Consisting Of Soldered Or Bonded Constructions (epo) Patents (Class 257/E23.023)

  • Publication number: 20120068333
    Abstract: A stackable integrated circuit chip layer and module device that avoids the use of electrically conductive elements on the external surfaces of a layer containing an integrated circuit die by taking advantage of conventional wire bonding equipment to provide an electrically conductive path defined by a wire bond segment that is encapsulated in a potting material so as to define an electrically conductive wire bond “through-via” accessible from at least the lower or second surface of the layer.
    Type: Application
    Filed: August 15, 2011
    Publication date: March 22, 2012
    Applicant: Irvine Sensors Corporation
    Inventors: Randy Bindrup, W. Eric Boyd, John Leon, James Yamaguchi
  • Publication number: 20120068364
    Abstract: A device includes a semiconductor material having a first surface. A first material is applied to the first surface and a fiber material is embedded in the first material.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Inventors: Manfred Mengel, Joachim Mahler, Khalil Hosseini
  • Publication number: 20120068334
    Abstract: Semiconductor devices of embodiments include a plurality of solder bumps electrically connected on a plurality of electrode pads disposed on a semiconductor substrate in parallel at a pitch of 40 ?m or less via under bump metals. The ratio of the diameter (the top diameter) of the portion of each solder bump most away from the semiconductor substrate and the diameter (the bottom diameter) of the bottom side of each solder bump is 1:1 to 1:4.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 22, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo MIGITA, Hirokazu Ezawa, Soichi Yamashita
  • Patent number: 8138019
    Abstract: A process of forming a semiconductor integrated circuit that includes the steps of: forming at least a first element having a first pattern of conductive material and including a polymer layer surrounding the conductive material, forming at least a second element having a second pattern of conductive material and including a polymer layer surrounding the conductive material, positioning the first element relative to the second element, and bonding the polymer layer of the first and second elements at a temperature below a melting temperature of the conductive materials of the first and second elements wherein the conductive material of the first element contacts the conductive material of the second element and is maintained in position by the bonded polymer layers.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: March 20, 2012
    Assignee: Toyota Motor Engineering & Manufactruing North America, Inc.
    Inventors: Sang Won Yoon, Alexandros Margomenos
  • Patent number: 8138576
    Abstract: The invention provides a technique and a device that dramatically improve joint reliability of miniature joints of fine electronic components. According to the invention, when producing a tin or a solder alloy used for electronic components, an ingot of a tin or a solder alloy is heated, melted and delivered to a reactor. Also, a solution containing organic acid having a carboxyl group (—COOH) is delivered to the reactor. After stirring and mixing the two liquids intensively, the mixed liquid is separated into a molten tin or a molten solder alloy liquid and an organic acid solution according to the difference in specific gravity. Then, the respective liquids are circulated to the reactor, and the metal oxides and the impurities existing in the molten tin or the molten solder alloy are removed, and the molten tin or the molten alloy is purified to have oxygen concentration of 5 ppm or less.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: March 20, 2012
    Assignee: Nippon Joint Co., Ltd.
    Inventors: Hisao Ishikawa, Masanori Yokoyama
  • Patent number: 8134241
    Abstract: Electronic elements having an active device region and bonding pad (BP) region on a common substrate desirably include a dielectric region underlying the BP to reduce the parasitic impedance of the BP and its interconnection as the electronic elements are scaled to higher power and/or operating frequency. Mechanical stress created by plain (e.g., oxide only) dielectric regions can adversely affect performance, manufacturing yield, pad-to-device proximity and occupied area. This can be avoided by providing a composite dielectric region having electrically isolated inclusions of a thermal expansion coefficient (TEC) less than that of the dielectric material in which they are embedded and/or closer to the substrate TEC. For silicon substrates, poly or amorphous silicon is suitable for the inclusions and silicon oxide for the dielectric material. The inclusions preferably have a blade-like shape separated by and enclosed within the dielectric material.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: March 13, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jeffrey K. Jones, Margaret A. Szymanowski, Michele L. Miera, Xiaowei Ren, Wayne R. Burger, Mark A. Bennett, Colin Kerr
  • Patent number: 8134238
    Abstract: A semiconductor device having a wafer level chip size package may include a semiconductor substrate having an integrated circuit formed thereon; a plurality of electrode pads formed on the semiconductor substrate; at least one rewiring layer which may include rewiring formed adjacent to the plurality of electrode pads; and a plurality of external electrodes formed on the rewiring layer. The plurality of electrodes and plurality of external electrodes may be sectioned and arranged in four areas having the same shapes. Each area may include a first group of N number of external electrodes arranged along an edge of the semiconductor substrate, a second group of (N-2) number of external electrodes arranged inside the first group of external electrodes, and a plurality of (2N-2) number of electrode pads arranged between the first and second groups of external electrodes.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: March 13, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Kunihiro Komiya
  • Patent number: 8129825
    Abstract: In one embodiment of the present invention, an IC chip mounting package includes a film base member and an IC chip connected via an interposer. Connecting terminals on the film base member side of the interposer are provided so as to have a pitch larger than that of connecting terminals of the IC. A device hole is opened to the film base member, and the IC chip is provided in the device hole. A distance between an inner lead leading end and a periphery of the device hole is set as not less than 10 ?m.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 6, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Satoru Kudose, Tomokatsu Nakagawa, Tatsuya Katoh
  • Publication number: 20120049353
    Abstract: An electronic device includes first and second electronic device dice. The first electronic device die is embedded within a resin layer. A dielectric layer is located over the device die and the resin layer. First interconnects within the dielectric layer connect a first subset of electrical contacts on the first electronic device to corresponding terminals at a surface of the dielectric that are located over the first electronic device. Second interconnects within the dielectric layer connect a second subset of electrical contacts on the first electronic device to corresponding bump pads at a surface of the dielectric that are located over the resin layer.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 1, 2012
    Inventor: John Osenbach
  • Publication number: 20120049363
    Abstract: A package structure is provided, which includes a dielectric layer having opposing first and second surfaces, and through holes penetrating the surfaces; a strengthening layer formed on the first surface; a circuit layer formed on the second surface, and having wire bonding pads formed thereon and exposed from the through holes, and ball pads electrically connected to the wire bonding pads; a first solder mask layer formed on the first surface and the strengthening layer, and having first apertures formed therethrough for exposing the wire bonding pads; a second solder mask layer formed on the second surface and the circuit layer, and having second apertures formed therethrough for exposing the ball pads; and a semiconductor chip disposed on the first solder mask layer and electrically connected via conductive wires to the wire bonding pads exposed from the through holes. The strengthening layer ensures the steadiness of the chip to be mounted thereon without position shifting.
    Type: Application
    Filed: June 16, 2011
    Publication date: March 1, 2012
    Applicant: UNIMICRON TECHNOLOGY CORPORATION
    Inventor: Kun-Chen Tsai
  • Publication number: 20120049367
    Abstract: According to the embodiment, a pad electrode, a protective film, an under barrier metal film, and an electrode wiring portion are provided. The pad electrode is formed on a semiconductor substrate. The protective film is formed on the semiconductor substrate so that a surface of the pad electrode is exposed. The under barrier metal film is formed on the pad electrode and the protective film. The electrode wiring portion is formed on the pad electrode via the under barrier metal film. Moreover, a surface reflectance of the under barrier metal film is 30% or more at a wavelength of 800 nm, and a diameter of the electrode wiring portion is 140 ?m or less.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 1, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo MIGITA, Hirokazu Ezawa, Soichi Yamashita
  • Publication number: 20120049389
    Abstract: A semiconductor die has rows of bond pads along the edges of a major surface. The corners of the die are designated as keep out areas, with design layout rules prohibiting a probe-able bond pad from being placed in the keep out areas so that a minimum distance may be maintained between distal ends of adjacent rows of bond pads (i.e., bond pads along adjacent edges). The bond pads of each row have IO pad areas that are aligned with each other and IO probe areas that are aligned with each other. A generally L-shaped bond pad includes a first, vertical part that extends inwardly from an edge of the semiconductor die and a second, horizontal part connected to the vertical part. The L-shaped bond pad may be placed between a last bond pad in a row and a corner keep out area, and the second part of the L-shaped bond pad extends into the corner keep out area.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 1, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Chetan Verma, Shailesh Kumar, Meng Kong Lye
  • Publication number: 20120049343
    Abstract: A semiconductor device disclosed herein includes a conductive connection structure having a stepped profile that serves as a stress relief feature. The conductive connection structure includes a stress buffer arrangement for a contact pad. The stress buffer arrangement has a stepped via that terminates at the contact pad, and the stepped via has a plurality of inwardly sloped and concentric sections in a stacked orientation. The connection structure also includes underbump metallization overlying at least a portion of the contact pad and lining the stepped via, and a conductive connection element coupled to the underbump metallization. The conductive connection element fills the lined recess.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Applicants: ADVANCED MICRO DEVICES, INC., GLOBALFOUNDRIES INC.
    Inventors: Thomas Schulze, Frank Kuechenmeister, Michael Su, Lei Fu
  • Publication number: 20120049358
    Abstract: The present invention relates to a semiconductor device and a semiconductor process for making the same. The semiconductor device of the present invention includes a semiconductor substrate, at least one conductive via and at least one insulation ring. The semiconductor substrate has a first surface. The conductive via is disposed in the semiconductor substrate. Each conductive via has a conductor and an insulation wall disposed the peripheral of the conductor, and the conductive via is exposed on the first surface of the semiconductor substrate. The insulation ring is disposed the peripheral of the conductive via, and the depth of the insulation ring is smaller than that of the insulation wall. Since the insulation ring is disposed the peripheral of the conductive via, the insulation ring can protect the end of the conductive via from being damaged.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Inventor: Bin-Hong Cheng
  • Publication number: 20120049388
    Abstract: A semiconductor device has a plurality of semiconductor die mounted to a carrier. An adhesive material is deposited over a portion of the semiconductor die and carrier to secure the semiconductor die to the carrier. The adhesive material is deposited over a side of the semiconductor die and over a surface of the carrier. The adhesive material can be deposited over a corner of the semiconductor die, or over a side of the semiconductor die, or around a perimeter of the semiconductor die. An encapsulant is deposited over the semiconductor die and carrier. The adhesive material reduces shifting of the semiconductor die with respect to the carrier during encapsulation. The adhesive material is cured and the carrier is removed. The adhesive material can also be removed. An interconnect structure is formed over the semiconductor die and encapsulant. The semiconductor die are singulated through the encapsulant and interconnect structure.
    Type: Application
    Filed: July 18, 2011
    Publication date: March 1, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Reza A. Pagaila
  • Publication number: 20120043660
    Abstract: One aspect of the present invention involves a foil-based method for packaging integrated circuits. Initially, a metallic foil and a photoresist layer are attached with a carrier. The photoresist layer is exposed and patterned. Afterward, multiple integrated circuit dice are connected to the foil. The dice and portions of the foil are encapsulated in a molding material. The foil is then etched based on the patterned photoresist layer to define multiple device areas in the foil, where each device area supports at least one of the integrated circuit dice. Some aspects of the present invention relate to panel arrangements that are involved in the aforementioned method.
    Type: Application
    Filed: August 17, 2010
    Publication date: February 23, 2012
    Applicant: NATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Anindya Poddar, Nghia T. Tu, Hau Nguyen
  • Patent number: 8120177
    Abstract: In a semiconductor device package having a stress relief spacer, and a manufacturing method thereof, metal interconnect fingers extend from the body of a chip provide for chip interconnection. The metal fingers are isolated from the body of the chip by a stress-relief spacer. In one example, such isolation takes the form of an air gap. In another example, such isolation takes the form of an elastomer material. In either case, mismatch in coefficient of thermal expansion between the metal interconnect fingers and the body of the chip is avoided, alleviating the problems associated with cracking and delamination, and leading to improved device yield and device reliability.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: February 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Soo Chung, Ho-Jin Lee, Dong-Hyun Jang, Dong-Ho Lee
  • Patent number: 8119450
    Abstract: A method for forming metallurgical interconnections and polymer adhesion of a flip chip to a substrate includes providing a chip having a set of bumps formed on a bump side thereof and a substrate having a set of interconnect points on a metallization thereon, providing a measured quantity of a polymer adhesive in a middle region of the chip on the bump side, aligning the chip with the substrate so that the set of bumps aligns with the set of interconnect points, pressing the chip and the substrate toward one another so that a portion of the polymer adhesive contacts the substrate and the bumps contact the interconnect points, and heating the bumps to a temperature sufficiently high to form a metallurgical connection between the bumps and the interconnect points. Also, a flip chip package is made by the method. The metallurgical connection includes an alloy of gold and tin at the interface between the bumps and the interconnect points.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: February 21, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Nazir Ahmad, Young-Do Kweon, Samuel Tam, Kyung-Moon Kim, Rajendra D. Pendse
  • Publication number: 20120038044
    Abstract: A CSP includes: a hard board having a first wiring layer with conductive pads; a plurality of conductive elements disposed on at least a portion of the conductive pads; an electronic component having opposite active and inactive surfaces and being mounted on the hard board via the inactive surface; an encapsulating layer disposed on the hard board for encapsulating the conductive elements and electronic component, the active surface of the electronic component and the surfaces of the conductive elements being exposed through the encapsulating layer; a first dielectric layer and a third wiring layer disposed on the encapsulating layer, the third wiring layer being electrically connected to the conductive elements and the electronic component and further electrically connected to the first wiring layer through the conductive elements, thereby obtaining a stacked connection structure without the need of PTHs and using the hard board as a main structure to avoid warpage.
    Type: Application
    Filed: December 2, 2010
    Publication date: February 16, 2012
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Chien-Ping Huang, Chun-Chi Ke, Hsin-Yi Liao, Hsi-Chang Hsu
  • Publication number: 20120037990
    Abstract: According to an embodiment of the present disclosure, a method of pre-migrating metal ions is disclosed. A metal in a semiconductor configuration is exposed to water and oxygen to yield metal ions. The metal couples a conductor to another material. The metal and the conductor are exposed to an electrical field in such a manner that one or both of the metal and the conductor becomes an anode to a corresponding cathode. The metal ions are then allowed to migrate from the anode to the cathode to form a migrated metal. Finally, a migration inhibitor is applied on top of the migrated metal to prevent further migration.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 16, 2012
    Applicant: STMicroelectronics, Inc.
    Inventors: Craig J. Rotay, John C. Pritiskutch
  • Patent number: 8115309
    Abstract: A semiconductor device including: a semiconductor chip having a rectangular surface on which a plurality of electrodes are formed; a plurality of resin protrusions formed on the surface of the semiconductor chip; and a plurality of interconnects each of which is electrically connected to one of the electrodes and includes an electrical connection section disposed on one of the resin protrusions. At least part of the resin protrusions are disposed in a region near a short side of the surface and extend in a direction which intersects the short side.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: February 14, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Publication number: 20120032167
    Abstract: A packaged integrated circuit includes a substrate having a wire layout pattern and a solder mask layer. An integrated circuit attached to a surface of the substrate is electrically connected to the wire layout pattern. An encapsulation material covers at least the integrated circuit and the solder mask layer. One or more crack seal rings are disposed on the solder mask surface. The crack seal rings are copper traces with terminals that allow current to be applied to the traces. A broken trace (open circuit condition) is indicative of a crack in the package. Thus, electrical testing is performed to detect physical defects.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Boon Yew LOW, Teck Beng Lau, Vemal Raja Manikam
  • Publication number: 20120032327
    Abstract: In accordance with some embodiments of the present disclosure, a chip package is provided. The chip package may include a chip, a substrate, and an interconnect layer disposed between the chip and the substrate. In some embodiments, the interconnect layer may include an array of bonding interconnects configured to provide electrical communication between the chip and a printed circuit board and reinforcement interconnects arranged around an outermost row of the array of bonding interconnects.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Michael G. Lee, Chihiro Uchibori
  • Publication number: 20120032321
    Abstract: An electronic apparatus and method of fabrication of the apparatus, the apparatus including a first electronic device having an interconnection surface with a first plurality of interconnection pads extending from the surface by a first distance and a second plurality of alignment posts extending from the surface by a second distance greater than the first distance, and a second electrical device having an interconnection surface with a first plurality of electrical interconnection pads, each pad arranged to contact a corresponding first electronic device interconnection surface pad upon assembly of the first electronic device interconnection surface upon the second electronic device interconnection surface, the second electronic device interconnection surface including a third plurality of alignment posts, each located to be adjacent to at least one of the first electronic device alignment posts upon assembly.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 9, 2012
    Applicant: International Business Machines Corporation
    Inventors: David J. West, David J. Russell
  • Publication number: 20120032353
    Abstract: A semiconductor device includes a wiring board having connection pads thereon and a semiconductor chip mounted on the wiring board. The wiring board and the semiconductor chip are covered with a sealing portion. Conductive members are extended upward from the connection pads and are exposed from the sealing portion. Rewiring lines are connected to the exposed conductive members. Land portions are arranged on the sealing portion and are electrically connected to the conductive members through the rewiring lines.
    Type: Application
    Filed: October 17, 2011
    Publication date: February 9, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Yutaka KAGAYA, Fumitomo WATANABE, Hajime TAKASAKI
  • Publication number: 20120025375
    Abstract: An integrated circuit assembly is fabricated on a metal substrate strip in an array format that has raised circuitry pattern formed by photolithographic and metal etching processes. The circuitry pattern is formed on one side of the metal substrate only. The raised circuitry's etch depth extends partially through the metal substrate. Die attachment can be performed using a non-conductive material applied directly onto and around the raised circuitry features directly under the die. After wirebond and molding processes, the molded metal substrate strip assembly is processed through a metal etching process to remove the metal substrate portion that is exposed beyond the mold cap. A solder mask coating can be applied to protect the metal circuitry and to define the package pad opening to form Land-Grid-Array (LGA) packages. Solder balls can also be attached to form Ball-Grid-Array (BGA) packages.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Applicant: ATMEL CORPORATION
    Inventor: Ken Lam
  • Publication number: 20120025396
    Abstract: A semiconductor die package is disclosed. An example of the semiconductor package includes a first group of semiconductor die interspersed with a second group of semiconductor die. The die from the first and second groups are offset from each other along a first axis and staggered with respect to each other along a second axis orthogonal to the first axis. A second example of the semiconductor package includes an irregular shaped edge and a wire bond to the substrate from a semiconductor die above the lowermost semiconductor die in the package.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Inventors: Chih-Chin Liao, Cheeman Yu, Ya Huei Lee
  • Publication number: 20120025401
    Abstract: An integrated circuit package includes a semiconductor die attached to a package support. The die has a plurality of peripheral bond pads along a periphery of the die and a first bond pad on an interior portion of the die wherein the first bond pad is a power supply bond pad. A conductive distributor is over the die and within a perimeter of the die and has a first opening. The plurality of bond pads are located between the perimeter of the die and a perimeter of the conductive distributor. The first bond pad is in the first opening. A first bond wire is connected between the first bond pad and the conductive distributor. A second bond wire is connected between a first peripheral bond pad of the plurality of peripheral bond pads and the conductive distributor.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Inventors: CHU-CHUNG LEE, Kian Leong Chin, Kevin J. Hess, Patrick Johnston, Tu-Anh N. Tran, Heng Keong Yip
  • Patent number: 8106509
    Abstract: An electronic device includes a semiconductor device and a wiring substrate having a wiring pattern. The semiconductor device includes: a semiconductor chip having an electrode; a convex-shaped resin protrusion provided on a surface of the semiconductor chip, the surface having the electrode; and wiring having a plurality of electrical coupling sections which are aligned on the resin protrusion and electrically coupled to the electrode. The semiconductor device is mounted to the wiring substrate so that the electrical coupling sections and the wiring pattern are brought into contact and electrically coupled with each other. The plurality of electrical coupling sections brought into contact with the wiring pattern include curved or bent shapes projecting in a longitudinal direction of the resin protrusion.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: January 31, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Shuichi Tanaka
  • Publication number: 20120018877
    Abstract: A device includes a package substrate including a first non-reflowable metal bump extending over a top surface of the package substrate; a die over and bonded to the package substrate; and a package component over the die and bonded to the package substrate. The package component includes a second non-reflowable metal bump extending below a bottom surface of the package component. The package component is selected from the group consisting essentially of a device die, an additional package substrate, and combinations thereof. A solder bump bonds the first non-reflowable metal bump to the second non-reflowable metal bump.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ying Yang, Chao-Wen Shih, Hao-Yi Tsai, Hsien-Wei Chen, Mirng-Ji Lii, Tzuan-Horng Liu
  • Publication number: 20120018890
    Abstract: A semiconductor device of the present invention includes a supporting board, an electrode surface processing layer formed on the supporting board, a semiconductor element, and a solder material containing a first metal composed mainly of bismuth and a second metal having a higher melting point than the first metal and joining the electrode surface processing layer and the semiconductor element, the first metal containing particles of the second metal inside the first metal. The composition ratio of the second metal is higher than the first metal in a region of the solder material corresponding to the center portion of the semiconductor element, and the composition ratio of the second metal is at least 83.8 atomic percent in the region corresponding to the center portion.
    Type: Application
    Filed: April 22, 2010
    Publication date: January 26, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Taichi Nakamura, Akio Furusawa, Shigeaki Sakatani, Hidetoshi Kitaura, Takahiro Matsuo
  • Patent number: 8102041
    Abstract: Two integrated circuits having circuitry on one of their major surfaces are ground on their opposite major surfaces to reduce their thickness. The ground integrated circuits are then adhered together to form a composite body and placed in a chamber formed within a substrate such as a printed circuit board. Electrical connections are formed between contacts of the integrated circuits and contacts of the substrate. Components may be mounted on the outer surfaces of the substrate.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: January 24, 2012
    Assignee: Infineon Technologies AG
    Inventor: Tiang Hock Lin
  • Publication number: 20120013029
    Abstract: A method for manufacturing semiconductor devices is disclosed. In one embodiment a semiconductor substrate having a first surface, a second surface opposite to the first surface and a plurality of semiconductor components is provided. The semiconductor substrate has a device thickness. At least one metallisation layer is formed on the second surface of the semiconductor substrate. The metallisation layer has a thickness which is greater than the device thickness.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 19, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Rudolf Zelsacher, Paul Ganitzer
  • Publication number: 20120013007
    Abstract: A Package-on-Package (POP) semiconductor package has a structure in which a second semiconductor package is stacked on a first semiconductor package. A plurality of spacers are disposed between a first substrate of the first semiconductor package and a second substrate of the second semiconductor package so as to maintain a gap between the first substrate and the second substrate. The plurality of spacers may project from a bottom surface of the second substrate toward the first substrate, or may project from a top surface of the first substrate toward the second substrate. When an upper molding layer is formed on the second substrate so as to cover a second semiconductor chip, the plurality of spacers may be connected to the upper molding layer via through holes that vertically pass through the second substrate.
    Type: Application
    Filed: June 16, 2011
    Publication date: January 19, 2012
    Inventors: Hyun-ik HWANG, Heui-seog KIM, Wha-su SIN, Jun-soo HAN
  • Patent number: 8097941
    Abstract: A semiconductor device includes a semiconductor substrate, and a plurality of wiring lines provided on one side of the semiconductor substrate, each of the wiring lines having a connection pad portion. An overcoat film is provided on the wiring lines and the one side of the semiconductor substrate. The overcoat film has a plurality of openings in parts corresponding to the connection pad portions of the wiring lines. A plurality of foundation metal layers are respectively provided on inner surfaces of the openings of the overcoat film and electrically connected to the pat portions of the wiring lines. A plurality of projecting electrodes are respectively provided on the foundation metal layers in the openings of the overcoat film.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: January 17, 2012
    Assignee: Casio Computer Co., Ltd.
    Inventor: Norihiko Kaneko
  • Publication number: 20120007239
    Abstract: A method of making an electronic device which in one embodiment comprises providing a substrate, electrolessly depositing a barrier metal at least on portions of the substrate, and using wet chemistry such as electroless deposition to deposit a substantially gold-free wetting layer having solder wettability onto the barrier metal. An electronic device which in one embodiment comprises a metallization stack. The metallization stack comprises a barrier metal deposited electrolessly and a substantially gold-free wetting layer deposited on the barrier metal, and the wetting layer is wettable by solder.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 12, 2012
    Inventors: Artur Kolics, William T. Lee, Fritz Redeker
  • Patent number: 8093579
    Abstract: A semiconductor chip (1) comprises a p-doped region (I) having a cladding layer (18) and a contact layer (21) between which a first interlayer (19) and a second interlayer (20) are arranged. A concentration of a first material component (B) within the first and the second interlayer (19, 20) changes in such a way that the band gap varies in a range lying between the band gap of the cladding layer (18) and the band gap of the contact layer (21). A method for producing a semiconductor chip of this type is also disclosed.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: January 10, 2012
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Bernd Mayer, Wolfgang Schmid
  • Publication number: 20110315984
    Abstract: According to one embodiment, a semiconductor memory card that includes a printed substrate in which an electronic component is mounted on one surface, and an external terminal is installed on the other surface, and that is molded in a card form. The printed substrate is a laminated body in which a metallic interconnection for connecting the electronic component to the terminal and a solder resist are sequentially laminated on both surfaces of a core material. The semiconductor memory card includes an ink layer on the solder resist of the other surface, and a mark is engraved by a laser on the ink layer.
    Type: Application
    Filed: March 21, 2011
    Publication date: December 29, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hidetoshi SUZUKI, Toshiyuki Hayakawa, Yuka Nagashima
  • Publication number: 20110316152
    Abstract: Semiconductor chips are placed in recesses of a support carrier with electrode surfaces facing upward in a state where the semiconductor chips are arranged separately from each other. A seal resin part is formed by encapsulating the semiconductor chips by an insulating resin on said support carrier. Rewiring patterns are formed on a top surface of the seal resin part. External connection terminals are formed on the rewiring patterns. Bottom parts of the recesses of the support carrier are removed from the seal resin part while maintaining reinforcing members of the support carrier to be remained. The semiconductor packages are individualized by cutting the seal resin part along an outside of each reinforcing member.
    Type: Application
    Filed: June 28, 2011
    Publication date: December 29, 2011
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Syota MIKI, Takaharu Yamano
  • Publication number: 20110317385
    Abstract: WLP semiconductor devices include bump assemblies that have a barrier layer for inhibiting electromigration within the bump assemblies. In an implementation, the bump assemblies include copper posts formed on the integrated circuit chips of the WLP devices. Barrier layers formed of a metal such as nickel (Ni) are provided on the outer surface of the copper posts to inhibit electromigration in the bump assembly. Oxidation prevention caps formed of a metal such as tin (Sn) are provided over the barrier layer. Solder bumps are formed over the oxidation prevention caps. The oxidation prevention caps inhibit oxidation of the barrier layer during fabrication of the bump assemblies.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 29, 2011
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Tiao Zhou, Arkadii V. Samoilov
  • Patent number: 8084298
    Abstract: A process for replacing a semiconductor chip of such a flip-chip module and a suitable flip-chip module and an apparatus for implementing the method are disclosed. The flip-chip module comprises at least one semiconductor chip and a substrate. The semiconductor chip comprises contact posts on a surface that are disposed at right angles to the surface. With these contact posts it is connected with contact points of the substrate via a soldered connection. The contact posts completely cover the contact points with their end faces. Due to this it is possible to completely press the solder between the contact posts and contact points out of the intermediate area between the contact points and the contact posts after a renewed heating. This permits a renewed attachment of a further semiconductor chip.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: December 27, 2011
    Assignee: HTC Beteiligungs GmbH
    Inventors: Ernst-A Weissbach, Juergen Ertl
  • Patent number: 8084867
    Abstract: Some embodiments of the invention include a connecting structure between a support and at least one die attached to the support. The die includes a number of die bond pads on a surface of the die. The connecting structure includes a plurality of via and groove combinations. Conductive material is formed in the via and groove combinations to provide connection between the die bond pads and bond pads on the support. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: December 27, 2011
    Assignee: Intel Corporation
    Inventors: Jiamiao Tang, Henry Xu, Shinichi Sakamoto
  • Publication number: 20110309499
    Abstract: A method of manufacturing a device includes forming a covering layer having affinity for a filler to be injected into a space between a first base and a second base, on at least one of the opposing surfaces of the first base and the second base, and then injecting the filler into the space between the first base and the second base.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 22, 2011
    Inventor: Hiroyuki ODE
  • Publication number: 20110309491
    Abstract: A flexible semiconductor package is formed by interposing a flexible substrate between a tungsten stiffener and a die. A tungsten stiffener is bonded to a first surface of the flexible substrate prior to flip chip bonding or die attach of a die to a second surface of the flexible substrate. The tungsten stiffener is dimensioned so as to substantially overlap the die and provide a rigid and flat surface on which the die/flexible substrate bonding occurs. The flat and rigid characteristic of a tungsten stiffener optimizes the electrical and mechanical bond between the die and the flexible substrate as well as minimizing CTE mismatch.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Applicant: Aeroflex Colorado Springs Inc.
    Inventors: Sean Thorne, Scott Popelar
  • Publication number: 20110304058
    Abstract: A semiconductor device has a semiconductor die having a plurality of bumps formed over a surface of the semiconductor die. The bumps can include a fusible portion and non-fusible portion. Conductive traces are formed over the substrate with interconnect sites having an exposed sidewall and sized according to a design rule defined by SRO+2*SRR?2X, where SRO is an opening over the interconnect site, SRR is a registration for the manufacturing process, and X is a function of a thickness of the exposed sidewall of the contact pad. The bumps are misaligned with the interconnect sites by a maximum distance of X which ranges from 5 to 20 microns. The bumps are bonded to the interconnect sites so that the bumps cover a top surface and side surface of the interconnect sites. An encapsulant is deposited around the bumps between the semiconductor die and substrate.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 15, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Patent number: 8076785
    Abstract: A semiconductor device includes a semiconductor element having a main surface where an outside connection terminal pad is provided. The semiconductor element is connected to a conductive layer on a supporting board via a plurality of convex-shaped outside connection terminals provided on the outside connection terminal pad and a connection member; and the connection member commonly covers the convex-shaped outside connection terminals.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: December 13, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Takao Nishimura, Yoshikazu Kumagaya, Akira Takashima, Kouichi Nakamura, Kazuyuki Aiba
  • Patent number: 8076775
    Abstract: A semiconductor package includes: a semiconductor substrate; an inner insulator layer formed on the substrate; at least one internal wiring extending from a front side of the substrate along one of lateral sides of the substrate to a rear side of the substrate; a first outer insulator layer disposed at the front side of the substrate, formed on the internal wiring, and formed with at least one wire-connecting hole; and a second outer insulator layer disposed at the rear side of the substrate, formed on the internal wiring, and formed with at least one wire-connecting hole which exposes a portion of the internal wiring.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: December 13, 2011
    Inventor: Yu-Nung Shen
  • Publication number: 20110298110
    Abstract: A semiconductor device has a thermally conductive layer with a plurality of openings formed over a temporary carrier. The thermally conductive layer includes electrically non-conductive material. A semiconductor die has a plurality of bumps formed over contact pads on the die. The semiconductor die is mounted over the thermally conductive layer so that the bumps are disposed at least partially within the openings in the thermally conductive layer. An encapsulant is deposited over the die and thermally conductive layer. The temporary carrier is removed to expose the bumps. A first interconnect structure is formed over the encapsulant, semiconductor die, and bumps. The bumps are electrically connected to the first interconnect structure. A heat sink or shielding layer can be formed over the semiconductor die. A second interconnect structure can be formed over the encapsulant and electrically connected to the first interconnect structure through conductive vias formed in the encapsulant.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 8, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Reza A. Pagaila, Yaojian Lin, Jun Mo Koo
  • Publication number: 20110291234
    Abstract: A semiconductor circuit structure includes an interconnect region, and a material transfer region. The semiconductor circuit structure includes a conductive bonding region which couples the material transfer region to the interconnect region through a bonding interface. The conductive bonding region includes a barrier layer between a conductive layer and bonding layer. The bonding layer is positioned towards the material transfer region, and the conductive layer is positioned towards the interconnect region.
    Type: Application
    Filed: July 30, 2010
    Publication date: December 1, 2011
    Inventor: Sang-Yun Lee
  • Publication number: 20110293962
    Abstract: Electronic assemblies and solders used in electronic assemblies are described. One embodiment includes a die and a substrate, with a solder material positioned between the die and the substrate, the solder comprising at least 91 weight percent Sn, 0.4 to 1.0 weight percent Cu and at least one dopant selected from the group consisting of Ag, Bi, P, and Co. Other embodiments are described and claimed.
    Type: Application
    Filed: August 8, 2011
    Publication date: December 1, 2011
    Inventors: Mengzhi PANG, Pilin LIU, Charan GURUMURTHY