxygenation, a host for processing the data received from the sensors together with historical patient data to develop an assessment of patient condition and suggested course of treatment. In some embodiments, the system can further include a support surface having one or more sensors incorporated therein either in addition to sensors affixed to the patient or as an alternative thereof. The support surface is, in some embodiments, capable of responding to commands from the host for assisting in implementing a course of action for patient treatment.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: August 4, 2020
    Assignee: LEAF HEALTHCARE, INC.
    Inventors: Barrett J. Larson, Daniel Z. Shen
  • Patent number: 10722184
    Abstract: A graphical representation may be displayed including at least a plurality of transducer graphical elements, each transducer graphical element of the plurality of transducer graphical elements representative of a respective transducer of a plurality of transducers of a transducer-based device. A set of user input may be received including an instruction set to reposition a first transducer graphical element in a state in which the first transducer graphical element is located at a first location in the graphical representation and a second transducer graphical element is located at a second location in the graphical representation, the second location closer to a predetermined location in the graphical representation than the first location. In response to conclusion of receipt of the set of user input, the first transducer graphical element may be repositioned from the first location in the graphical representation to the predetermined location in the graphical representation.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: July 28, 2020
    Assignee: KARDIUM INC.
    Inventors: Saar Moisa, Michael Hermann Weber
  • Patent number: 10722130
    Abstract: The invention provides a system for measuring stroke volume (SV), cardiac output (CO), and cardiac power (CP) from a patient that features: 1) an impedance sensor connected to at least two body-worn electrodes and including an impedance circuit that processes analog signals from the electrodes to measure an impedance signal (e.g. a TBEV waveform); 2) an ECG sensor connected to at least two chest-worn electrodes and including an ECG circuit that processes analog signals from the electrodes to measure and ECG signal; 3) an optical sensor connected to a body-worn optical probe and including an optical circuit that processes signals from the probe to measure at least one optical signal (e.g. a PPG waveform) from the patient; 4) a processing system, typically worn on patient's wrist and connected through a wired interface to the optical sensor, and through either a wired or wireless interface to the TBEV and ECG sensors.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: July 28, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matt Banet, Isaac Henry, Donald Bernstein
  • Patent number: 10694970
    Abstract: A signal process system and the method for the same and a biological resistance detection device and element used to perform corresponding signal process for sensory signal sensed by a sensor, wherein a minor AC electrical signal is injected into a biological tissue to be measured in order to sense the sensory signal of the biological tissue to be measured by means of the principle of Ohm's Law. Moreover, the sensory signal may be processed to restore a biological property of the measured biological tissue and to create an equivalent circuit parameter model representative of the biological property.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: June 30, 2020
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Shuenn-Yuh Lee, Tsung-Han Tsai
  • Patent number: 10688304
    Abstract: A leadless cardiac pacemaker (LCP) is configured to sense cardiac activity and to pace a patient's heart and is disposable within a ventricle of the patient's heart. The LCP may include a housing, a first electrode and a second electrode that are secured relative to the housing and are spaced apart. A controller is disposed within the housing and is operably coupled to the first electrode and the second electrode such that the controller is capable of receiving, via the first electrode and the second electrode, electrical cardiac signals of the heart. The LCP may include a pressure sensor and/or an accelerometer. The controller may determine an atrial contraction timing fiducial based at least in part upon two or more of a signal from the pressure sensor, a signal from the accelerometer representing, and an electrical cardiac signal.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: June 23, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Yinghong Yu, Michael J. Kane, Jeffrey E. Stahmann, Keith R. Maile
  • Patent number: 10667842
    Abstract: Apparatus is provided including a surgical tool configured to be advanced distally within a body of a subject. The surgical tool is shaped to define a side-facing suction port at a distal portion of the surgical tool to facilitate drawing tissue through the suction port and into the surgical tool, and includes a slidable transparent shutter configured to be disposed over the suction port, and to be slidably removed from the suction port. A needle is configured to be slidably disposed within the surgical tool and configured to puncture the tissue while the tissue is in the surgical tool. Other applications are also described.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: June 2, 2020
    Assignee: RAINBOW MEDICAL LTD.
    Inventors: Gideon Fostick, Ilan Uchitel, Evgeni Venislavski, Michael Lis
  • Patent number: 10672518
    Abstract: Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual biopotential signals) that is used in combination with the measured biopotential signals to generate a multi-dimensional phase-space representation of the body (e.g., the heart). By mathematically modulating (e.g.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: June 2, 2020
    Assignee: Analytics For Life Inc.
    Inventors: Timothy Burton, Shyamlal Ramchandani, Sunny Gupta
  • Patent number: 10646166
    Abstract: The present invention acquires self-tracking information obtained by integrating habit information and biological signal information. Based on personal genome information and the acquired self-tracking information, characteristic information about characteristics of a user is acquired, and the acquired characteristic information is output.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: May 12, 2020
    Assignee: National Institute of Japan Science and Technology Agency
    Inventor: Takashi Kido
  • Patent number: 10639100
    Abstract: A method of determining a candidate ablation location using historical ablation data includes generating a database including a plurality of ablation records, and generating a set of probability parameters describing each ablation record. The method also includes developing an algorithm based upon the probability parameters for the ablation records. For a candidate ablation procedure, the method includes receiving patient parameters associated with a patient receiving the candidate ablation procedure, and determining at least one candidate condition associated with the patient and a respective probability associated with each candidate condition. The method further includes applying the algorithm to determine at least one candidate ablation location based upon the respective probabilities associated with the at least one candidate condition, and displaying the at least one candidate ablation location on a visual interface of a cardiac mapping system.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: May 5, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Srijoy Mahapatra
  • Patent number: 10632342
    Abstract: Embodiments of the invention provide a method and apparatus for a wireless exercise monitoring system for interactively monitoring an aspect of exercise, sports, or fitness utilizing a wearable device, such as a watch, eyewear, or smart apparel. The device is equipped with, or connected to, a digital camera. Sensors integrated with, or wirelessly connected to, the wearable internet device record physiological data during exercise and data measuring the amount of exercise performed. The data and visual images from the camera are transmitted to one or more internet servers, and may be shared with other mobile internet devices.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: April 28, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Roger J. Quy
  • Patent number: 10631732
    Abstract: A user-wearable sensor device may be configured to be directly or indirectly secured to a user or to an article worn by the user. The user-wearable sensor device may include at least one sensor configured to collect sensor data associated with an orientation of the user, a display unit including at least one LED or other visual indicator, a battery configured to provide power to at least the display unit, and a control system. The control system may be configured to determine the orientation of the user based on sensor data collected by the at least one sensor, maintain the display unit in a deactivated state in the absence of a defined activation input, detect a defined activation input, activate the deactivated display unit in response to detecting the defined activation input, and control the activated display unit based on the determined orientation of the user.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: April 28, 2020
    Assignee: LEAF HEALTHCARE, INC.
    Inventors: Barrett Larson, Mark Weckwerth, Charles Matthew Peterson Hammond
  • Patent number: 10624553
    Abstract: A method of mapping includes receiving inputs measured by a probe at respective locations inside a body cavity of a subject. At each of the respective locations, a respective contact quality between the probe and a tissue in the body cavity is measured. The inputs for which the respective contact quality is outside a defined range are rejected, and a map of the body cavity is created using the inputs that are not rejected.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: April 21, 2020
    Assignee: Biosense Webster (Israel), Ltd.
    Inventors: Assaf Govari, Andres Claudio Altmann, Yaron Ephrath
  • Patent number: 10617349
    Abstract: A system and method for synchronizing patient medical parameters and dialysis parameters. The system and related method allow for the determination of the effect of dialysis on patient health. The invention also allows for the determination of whether observed patient health effects are due to specific dialysis parameters and for making necessary changes to the dialysis parameters in order to improve patient health.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: April 14, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: John Burnes, VenKatesh Manda, Tico Blumenthal, Orhan Soykan
  • Patent number: 10617309
    Abstract: An information processing system includes first and second electrodes for measuring cardiac potential, a pulse wave sensor that is disposed closer to the first electrode than to the second electrode and that measures a pulse wave, a buffer that amplifies a signal acquired by the first electrode, an interconnect wire that electrically connects the first electrode to a terminal of the buffer, a shield that shields the first electrode and the interconnect wire, and a shield potential generator that includes a first buffer circuit and a second buffer circuit having a larger drive current than the first buffer circuit and that starts applying, to the shield, a first generation signal generated by the first buffer circuit based on the acquired signal before a predetermined time point when the pulse wave is measured and starts applying a second generation signal generated by the second buffer circuit at the predetermined time point.
    Type: Grant
    Filed: November 5, 2017
    Date of Patent: April 14, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akinori Matsumoto, Koji Morikawa
  • Patent number: 10610133
    Abstract: A device may emit a first emission sequence of infrared radiation at a subject, and capture a first reflected sequence of infrared radiation reflected from the subject. The first emission sequence may be compared to the first reflected sequence, and, based on the comparison, a sequence of variations may be determined. The sequence of variations may be compared to a signal pattern stored in a sleep profile for the subject. The subject may be determined to have exhibited a sleep behavior based on the comparison of the sequence of variations to the signal pattern stored in the sleep profile. In response to determining that the subject has exhibited the sleep behavior, the device may capture a second reflected sequence of radiation reflected from the subject. A breathing rate of the subject and/or a heart rate of the subject may be determined based on the second reflected sequence.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: April 7, 2020
    Assignee: Google LLC
    Inventors: Laura Rabb, Andrea Colaco, Michael Dixon, Ghulam A. Kirmani, Luis Villaran, Kenneth Louis Herman, Bryan James, Casey Mills Davis, Yash Modi
  • Patent number: 10595747
    Abstract: Respiratory rate can be calculated from an acoustic input signal using time domain and frequency domain techniques. Confidence in the calculated respiratory rate can also be calculated using time domain and frequency domain techniques. Overall respiratory rate and confidence values can be obtained from the time and frequency domain calculations. The overall respiratory rate and confidence values can be output for presentation to a clinician.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: March 24, 2020
    Assignee: MASIMO CORPORATION
    Inventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar, Gilberto Sierra, Sung Uk Lee, Mohamed Diab, Valery G. Telfort, Marc Pelletier, Boris Popov
  • Patent number: 10588565
    Abstract: A system for monitoring medical conditions including pressure ulcers, pressure-induced ischemia and related medical conditions comprises at least one sensor adapted to detect one or more patient characteristic including at least position, orientation, temperature, acceleration, moisture, resistance, stress, heart rate, respiration rate, and blood oxygenation, a host for processing the data received from the sensors together with historical patient data to develop an assessment of patient condition and suggested course of treatment. In some embodiments, the system can further include a support surface having one or more sensors incorporated therein either in addition to sensors affixed to the patient or as an alternative thereof. The sensor can include bi-axial or tri-axial accelerometers, as well as resistive, inductive, capactive, magnetic and other sensing devices, depending on whether the sensor is located on the patient or the support surface, and for what purpose.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: March 17, 2020
    Assignee: LEAF HEALTHCARE, INC.
    Inventors: Barrett J Larson, Daniel Z. Shen, Mark V. Weckwerth, Charles Matthew Peterson Hammond
  • Patent number: 10582858
    Abstract: A cardiac monitoring system includes cardiac sensing electrodes for external placement proximate to the patient to sense ECG signals of the patient; one or more accelerometers configured to generate patient activity data based on signals corresponding to changes in the patient's body position and movement; and a monitoring computer configured to correlate the ECG signals of the patient with the patient activity data generated from the one or more accelerometers to determine ECG signal contamination, analyze the ECG signals of the patient to extract at least heart rate data of the patient and detect a cardiac arrhythmia based at least in part on the heart rate data, and change a confidence in the detected cardiac arrhythmia based on the determined ECG signal contamination; wherein at least the patient activity data and the heart rate data are analyzed to determine a change in a physiological condition of the patient over time.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: March 10, 2020
    Assignee: ZOLL Medical Corporation
    Inventors: Shane S. Volpe, John D. Macho, Wade Braden, Thomas E. Kaib, Marshal W. Linder
  • Patent number: 10582873
    Abstract: A method for analysis of cardiac rhythms, based on calculations of entropy and moments of interbeat intervals. An optimal determination of segments of data is provided that demonstrate statistical homogeneity, specifically with regard to moments and entropy. The invention also involves calculating moments and entropy on each segment with the goal of diagnosis of cardiac rhythm. More specifically, an absolute entropy measurement is calculated and provided as a continuous variable, providing dynamical information of fundamental importance in diagnosis and analysis. Through the present invention, standard histograms, thresholds, and categories can be avoided.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: March 10, 2020
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: J. Randall Moorman, Douglas E. Lake
  • Patent number: 10576263
    Abstract: A method includes acquiring a bipolar signal from a first electrode and a second electrode contacting a first location and a second location, respectively, in a heart of a living subject. The method further includes acquiring a unipolar signal from the first electrode while in contact with the first location, and deriving from the bipolar signal and the unipolar signal a point in time at which the first location is generating the unipolar signal. The method also includes computing a metric for a conduction velocity of the unipolar signal at the first location based on a shape of the unipolar signal at the point in time.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: March 3, 2020
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Lior Botzer, Amir Ben-Dor, Yoram Chmiel, Aharon Turgeman, Liron Shmuel Mizrahi, Noga Salomon, Galia Givaty
  • Patent number: 10576328
    Abstract: A treadmill includes a belt, a display, a first sensor having first transmission circuitry for transmitting a first radar beam over the belt and first reception circuitry for detecting a first reflected signal that is a reflection of the first radar beam from a user on the belt, a processor connected to the first sensor, the belt and the display, and a non-transitory computer-readable storage medium storing a program to be executed by the processor. The program includes instructions for determining, according to the first reflected signal, first data associated with a vital sign of the user and displaying, according to the first data, the vital sign on the display.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: March 3, 2020
    Assignee: Infineon Technologies AG
    Inventors: Avik Santra, Ashutosh Baheti, Jagjit Singh Bal, Saverio Trotta
  • Patent number: 10561369
    Abstract: A system to generate a representation of a rhythm disorder that includes identifying remote or polar sources associated with a cardiac rhythm disorder is disclosed. The system includes generating a representation based on the cardiac information signals received from the sensors by transformation of spline-sensor locations of the catheter to x-y coordinate pairs of locations. A first offset is determined resulting from a perturbation to corresponding x-y coordinate pairs of locations associated with the representation, the first offset displacing coordinate pairs of sensor locations of the representation at least one unit of displacement in a first direction. A remote source associated with a cardiac rhythm disorder is identified when activations associated with the cardiac information signals rotate in sequence at least once, or emanate centrifugally for at least a first time period, the source being identified based on the representation as displaced.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: February 18, 2020
    Assignee: Topera, Inc.
    Inventors: William Robert Macneil, Ruchir Sehra
  • Patent number: 10548499
    Abstract: A medical device and method for detecting a ventricular arrhythmia event is disclosed. The medical device includes input circuitry configured to receive an electrocardiogram (ECG) signal and processing circuitry coupled to the input circuitry that is configured to identify fiducial points within the ECG signal. Feature extraction circuitry coupled to the processing circuitry is configured to determine interval variability between the fiducial points. Machine learning circuitry is coupled to the feature extraction circuitry and is configured to detect ventricular arrhythmia based on the interval variability between the fiducial points.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: February 4, 2020
    Assignee: Khalifa University of Science and Technology
    Inventors: Nourhan Yahya Bayasi, Temesghen Tekeste Habte, Hani Hasan Mustafa Saleh, Ahsan Habib Khandoker, Mohammed Ismail Elnaggar
  • Patent number: 10542942
    Abstract: The present invention concerns a system (S) for the detection and early warning of the incoming of acute events in patients with chronic obstructive pulmonary disease, comprising: at least one device (D) for the detection of physiological parameters (R), that can be applied to said patient to be monitored; at least one timer for detecting time intervals, such as date and time, associated with said detected physiological parameters (R); at least one emission device of sound and/or visual alarm signals capable of emitting an sound and/or visual output warning signal, associated with said physiological detected parameters (R); a control logic unit (C), connectable to said at least one device (D) and at least one timer, and capable of controlling said at least one emission signals device, suitable to receive in input said physiological detected parameters (R) and said time intervals, said control logic unit (C) being provided with a processing program, in which thresholds of predetermined values reached by said p
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: January 28, 2020
    Assignee: LABORATORI DI INFORMATICA APPLICATA DI GIUSEPPE CAPASSO
    Inventors: Raffaele Franco Antonelli Incalzi, Francesca Maria Barbara Rubiu, Angela Maria Bussu, Giuseppe Capasso, Giulio Iannello, Mario Merone, Leonardo Onofri, Claudio Pedone, Paolo Soda
  • Patent number: 10537279
    Abstract: A method of operating a CPAP apparatus in which the interface pressure is controlled to rapidly drop at the start of expiration by an expiratory relief pressure (ERP) that is independent of instantaneous respiratory flow, following which the pressure rises to an inspiratory level at or shortly before the end of expiration, or at the onset of an expiratory pause, if any. The ERP is an increasing function of the inspiratory pressure. The expiratory pressure follows a template that is a function of the expected expiration time, the magnitude of the template being equal to the ERP. The current estimated proportion of expiration is determined by comparing the expiration time of the breath in progress to low-pass filtered expiratory durations measured for a number of the preceding breaths.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: January 21, 2020
    Assignee: ResMed Pty Ltd
    Inventor: David John Bassin
  • Patent number: 10531832
    Abstract: An apparatus for monitoring a sleep parameter of a user includes an adhesive pad configured to conform to a surface of the user and a flexible element coupled to the adhesive pad. The flexible element includes a conductive fabric, and exhibits a modified electrical property in response to an applied force. The apparatus also includes a power source electrically coupled to the flexible element, and an electrical circuit electrically coupled to the power source and the flexible conductive element. The electrical circuit is configured to detect, during use, a change in an electrical property of the flexible element.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: January 14, 2020
    Assignee: The Joan and Irwin Jacobs Technion-Cornell Institute
    Inventor: Amir Reuveny
  • Patent number: 10531833
    Abstract: An apparatus for monitoring a sleep parameter of a user includes an adhesive pad configured to conform to a surface of the user and a flexible element coupled to the adhesive pad. The flexible element includes a conductive fabric, and exhibits a modified electrical property in response to an applied force. The apparatus also includes a power source electrically coupled to the flexible element, and an electrical circuit electrically coupled to the power source and the flexible conductive element. The electrical circuit is configured to detect, during use, a change in an electrical property of the flexible element.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: January 14, 2020
    Assignee: The Joan and Irwin Jacobs Technion-Cornell Institute
    Inventors: Amir Reuveny, Ahud Mordechai
  • Patent number: 10530404
    Abstract: A signal processing method, a signal filtering apparatus, and a signal processing apparatus are provided. An input signal may be input into a filter having a passband, a superfluous signal of the passband may be output from the filter, and a target signal may be obtained by subtracting the superfluous signal from the input signal.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: January 7, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ui Kun Kwon, Chang Soon Park, Seungkeun Yoon, Sang Joon Kim, Jaechun Lee, Changmok Choi
  • Patent number: 10506980
    Abstract: Techniques are provided for displaying exercise information to an individual, including, for example, an exercise readiness indication. A display device receives information of a physiological measurement of a user. The display device determines if the physiological measurement falls within a predetermined range of values. The display device then displays to the user an exercise readiness indication that represents a readiness state of the user to participate in an exercise activity based on the physiological measurement.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: December 17, 2019
    Assignee: Under Armour, Inc.
    Inventor: Mark A. Oleson
  • Patent number: 10500384
    Abstract: Provided herein is a delivery system, including: (a) an optical sensor configured to detect data useful to create a map of a bodily surface; and (b) a printer operatively associated with the optical sensor and configured to deliver compositions (optionally including cells) to the bodily surface based upon the data or map. Methods of forming a tissue on a bodily surface of a patient in need thereof are also provided, as are methods, systems and computer program products useful for processing bodily surface data.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: December 10, 2019
    Assignee: Wake Forest University Health Sciences
    Inventors: James J. Yoo, Anthony Atala, Kyle W. Binder, Weixin Zhao, Dennis Dice, Tao Xu
  • Patent number: 10499134
    Abstract: A multi-functional earbud including: a first earbud; a second earbud; a necklace; a first connector connecting the first earbud to the necklace; a second connector connecting the second earbud to the necklace; an earbud controller, where the earbud controller is incorporated into the necklace. The earbud controller includes two control buttons, where control buttons include a first button adapted to engage a phone through a Bluetooth connection. The control buttons also include a second control button, wherein the second control button controls volume, fade and sound reception. The second control button is arranged with the sound reception control at the center surrounded by four pads.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: December 3, 2019
    Inventor: Jonathan Patten
  • Patent number: 10496729
    Abstract: A method and system for estimating tissue parameters of a computational model of organ function and their uncertainty due to model assumptions, data noise and optimization limitations is disclosed. As applied to a cardiac use-case, a patient-specific anatomical heart model is generated from medical image data of a patient. A patient-specific computational heart model is generated based on the patient-specific anatomical heart model. Patient-specific parameters and corresponding uncertainty values are estimated for at least a subset of parameters of the patient-specific computational heart model. A surrogate model is estimated for a forward model of cardiac function, and the surrogate model is applied within Bayesian inference to estimate the posterior probability density function of the parameter space of the forward model. Cardiac function for the patient is simulated using the patient-specific computational heart model.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: December 3, 2019
    Inventors: Dominik Neumann, Tommaso Mansi, Bogdan Georgescu, Ali Kamen, Dorin Comaniciu