Semiconductor Device and Method for Producing a Doped Semiconductor Layer
A semiconductor device includes a device region. The device region includes at least one device region section including dopant atoms of a first doping type and with a first doping concentration of at least 1E16 cm−3 and dopant atoms of a second doping type and with a second doping concentration of at least 1E16 cm−3.
Latest Infineon Technologies AG Patents:
- Phase shifter system and method
- Leadframe, encapsulated package with punched lead and sawn side flanks, and corresponding manufacturing method
- Apparatus and method for ascertaining a rotation angle
- Pointing device for detecting motion relative to a surface and method for detecting motion of a pointing device relative to a surface
- Angle sensor with diverse measurement paths and a safety path
Embodiments of the present invention relate to a semiconductor device, and to a method for producing a doped semiconductor layer.
BACKGROUNDOne important aim in the development of power semiconductor devices, such as power transistors or power diodes, is to produce devices with a high voltage blocking capability but, nevertheless, a low on-resistance (RON).
Power semiconductor devices, such as power transistors or power diodes, usually include a drift region that mainly defines the voltage blocking capability and the on-resistance of the semiconductor device. In a power transistor, such as a power MOSFET or a power IGBT, the drift region is arranged between a body region and a drain region and is doped lower than the drain region. In a power diode (where the drift region is also referred to as base region) the drift region is arranged between a p-emitter and an n-emitter and has a lower effective doping concentration than each of the two emitter regions.
The on-resistance of a conventional power transistor is dependent on the length of the drift region in a current flow direction and on the effective doping concentration of the drift region, wherein the on-resistance decreases when the length of the drift region is reduced or when the effective doping concentration in the drift region is increased. In a diode or an IGBT, the voltage drop across the drift region when the diode or the IGBT is forward biased is dependent on the length of the drift region in a current flow direction and on the effective carrier concentration of the drift region, wherein the voltage decreases and, therefore, losses are reduced, when the length of the drift region is reduced or when the effective carrier concentration is increased. When a bipolar device like the diode or the IGBT is forward biased injection of electrons and holes increases the effective carrier concentration of the drift region to above the doping concentration of the drift region. However, in a transistor as well as in a diode, reducing the length of the region or increasing the doping concentration reduces the voltage blocking capability.
SUMMARYA first embodiment relates to a semiconductor device with a drift region. The drift region includes at least one drift region section including dopant atoms of a first doping type and with a first doping concentration of at least 1E16 cm−3 and dopant atoms of a second doping type and with a second doping concentration of at least 1E16 cm−3.
A second embodiment relates to a method of producing a semiconductor device. The method includes providing a semiconductor substrate, forming an epitaxial layer on the semiconductor substrate, and introducing dopant atoms of a first doping type and dopant atoms of a second doping type into the epitaxial layer.
Those skilled in the art will recognize additional features and advantages upon reading the following detailed description, and upon viewing the accompanying drawings.
Examples will now be explained with reference to the drawings. The drawings serve to illustrate the basic principle, so that only aspects necessary for understanding the basic principle are illustrated. The drawings are not to scale. In the drawings the same reference characters denote like features.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part thereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top”, “bottom”, “front”, “back”, “leading”, “trailing” etc., is used with reference to the orientation of the FIGs. being described. Because components of embodiments can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims. It is to be understood that the features of the various exemplary embodiments described herein may be combined with each other, unless specifically noted otherwise.
The semiconductor material of the semiconductor body may be a conventional semiconductor material such as, e.g., silicon (Si), silicon germanium (SiGe), silicon carbide (SiC), gallium nitride (GaN), gallium aluminium nitride (GaAlN) or the like.
The first device region 12 is electrically coupled to a first electrode or terminal 21, and the drift region 11 is electrically coupled or connected to a second electrode or terminal 22. These first and second electrodes 21, 22 are only schematically illustrated in
The drift region 11 is a doped (monocrystalline) semiconductor region that includes dopant atoms of a first doping type (n or p) and dopant atoms of a second doping type (p or n) complementary to the first doping type. These dopant atoms are homogenously or at least almost homogenously distributed in the drift region 11. “At least almost homogenously distributed” means, that the doping concentration of the first dopant atoms and the doping concentration of the second dopant atoms in the drift region 11 differs less than a factor 5, or even less than a factor 2 in vertical direction.
A first doping concentration of the first dopant atoms is at least 1E16 cm−3 or at least 1E17 cm−3, and a second doping concentration of the second dopant atoms is at least 1E16 cm−3, at least 1E17 cm−3, or at least 5E17 cm−3. The drift region 11 may have a net doping or effective doping of one of the first and second doping types. The net doping NNET of the drift region 11 is given by the absolute value of the difference between the first and second doping concentrations, i.e.
NNET=|N1−N2| (1)
where N1 is the first doping concentration, and N2 is the second doping concentration. The net doping of the drift region 11 is a doping of the first doping type when the first doping concentration N1 is higher than the second doping concentration N2, and the net doping of the drift region 11 is a doping of the second doping type when the second doping concentration N2 is higher than the first doping concentration N1. According to one embodiment, the net doping NNET is between 1E12 cm−3 and 1E16 cm−3 or between 1E12 cm−3 and 1E14 cm−3. According to one embodiment, the net doping is at least 100 (1E2) times smaller than each of the first and second doping concentrations.
According to one embodiment, the dopant atoms of the first doping type are dopant atoms of the same type, such as phosphorous atoms, arsenic atoms, nitrogen atoms, silicon atoms or antimony atoms, and the dopant atoms of the second doping type are dopant atoms of the same type, such as boron atoms, indium atoms, gallium atoms, calcium atoms, zinc atoms, beryllium atoms, magnesium atoms or aluminum atoms. Boron (B) atoms, gallium (Ga) atoms, aluminum (Al) atoms and indium (In) atoms are p-type doping atoms in silicon (Si) and in silicon carbide (SiC), and phosphorous (P) atoms, arsenic (As) atoms and antimony (Sb) atoms are p-type doping atoms in silicon (Si) and in silicon carbide (SiC). In silicon carbide (SiC), also nitrogen (N) could be used as a donator (n-type doping atom). In gallium nitride (GaN), silicon (Si) atoms are dopant atoms of the first type, while calcium (Ca) atoms, (Zn) zinc atoms, beryllium (Be) atoms, and magnesium (Mn) atoms are dopant atoms of the second type. According to a further embodiment, different types of dopant atoms are used to effect the doping of one doping type.
The net doping of the drift region 11 defines the ohmic resistance of the drift region 11, where the ohmic resistance decreases when the net doping NNET increases. The net doping NNET is zero or close to zero when the first and second doping concentrations N1, N2 are equal. In this case, the ohmic resistance of the drift region 11 corresponds to the ohmic resistance of an intrinsic semiconductor material. For technological reasons, the doping concentrations of the first and second dopant atoms cannot be exactly equal, so that the net doping concentration NNET cannot be exactly zero. In the following, the first doping concentration and the second doping concentration are considered to be equal when the difference between these doping concentrations is less than 5E12 cm−3, so that the net doping is less than 5E12 cm−3, or if the net doping is at least 300 or at least 1000 times smaller than each of the first and second doping concentrations.
When the first and second doping concentrations N1, N2 are equal, each dopant atom of the first doping type has a corresponding dopant atom of the second doping type, so that each dopant atom of one doping type is compensated by a corresponding dopant atom of the complementary doping type. Dopant atoms that are compensated by a complementary dopant atom do not contribute to the electrical conduction of the drift region 11 and, therefore, do not reduce the ohmic resistance of the drift region 11. However, doping the drift region 11 with dopant atoms of two different doping types may help to reduce the charge carrier mobility in the drift region 11 and may therefore help to increase the voltage blocking capability of the semiconductor device. This is explained in greater detail herein below.
In
The effect of having dopant atoms of both doping types in the drift region 11 is explained in the following. When the semiconductor device is in an on-state in which a current flows through the drift region 11, an ohmic resistance of the drift region 11 is dependent on the effective doping concentration and—in the case of bipolar devices—on the effective carrier concentration in the drift region 11 and of the length of the drift region 11, where the ohmic resistance decreases when the effective doping concentration increases, and where the ohmic resistance increases when the length of the drift region 11 increases. In the following, the wording “effective doping concentration” in the on-state is used for both, the effective doping concentration in unipolar devices, and the effective carrier concentration in bipolar devices, although in bipolar devices the effective carrier concentration may exceed the background net doping concentration by some orders of magnitude. In the off-state of bipolar device, the mobile charges forming the effective carrier concentration during the on-state are removed from the drift region by an electric field expanding in the drift region 11 leaving only the fixed charges of the first and second doping type. The length of the drift region 11 is the dimension of the drift region 11 in the current flow direction x. The semiconductor device is in an off-state when the device junction between the drift region 11 and the first device region 12 is reverse biased so that a depletion region or space charge region expands in the drift region 11 beginning at the device junction. When, for example, the first doping type is an n-type doping and the second doping type is a p-type doping, so that the drift region 11 has an n-type effective doping and the first device region 12 has a p-type effective doping, the device junction can be reverse biased by applying a positive voltage between the second load terminals 22 and the first load terminal 21.
The width of the depletion region that expands in the drift region 11 when the device junction is reverse biased, is dependent on the voltage that reverse biases the junction. The width of the depletion region is a dimension of the depletion region in the current flow direction and increases when the voltage reverse biasing the junction increases. Within the depletion region there are ionized dopant atoms of the first doping type in the drift region 11 and corresponding ionized dopant atoms in the first device region 12. The ionization of the dopant atoms on both sides of the junction causes an electric field. The voltage blocking capability of the semiconductor device is reached when the electrical field generated by these ionized dopant atoms in the drift region 11 and by corresponding ionized dopant atoms in the first device region 12 reaches the critical electrical field. The critical electrical field is a material constant of the semiconductor material of the semiconductor body 100.
By increasing the density of ionized dopant atoms free carriers are scattered more frequently. Thus the mean free path length of these carriers is reduced. For gaining enough energy to generate another electron-hole pair the carriers must be accelerated on a shorter way which means by a higher electric field as compared to a device with a lower density of ionized dopant atoms. Thus, by reducing the mean free path of carriers the critical electrical field strength of the semiconductor material may be enhanced. In other words, by decreasing the mobility of the free charge carriers the scattering processes result in a reduced velocity of the free charge carriers for a certain electrical field strength preventing avalanche phenomena. Therefore, the critical electrical field is enhanced.
The basic device structure with a drift region 11 including dopant atoms of the first doping type and dopant atoms of the second doping type, a first device region 12 and a junction between the drift region 11 and the first device region 12 as illustrated in
Referring to
The MOS transistor can be implemented as an n-type transistor or as a p-type transistor, where the conduction type is defined by the doping type of the source region 31. The doping type of the source region 31 is defined by the doping type of the effective doping concentration of the source region. Equivalently, the doping type of any other device region is defined by the doping type of the effective doping concentration of that device region.
In an n-type transistor the source region 31 and the drift region 11 have an effective n-doping, while the body region 12 has an effective p-doping. In a p-type transistor the source region 31 and the drift region 11 have an effective p-doping, while the body region 12 has an effective n-doping. The MOS transistor can be implemented as an enhancement transistor or as a depletion transistor. Further, the MOS transistor can be implemented as a MOSFET or as an IGBT. In a MOSFET the effective doping of the drain region 13 has the same doping type as the source region 31 and the drift region 11, while in an IGBT the drain region 13 has an effective doping of a doping type complementary to the doping type of the effective doping of the source region 31 and the drift region 11. In an IGBT the source terminal S is also referred to as emitter, while the drain terminal D is also referred to as collector.
The MOS transistor of
Referring to the illustration in dotted lines in
A doping profile as illustrated in
The doping profile as illustrated in
The MOS transistor of
The drift region 11 may have an effective doping of the first doping type, which is the doping type of the source region 31, or may have an effective doping of the second doping type, which is the doping type of the body region. The conducting channel along the drift control region dielectric 42 is an accumulation channel when the drift region 11 has the same doping type as the source region 31, and the conducting channel is an inversion channel, when the drift region 11 has an effective doping doped complementarily to the doping of the source region 31.
In the MOSFET according to
Further, the semiconductor device may include a rectifier element 46, such as a diode, connected between the drain region 13 and a drain-sided end of the drift control region 41. The drift control region 41 extends along the drift region in a current flow direction of the MOSFET. The “drain-sided end” of the drift control region 41 is the end that is located towards the drain region 13. Consequently, a “source-sided end” of the drift control region 41 is the end that is located towards the source region 31 (or source electrode 34) of the MOSFET. Optionally, the rectifier element 44 is connected to a connection region 44 which has the same doping type as the source and drain regions 31, 13, so that the connection region 44 is n-doped in an n-type MOSFET and p-doped in a p-type MOSFET. The connection region 44 has a higher doping concentration than the drift control region 41. The doping concentration of the connection region 44? is, for example, in the range of between 1E18 cm−3 and 1E21 cm−3.
The MOSFET may further include a semiconductor region 43 doped complementarily to the source and drain regions 31, 13 of the MOSFET and adjoining the drift control region 41 at a source-sided end of the drift control region 41. In an n-type MOSFET the semiconductor zone 43 is p-doped, and in a p-type MOSFET the semiconductor zone 43 is n-doped.
The (effective) doping concentration of the drift control region 31 may correspond to the effective doping concentration of the drift region 11. The doping type of the drift control region 31 may correspond to the doping type of the drift region 11, or may be complementary to the doping type of the drift region. According to one embodiment, the drift control region 31 and the drift region 11 are intrinsic with a doping concentration as explained above.
The basic operating principle of the semiconductor device of
The MOSFET is in the off-state, when the channel in the body region 12 along the gate dielectric 33 is interrupted. In this case, a depletion region expands in the drift region 11 beginning at a pn-junction between the body region 12 and the drift region 11. The depletion region expanding in the drift region 11 causes a depletion region also to expand in the drift control region 41, which, like the drift region 11, may include a monocrystalline semiconductor material. By virtue of a depletion region expanding in the drift region 11 and a depletion region expanding in the drift control region 41, a voltage across the drift control region dielectric 21 is limited.
Referring to
The rectifier element 46 allows charge carriers that are thermally generated in the drift control region 41 to flow to the drain region 13, in order to prevent an electrical potential of the drift control region 41 to increase in an uncontrolled manner. The rectifier element 46 therefore operates as a voltage limiting elements that limits a voltage difference between the electrical potential of the drift control region 41 and the drain electrode 13. This rectifier element 46 is connected up such that in the on-state of the MOSFET the drift control region 41 may assume a higher electrical potential than the potential at the drain terminal D.
The biasing source 40 that is connected to the drift control region 41 or to the optional semiconductor region 43 via this optional semiconductor region 33 can be implemented in many different ways. One possible example is illustrated in
Referring to
The MOSFET of
The MOSFETs of
A drift zone with a co-doping of dopant atoms of the first doping type and dopant atoms of the second doping type, such as the drift zone 11 explained with reference to
According to a further embodiment, the diode according to
An embodiment of a method for forming a drift region 11 with a co-doping of dopant atoms of the first doping type and the second doping type is explained with reference to
Referring to
Referring to
According to one embodiment, the dopant source includes molecules that each include at least one dopant atom of the first doping type and at least one dopant atom of the second doping type. The number of dopant atoms of the first doping type in one molecule and the number of dopant atoms of the second doping type in one molecule are in a fixed ratio, such as, e.g., 1:1. However, it is also possible to use molecules with a ratio other than 1:1. When the molecules are implanted into the epitaxial layer 1201, the molecules split up so that dopant atoms of the first and second type are available in the epitaxial layer 1201. The doping concentration of first and second dopant atoms is dependent on the dopant dose of the molecules and on the ratio of first and second type dopant atoms in each molecule. Suitable molecules are, e.g., H2B—PH2, BP, BPF, BPF2, H2B-AsH2, BAs, BAsF, BAsF2, where H: hydrogen, B: boron, P: phosphorous, F: fluorine, As: arsenic. In these molecules, boron (B) is p-doping and phosphorous (P) and arsenic (As) are n-doping.
According to a further embodiment, dopant atoms of the first doping type and dopant atoms of the second doping type are subsequently implanted into the epitaxial layer 1201 or are implanted from different dopant sources at the same time.
The method steps illustrated in
In order to activate the dopant atoms implanted into the individual epitaxial layers 1201-1205 an annealing process may be performed. In this annealing process the implanted dopant atoms diffuse in the individual epitaxial layers and are activated. An annealing process can be performed after each implantation process, or can be performed after the individual epitaxial layers 1201-1205 have been formed. The diffusion of the implanted dopant atoms in the annealing process causes the implanted dopant atoms to be homogenously or to be at least homogenously distributed in the individual epitaxial layers 1201-1205 and, therefore in the overall epitaxial layer 120. If a homogeneous distribution of the first and second type dopant atoms is desired, first and second type dopant atoms are used that have similar diffusion constants, such boron (B) and phosphorous (P) in silicon.
The semiconductor body 100 illustrated in
The epitaxial layer 120 that forms a drift region 11 and that may also form the body region 12 can be produced with a basic doping of the first doping type or of the second doping type. Dependent on how the dopant atoms are introduced into the individual epitaxial layers 1201-1205 the basic doping can be obtained in different ways. When molecules are implanted into the epitaxial layers that include dopant atoms of the first doping type and dopant atoms of the second doping type, a basic doping can be obtained by either forming the individual epitaxial layers 1201-1205 with a basic doping of the first doping type or the second doping type, or by additionally implanting dopant atoms of the first doping type or of the second doping type into the individual epitaxial layers. Of course, it is also possible to produce the epitaxial layers with a basic doping and to additionally implant dopant atoms of the first or second doping type into the individual epitaxial layers.
When the dopant atoms of the first and second doping type are implanted from different dopant sources, then the first and second dopant atoms can be implanted with different dopant doses, so as to obtain a basic doping of one of the first and second doping types.
Instead of implanting the dopant atoms into the individual epitaxial layers 1201-1205 it is also possible to provide the doping molecules, that may include one atom of each of the first and second doping type, already during the epitaxial crystal growth in a direct,e.g., gaseous doping process during the epitaxial deposition. In this case, the epitaxial process does not need to be interrupted to implant dopant atoms, but only one epitaxial growth process my be performed to produce a semiconductor layer corresponding to the layer stack 1201-1205 on the substrate 110. In this process, the addition of dopant atoms containing gases to the process gas may vary in order to provide for a different doping in the uppermost section of epitaxial layer.
A further alternative to the implantation of doping molecules into individual epitaxial layers is to deposit doping molecules, that may include one atom of each of the first and second doping type, on each epitaxial layer 1201-1205, and to then drive the doping atoms into the semiconductor body. This process may be used subsequently as shown in
Referring to
After the trenches 121 have been filled with the low doped, undoped or intrinsic semiconductor material, a thermal process is performed, in which dopant atoms from the mesa region diffuse into the undoped semiconductor region in the trenches 121. According to one embodiment, the dopant atoms of the co-doping in the mesa region 11 are chosen such that dopant atoms of the second doping type diffuse faster than dopant atoms of the first doping type. This has the effect, that the doping concentration of dopant atoms of the second doping type decreases more than the doping concentration of dopant atoms of the first doping type in the mesa region, and that the doping concentration of doping atoms of the second doping type increases more in the trenches 121 than the doping concentration of dopant atoms of the first doping type. A resulting doping profile is illustrated in
The semiconductor structure illustrated in
In terms of an effective compensation it is desirable to have a basically exact counterdoping, which means basically a balance of those first and second dopant atoms used to adjust the charge carrier mobility. Further dopant atoms may be present in the semiconductor body that provide for a basic doping of the first or second doping type. A balance of first and second dopant atoms may be obtained by implementing one of the above captioned methods in which first and second type doping atoms are introduced into the semiconductor body with a 1:1 ratio.
Referring to the explanation before, the co-doping of dopant atoms of the first and second doping type may help to reduce the charge carrier mobility in the drift region and, therefore, the co-doping of dopant atoms helps to increase the voltage blocking capability of the semiconductor device. However, there may be regions in the drift region 11 in which a reduction of the charge carrier mobility is not desirable. According to one embodiment, the drift region includes measures that counteract a decrease of the charge carrier mobility or that increase the charge carrier mobility.
The semiconductor body 100 of
The diffusion barrier 16 separates dopant atoms of the first and second dopant type at the interface between the diffusion barrier and the drift region 11 in that the diffusion barrier 16 allows dopant atoms of one conductivity type to diffuse through the diffusion barrier, while the diffusion of dopant atoms of the other conductivity type is prevented or at least impeded. Thus, in the diffusion process already explained with reference to
For an effective compensation the exact counterdoping is essential and with it the method of implanting molecules that consist of doping atoms with a 1:1 ratio. For this embodiment the implantation of molecules containing boron (B) and phosphorus (P) atoms with a 1:1 ratio is a preferred, because both atoms have a very similar diffusion constant which supports the compensated doping in the mesa region before the outdiffusion via the barrier layer takes place.
According to a further embodiment that is illustrated in
The semiconductor layer 15 of
When, as explained with reference to
Referring to the explanation above, the critical electrical field strength (which is the field strength at which an Avalanche breakdown occurs) can be increased in a drift region or a base region of a power semiconductor device by co-doping the drift region (base region) 11 with dopant atoms of the first and second doping type. “Co-doping” means that additionally to a desired basic doping of the drift region 11 dopant atoms of the first and second doping type with the same doping concentration are introduced into the drift region 11, so that these co-doped atoms do not affect the net doping of the drift region 11, but reduce the mean free path length of charge carriers, and, therefore, help to increase the critical electrical field strength.
Referring to the explanation above, the complete drift region 11 may be co-doped with first and second type doping atoms, so as to increase the critical electrical field strength all over the drift region 11. According to a further embodiment, only those device regions of a semiconductor device, in particular of a power semiconductor device, are co-doped with first and second type doping atoms in which a high field strength occurs in operation of the semiconductor device. Thus, the critical electrical field strength is only locally increased in this case.
Different embodiments of device regions that include a co-doping in order to locally increase the critical electrical field strength are explained with reference to
Referring to
Optionally, a field plate 71 may be arranged above the first surface 101 of the semiconductor body 100 and above the curve region of an insulating layer (not illustrated) is arranged between the field plate 71 and the semiconductor body 100. The field electrode 71 may be floating or may be electrically connected to the second device region 12. According to one embodiment, the co-doped region 61 includes boron atoms as p-type doping atoms and phosphorus atoms as n-type doping atoms. Those dopant atoms of the co-doped region 61 that do not contribute to the basic doping may be introduced into the semiconductor body from one common dopant source that includes dopant atoms of the first and second doping type in a ratio of 1:1. Examples of suitable (gaseous) dopant sources that include p-type boron (B) and n-type phosphorous atoms are H2B—PH2, BP, BPF, or BPF2.
The (p-type or n-type) basic doping (net doping) of the first and second semiconductor devices 11, 12 may be obtained using any suitable dopant source.
The semiconductor device of
Referring to
The device of
Referring to
Additionally or alternatively, the semiconductor device further includes a co-doped semiconductor region 65′ close to the surface 101 in the body regions 12. This co-doped region 65′ may also be arranged in those regions of the drift region 12 that laterally adjoin the body regions 12. The co-doped region 65′ close to the surface helps to improve the robustness of the semiconductor device against cosmic radiation.
According to a further embodiment illustrated in
Spatially relative terms such as “under”, “below”, “lower”, “over”, “upper” and the like are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc. and are also not intended to be limiting. Like terms refer to like elements throughout the description.
As used herein, the terms “having”, “containing”, “including”, “comprising” and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
With the above range of variations and applications in mind, it should be understood that the present invention is not limited by the foregoing description, nor is it limited by the accompanying drawings. Instead, the present invention is limited only by the following claims and their legal equivalents.
Claims
1. A semiconductor device comprising a device region, the device region comprising at least one device region section comprising dopant atoms of a first doping type and with a first doping concentration of at least 1E16 cm−3 and dopant atoms of a second doping type and with a second doping concentration of at least 1E16 cm−3.
2. The semiconductor device of claim 1, wherein the at least one device region section has an effective doping concentration of one of the first and second doping types.
3. The semiconductor device of claim 2, wherein the effective doping concentration is between 1E13 cm−3 and 1E16 cm−3, or between 5E13 cm−3 and 5E15 cm−3.
4. The semiconductor device of claim 1,
- wherein the first doping concentration is at least 1E17 cm−3, and
- wherein the second doping concentration is at least 1E17 cm−3.
5. The semiconductor device of claim 1, wherein the dopant atoms of the first doping type comprise at least one of phosphorous, nitrogen, silicon, arsenic, or antimony.
6. The semiconductor device of claim 1, wherein the dopant atoms of the second doping type comprise at least one of boron, gallium, indium, calcium, zinc, beryllium, magnesium and aluminum.
7. The semiconductor device of claim 1,
- wherein the dopant atoms of the first doping type comprise phosphorous atoms, and
- wherein the dopant atoms of the second doping type comprise boron atoms.
8. The semiconductor device of claim 1, further comprising at least one stress inducing semiconductor layer in the device region.
9. The semiconductor device of claim 8, wherein the device region includes silicon (Si) and wherein the stress inducing layer includes silicon-germanium (SiGe)
10. The semiconductor device of claim 1, wherein the semiconductor device is implemented as an MOS transistor, and wherein the device region is a drift region.
11. The semiconductor device of claim 1, wherein the semiconductor device is implemented as a bipolar diode, and wherein the device region is a base region.
12. The semiconductor device of claim 1, wherein the semiconductor device is implemented as a Schottky diode, and wherein the device region is a drift region.
13. The semiconductor device of claim 1, wherein the device region includes a pn-junction.
14. The semiconductor device of claim 13, wherein the pn-junction is a pn-junction between a body region and a drift region of an MOS transistor.
15. The semiconductor device of claim 13, wherein the pn-junction is a pn-junction between an emitter region and a base region of a diode.
16. The semiconductor device of claim 1, wherein the device region adjoins a dielectric layer.
17. The semiconductor device of claim 16, wherein the dielectric layer is a gate dielectric or a field electrode dielectric in an MOS transistor.
18. The semiconductor device of claim 1, wherein the device region is implemented in a p-type base region of a thyristor between two amplifying gates of an amplifying gate structure.
19. A method of producing a semiconductor device, the method comprising:
- i. providing a semiconductor substrate;
- ii. forming an epitaxial layer on the semiconductor substrate; and
- iii. introducing dopant atoms of a first doping type and dopant atoms of a second doping type into the epitaxial layer.
20. The method of claim 19, further comprising:
- iv. repeating the method steps i. to iii. at least once, so as to form at least two epitaxial layers, wherein in each repetition of method steps i. to iii. the epitaxial layer in step ii. is formed on the epitaxial that has been produced in the preceding method step ii.
21. The method of claim 19, wherein in method step iii. molecules are introduced that include dopant atoms of the first doping type and dopant atoms of the second doping type in a predefined ratio.
22. The method of claim 21, wherein the predefined ratio is 1:1.
23. The method of claim 19, wherein in method step iii. the dopant atoms are introduced at least one of during a crystal growth of the epitaxial layer, and after a crystal growth of the epitaxial layer.
24. The method of claim 23, wherein the introduction of dopant atoms into the epitaxial layer after the epitaxial crystal growth comprises at least one of an implantation process and a diffusion process.
25. The method of claim 19, wherein the epitaxial layer is produced with a basic doping of one of the first and second doping types.
26. The method of claim 19, further comprising:
- v. forming at least one trench in at least one of the epitaxial layers;
- vi. filling the at least one trench with a monocrystalline semiconductor material; and
- vii. diffusing dopant atoms into the material filling the at least one trench from the surrounding semiconductor material.
27. The method of claim 26, wherein the dopant atoms of one of the first and second doping type are selected to have a higher diffusion rate than the dopant atoms of the other of the first and second doping type.
28. The method of claim 26, further comprising:
- viii. forming a diffusion barrier at least on sidewalls of the at least one trench.
29. The method of claim 28, wherein the diffusion barrier includes one of SiGe and SiGeC.
30. The method of claim 24, wherein the dopant atoms of the first and of the second doping type each have a diffusion constant, wherein a smaller one of the diffusion constants is between 50% and 100% or between 80% and 100% of the other diffusion constant.
Type: Application
Filed: Jul 2, 2012
Publication Date: Jan 2, 2014
Applicant: Infineon Technologies AG (Neubiberg)
Inventors: Hans-Joachim Schulze (Taufkirchen), Franz Hirler (Isen), Anton Mauder (Kolbermoor), Helmut Strack (Munich), Frank Kahlmann (Neubiberg), Gerhard Miller (Penzing)
Application Number: 13/539,944
International Classification: H01L 29/36 (20060101); H01L 21/225 (20060101);