Thermoelectric Patents (Class 136/200)
  • Patent number: 8865501
    Abstract: The object of the present invention is to provide a method of fabricating a thermoelectric material and a thermoelectric material fabricated thereby. According to the present invention, since carbon nanotubes with no surface treatment are dispersed in the alloy, electrical resistivity decreases and electrical conductivity increases in comparison to surface-treated carbon nanotubes and an amount of thermal conductivity decreased is the same as that in the case of using surface-treated carbon nanotubes, and thus, a ZT value, a thermoelectric figure of merit, is improved. A separate reducing agent is not used and an organic solvent having reducing powder is used to improve economic factors related to material costs and process steps, and carbon nanotubes may be dispersed in the thermoelectric material without mechanical milling.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: October 21, 2014
    Assignee: Korea Institute of Machinery and Materials
    Inventor: Kyung Tae Kim
  • Publication number: 20140305478
    Abstract: A thermoelectric material to exploit a unidirectional thermal gradient for the production of electrical power, comprising a body fabricated from milled silicon alloyed with a dopant and sintered at a temperature below the melting point of silicon.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 16, 2014
    Applicant: Mossey Creek Solar, LLC
    Inventor: John Carberry
  • Publication number: 20140299171
    Abstract: Disclosed is a material for an electrode having an excellent performance and an excellent durability by maintaining high electrical conductivity and by restraining the growth of the grain at a high temperature. The material can be manufactured by synthesizing composite materials through use of a metallic material of Mo and a ceramic material, and then the composite materials can be used as the electrode.
    Type: Application
    Filed: August 5, 2013
    Publication date: October 9, 2014
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong KIM, Sang-Kuk Woo, Se-Young Kim, Jong-Hoon Joo, In-Sub Han, Doo-Won Seo, Min-Soo Suh
  • Patent number: 8853519
    Abstract: In order to achieve a thermoelectric transducer exhibiting a higher conversion efficiency and an electronic apparatus including such a thermoelectric transducer, a thermoelectric conversion device is provided, including a semiconductor stacked structure including semiconductor layers stacked with each other, the semiconductor layers being made from different semiconductor materials, in which a material and a composition of each semiconductor layer in the semiconductor stacked structure are selected so as to avoid conduction-band or valence-band discontinuity.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: October 7, 2014
    Assignee: Fujitsu Limited
    Inventor: Taisuke Iwai
  • Publication number: 20140290711
    Abstract: A process for manufacturing a thermoelectric material having a plurality of grains and grain boundaries. The process includes determining a material composition to be investigated for the thermoelectric material and then determining a range of values of grain size and/or grain boundary barrier height obtainable for the material composition using current state of the art manufacturing techniques. Thereafter, a range of figure of merit values for the material composition is determined as a function of the range of values of grain size and/or grain boundary barrier height. And finally, a thermoelectric material having the determined material composition and an average grain size and grain boundary barrier height corresponding to the maximum range of figure of merit values is manufactured.
    Type: Application
    Filed: June 13, 2014
    Publication date: October 2, 2014
    Inventors: Debasish Banerjee, Michael Paul Rowe, Li Qin Zhou, Minjuan Zhang, Takuji Kita
  • Publication number: 20140261604
    Abstract: Lanthanum strontium manganate (La0.67Sr0.33MnO3, i.e., LSMO)/lanthanum manganate (LaMnO3, i.e., LMO) perovskite oxide metal/semiconductor superlattices were investigated for potential p-type thermoelectric applications. Growth optimizations were performed using pulsed laser deposition to achieve epitaxial superlattices of LSMO (metal)/LMO (p-type semiconductor) on strontium titanate (STO) substrates. The cross-plane Seebeck coefficient of the thermoelectric superlattice measured between the substrate and the capping layer has a value of at least 1600 ?V/K measured at about 300K.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Purdue Research Foundation
  • Publication number: 20140261605
    Abstract: A thermoelectric conversion module according to one aspect of embodiments of the present invention as disclosed herein includes a plurality of layered planar bodies. Each of the plurality of layered planar bodies includes a base material having a planar shape, a plurality of p-type granular bodies made of a p-type thermoelectric material, and a plurality of n-type granular bodies made of an n-type thermoelectric material. The plurality of p-type granular bodies and the plurality of n-type granular bodies are held by the base material in such a manner as to be spaced apart from each other in a direction along a face of the base material crossing a layered direction of the plurality of layered planar bodies.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KITAGAWA INDUSTRIES CO., LTD.
    Inventors: HIROKI KITANO, HIDEO YUMI, YASUHIRO KAWAGUCHI, KENTA TAKAGI, KIMIHIRO OZAKI
  • Publication number: 20140251407
    Abstract: A thermoelectric conversion material containing an electrically conductive polymer and a thermal excitation assist agent, wherein the thermal excitation assist agent is a compound that does not form a doping level in the electrically conductive polymer, an energy level of LUMO (lowest unoccupied molecular orbital) of the thermal excitation assist agent and an energy level of HOMO (highest occupied molecular orbital) of the electrically conductive polymer satisfy following numerical expression (I): 0.1 eV?|HOMO of an electrically conductive polymer|?|LUMO of a thermal excitation assistant agent|?1.9 eV wherein, in numerical expression (I), |HOMO of an electrically conductive polymer| represents an absolute value of an energy level of HOMO of the electrically conductive polymer, and |LUMO of a thermal excitation assist agent| represents an absolute value of an energy level of LUMO of the thermal excitation assist agent, respectively.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 11, 2014
    Applicant: FUJIFILM CORPORATION
    Inventors: Ryo Nishio, Toshiaki Aoai, Naoyuki Hayashi
  • Publication number: 20140251403
    Abstract: The present disclosure provides a thermoelement with improved figure of merit for use in thermoelectric devices and a method of manufacturing the thermoelement. The thermoelement comprises metal layers, high power factor electrodes, a thermoelectric layer and a phonon blocking layer. The thickness of the thermoelectric layer is less than a thermalization length to achieve decoupling of phonons and electrons in the thermoelement. The phonon blocking layer reduces phonon conduction without significantly influencing electronic conduction. In an embodiment, the high power factor electrodes are made of materials with high Seebeck coefficient and high thermoelectric power factor that reduce thermal losses at interfaces of the thermoelement. The metal layers form outermost layers of the thermoelement and geometrically shaped to reduce heat flux in the thermoelement.
    Type: Application
    Filed: October 17, 2012
    Publication date: September 11, 2014
    Applicant: SHEETAK, INC.
    Inventor: Uttam Ghoshal
  • Publication number: 20140251408
    Abstract: An embodiment of the invention relates to a Seebeck temperature difference sensor that may be formed in a trench on a semiconductor device. A portion of the sensor may be substantially surrounded by an electrically conductive shield. A plurality of junctions may be included to provide a higher Seebeck sensor voltage. The shield may be electrically coupled to a local potential, or left electrically floating. A portion of the shield may be formed as a doped well in the semiconductor substrate on which the semiconductor device is formed, or as a metal layer substantially covering the sensor. The shield may be formed as a first oxide layer on a sensor trench wall with a conductive shield formed on the first oxide layer, and a second oxide layer formed on the conductive shield. An absolute temperature sensor may be coupled in series with the Seebeck temperature difference sensor.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 11, 2014
    Applicant: Infineon Technologies AG
    Inventors: Donald Dibra, Christoph Kadow, Markus Zundel
  • Patent number: 8829324
    Abstract: A transverse thermoelectric device includes a superlattice body, electrically conductive first and second contacts, and first and second thermal contacts. The superlattice body extends between opposite first and second ends along a first direction and between opposite first and second sides along a different, second direction. The superlattice body includes alternating first and second layers of crystalline materials oriented at an oblique angle relative to the first direction. The electrically conductive first contact is coupled with the first end of the superlattice and the electrically conductive second contact is coupled with the second end of the superlattice. The first thermal contact is thermally coupled to the first side of the superlattice and the second thermal contact is thermally coupled to the second side of the superlattice. A Seebeck tensor of the superlattice body is ambipolar.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: September 9, 2014
    Assignee: Northwestern University
    Inventors: Matthew Grayson, Chaunle Zhou
  • Publication number: 20140246065
    Abstract: Provided is nano thermoelectric powder with a core-shell structure. Specifically, the nano thermoelectric powder of the core-shell structure of the present invention forms coating layer on the surface of nano powder prior to sintering of the nano powder. An advantage of some aspects of the present invention is that it provides thermoelectric elements having reduced thermal conductivity and enhanced thermoelectric efficiency without affecting electrical conductivity using the nano thermoelectric powder with the core-shell structure.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 4, 2014
    Applicant: LG INNOTEK CO., LTD.
    Inventor: Jong Min Lee
  • Publication number: 20140238457
    Abstract: A method is disclosed for tailoring the thermoelectric response of a thermocouple to that desired by a user. The method comprises the steps of; (a) selecting a first thermoelectric material, (b) selecting a second thermoelectric material having dissimilar thermoelectric properties to the first thermoelectric material, a thermocouple formed from the first thermoelectric material and the second thermoelectric material having a known thermoelectric response, and (c) modifying the chemical composition of at least one of the first thermoelectric material and the second thermoelectric material to produce a thermocouple having a tailored thermoelectric response. In specific embodiments, the chemical composition may be modified by selectively depleting one or more chemical elements from the thermoelectric material or by selectively adding, or increasing the proportion of, one or more elements to the thermoelectric material.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 28, 2014
    Inventor: Paul Hanscombe
  • Publication number: 20140230868
    Abstract: A composite laminate may include graphene and a thermoelectric inorganic material including a single crystal having a hexagonal crystal system.
    Type: Application
    Filed: June 28, 2013
    Publication date: August 21, 2014
    Inventors: Chong-joon RYU, Seung-hyun HONG, Won-young KIM, Seung-hyun BAIK, Sang-hoon LEE, Jae-young CHOI
  • Publication number: 20140216513
    Abstract: A composite structure with tailored anisotropic energy flow is described. The structure consists of an array of two-dimensional electrodes with anisotropic geometrical shapes on a semiconductor or semimetal layer that in turn is on a metal baselayer. An applied voltage between the two-dimensional electrode array and the baselayer renders the regions under the electrodes insulating such that the anisotropic regions interact with energy flow in the semiconductor or semimetal layer. Depending on the orientation of the anisotropic insulating regions with respect to the principal direction of energy flow, the energy flow in the semiconductor or semimetal layer is greater in a principal direction and is lower in an opposite direction.
    Type: Application
    Filed: September 23, 2011
    Publication date: August 7, 2014
    Applicant: United Technologies Corporation
    Inventor: Joseph V. Mantese
  • Publication number: 20140209139
    Abstract: The invention relates to a thermoelectric module, having an electric insulation, an electric conductor path, one surface of the electric conductor path being attached to a surface of the electrical insulation, and a thermoelectric material, one surface of the thermoelectric material being attached to another surface of the conductor path.
    Type: Application
    Filed: July 20, 2012
    Publication date: July 31, 2014
    Applicant: BEHR GMBH & CO. KG
    Inventor: Hans-Heinrich Angermann
  • Patent number: 8791357
    Abstract: The present invention relates to micron-gap thermal photovoltaic (MTPV) technology for the solid-state conversion of heat to electricity. The problem is forming and then maintaining the close spacing between two bodies at a sub-micron gap in order to maintain enhanced performance. While it is possible to obtain the sub-micron gap spacing, the thermal effects on the hot and cold surfaces induce cupping, warping, or deformation of the elements resulting in variations in gap spacing thereby resulting in uncontrollable variances in the power output. A major aspect of the design is to allow for intimate contact of the emitter chips to the shell inside surface, so that there is good heat transfer. The photovoltaic cells are pushed outward against the emitter chips in order to press them against the inner wall. A high temperature thermal interface material improves the heat transfer between the shell inner surface and the emitter chip.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 29, 2014
    Assignee: MTPV Power Corporation
    Inventors: Eric L. Brown, Robert S. DiMatteo, Bruno A. Nardelli, Bin Peng, Xiao Li
  • Patent number: 8790008
    Abstract: A device for measuring the temperature of a substrate comprising a thermocouple comprising electric wires joined to each other at least one junction; a fixing element suitable for fixing said junction to said substrate in order to measure its temperature; characterized in that the fixing element comprises a thermally conductive element suitable for bearing a portion of electric wires adjacent to said junction; said thermally conductive element being capable of thermally coupling said portion of electric wires to said substrate.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: July 29, 2014
    Assignee: Astrium SAS
    Inventor: Christian Flemin
  • Publication number: 20140182646
    Abstract: A thermoelectric material includes a stack structure including alternately stacked first and second material layers. The first material layer may include a carbon nano-material. The second material layer may include a thermoelectric inorganic material. The first material layer may include a thermoelectric inorganic material in addition to the carbon nano-material. The carbon nano-material may include, for example, graphene. At least one of the first and second material layers may include a plurality of nanoparticles. The thermoelectric material may further include at least one conductor extending in an out-of-plane direction of the stack structure.
    Type: Application
    Filed: December 4, 2013
    Publication date: July 3, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-young CHOI, Seung-hyun BAIK, Won-young KIM, Dae-woo SUH, Sang-hoon LEE, Seung-hyun HONG
  • Publication number: 20140182644
    Abstract: Thermoelectric device with a multi-leg package and method thereof. The thermoelectric device includes a first ceramic base structure including a first surface and a second surface, and a first plurality of pads including one or more first materials thermally and electrically conductive. The first plurality of pads are attached to the first surface. Additionally, the thermoelectric device includes a second plurality of pads including the one or more first materials. The second plurality of pads are attached to the second surface and arranged in a mirror image with the first plurality of pads. Moreover, the thermoelectric device includes a plurality of thermoelectric legs attached to the first plurality of pads respectively. Each pad of the first plurality of pads is attached to at least two first thermoelectric legs of the plurality of thermoelectric legs.
    Type: Application
    Filed: October 14, 2013
    Publication date: July 3, 2014
    Applicant: Alphabet Energy, Inc.
    Inventors: Mario Aguirre, Adam Lorimer, Sasi Bhushan Beera, Sravan Kumar Sura, Matthew L. Scullin, Sylvain Muckenhirn, Douglas Crane
  • Publication number: 20140174492
    Abstract: A thermoelectric material and a method for manufacturing the same are provided. The thermoelectric material includes a mixture of nano-thermoelectric crystal particles, micron-thermoelectric crystal particles and nano-metal particles.
    Type: Application
    Filed: July 18, 2013
    Publication date: June 26, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hsu-Shen Chu, Jenn-Dong Hwang, Chia-Chan Hsu, Tse-Hsiao Lee, Hong-Bin Wang
  • Publication number: 20140174493
    Abstract: A nanocomposite thermoelectric conversion material includes a matrix and semiconductor nanowires dispersed as a dispersant in the matrix. The semiconductor nanowires are arranged unidirectionally in a long axis direction of the semiconductor nanowires.
    Type: Application
    Filed: August 9, 2012
    Publication date: June 26, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junya Murai, Takuji Kita
  • Publication number: 20140166065
    Abstract: A structure of a thermoelectric film including a thermoelectric substrate and a pair of first diamond-like carbon (DLC) layers is provided. The first DLC layers are respectively located on two opposite surfaces of the thermoelectric substrate and have electrical conductivity.
    Type: Application
    Filed: March 13, 2013
    Publication date: June 19, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ming-Sheng Leu, Tai-Sheng Chen, Chih-Chao Shih
  • Patent number: 8754320
    Abstract: A composite material with tailored anisotropic electrical and thermal conductivities is described. A material consists of a matrix material containing inclusions with anisotropic geometrical shapes. The inclusions are arranged in layers oriented perpendicular to the principal direction of electrical and thermal energy flow in the material. The shapes of the inclusions are such that they represent strong or weak barriers to energy flow depending on whether the major axis of the inclusions are parallel to or antiparallel to the flow direction.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: June 17, 2014
    Assignee: United Technologies Corporation
    Inventor: Joseph V. Mantese
  • Publication number: 20140144478
    Abstract: A thermoelectric conversion device and a selective absorber film are provided. The thermoelectric conversion device includes at least one first selective absorber film, a cold terminal substrate, at least one first thermoelectric element pair, a first conductive substrate and a second conductive substrate. The first selective absorber film non-contactly absorbs a preset limited wavelength band of heat radiation. The first thermoelectric element pair is disposed between the first selective absorber film and the cold terminal substrate, and includes a first N-type thermoelectric element and a first P-type thermoelectric element. The first conductive substrate is disposed between the cold terminal substrate and the first N-type thermoelectric element. The second conductive substrate is disposed between the cold terminal substrate and the first P-type thermoelectric element.
    Type: Application
    Filed: May 14, 2013
    Publication date: May 29, 2014
    Applicant: Industrial Technology Research Institute
    Inventors: Chun-Kai Lin, Rei-Cheng Juang, Yi-Ray Chen, Kuang-Yao Chen, Chien-Hsuan Yeh, Hsiao-Hsuan Hsu, Yu-Li Lin
  • Patent number: 8733339
    Abstract: A solar collector includes a substrate having a top surface and a bottom surface opposite to the upper surface, a sidewall, a transparent cover, and a heat-absorbing layer. The sidewall is arranged on the top surface of the substrate. A transparent cover is disposed on the sidewall opposite to the substrate to form a sealed chamber with the substrate together. The heat-absorbing layer is disposed on the upper surface of the substrate and includes a carbon nanotube composite material.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: May 27, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Pi-Jin Chen, Liang Liu, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20140137916
    Abstract: A thermoelectric material including a 3-dimensional nanostructure, wherein the 3-dimensional nanostructure includes a 2-dimensional nanostructure connected to a 1-dimensional nanostructure.
    Type: Application
    Filed: June 25, 2013
    Publication date: May 22, 2014
    Applicants: Industry-Academic Cooperation Foundation, Yonsei University, Samsung Electronics Co., Ltd.
    Inventors: Jong-wook ROH, Jung-young CHO, Weon-ho SHIN, Dae-jin YANG, Kyu-hyoung LEE, Un-yong JEONG
  • Patent number: 8728356
    Abstract: The present disclosure provides a thermoelectric material which can be formed into a flexible and thin type material. The thermoelectric material is a composite that includes a binder resin, thermoelectric material particles dispersed in the binder resin, and fine metal particles supported on a surface of the thermoelectric material particles.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 20, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Hideki Minami, Yuji Hiroshige
  • Publication number: 20140124010
    Abstract: A method of fabricating a thermoelectric device includes providing a substrate having a plurality of inclined growth surfaces protruding from a surface thereof. Respective thermoelectric material layers are grown on the inclined growth surfaces, and the respective thermoelectric material layers coalesce to collectively define a continuous thermoelectric film. A surface of the thermoelectric film opposite the surface of the substrate may be substantially planar, and a crystallographic orientation of the thermoelectric film may be tilted at an angle of about 45 degrees or less relative to a direction along a thickness thereof. Related devices and fabrication methods are also discussed.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 8, 2014
    Inventors: Robert P. Vaudo, Philip A. Deane, Thomas Peter Schneider, Christopher D. Holzworth, Joseph Robert Williamson
  • Publication number: 20140116491
    Abstract: Thermoelectric solid material and method thereof. The thermoelectric solid material includes a plurality of nanowires. Each nanowire of the plurality of nanowires corresponds to an aspect ratio (e.g., a ratio of a length of a nanowire to a diameter of the nanowire) equal to or larger than 10, and each nanowire of the plurality of nanowires is chemically bonded to one or more other nanowires at at least two locations of the each nanowire.
    Type: Application
    Filed: October 24, 2013
    Publication date: May 1, 2014
    Applicant: Alphabet Energy, Inc.
    Inventors: John Reifenberg, Saniya LeBlanc, Matthew L. Scullin
  • Publication number: 20140109948
    Abstract: A thermoelectric module including: an n-type thermoelectric element; a p-type thermoelectric element; a diffusion blocking layer bonded integrally on each of a top and a bottom surface of the n-type thermoelectric element and on each of a top and a bottom surface of the p-type thermoelectric element; an electrode on the n-type thermoelectric element and on the p-type thermoelectric element; and a bonding layer disposed between the electrode and at least one of the n-type thermoelectric element and the p-type thermoelectric element, wherein the bonding layer includes an amorphous metal.
    Type: Application
    Filed: May 29, 2013
    Publication date: April 24, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kyu-hyoung LEE, Sang-il KIM, Se-yun KIM, Eun-sung LEE
  • Patent number: 8702306
    Abstract: Certain exemplary embodiments can provide a system, which can comprise a thermocouple input module. The thermocouple input module can be adapted to determine one or more calibration factors. The thermocouple input module can be adapted to store the calibration factors. The thermocouple input module can be adapted to apply the calibration factors to an incoming thermocouple voltage value to obtain an adjusted thermocouple voltage value.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: April 22, 2014
    Assignee: Siemens Industry, Inc.
    Inventors: Stephen Weeks Mowry, Jr., Robert Alan Weddle
  • Publication number: 20140102498
    Abstract: Methods of fabricating a thermoelectric element with reduced yield loss include forming a solid body of thermoelectric material having first dimension of 150 mm or more and thickness dimension of 5 mm or less, and dicing the body into a plurality of thermoelectric legs, without cutting along the thickness dimension of the body. Further methods include providing a metal material over a surface of a thermoelectric material, and hot pressing the metal material and the thermoelectric material to form a solid body having a contact metal layer and a thermoelectric material layer.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 17, 2014
    Applicant: GMZ Energy, Inc.
    Inventors: Bed Poudel, Giri Joshi, Jian Yang, Tej Panta, James Christopher Caylor, Jonathan D'Angelo, Zhifeng Ren
  • Publication number: 20140093778
    Abstract: A nanosheet comprises a single crystal mixed metal oxide M1xM2yO2 material composition that may comprise a single crystal NaxCoO2 material composition. The nanosheet may be prepared using a sequential process sequence that includes chelated mixed metal ion sol-gel mixture formation, autocombustion, isostatic pressing, electro kinetic demixing and calcination. This particular process sequence provides single crystal nanosheets having in-plane mutually perpendicular lateral sheet dimensions greater than about 10 microns by about 200 microns, and a thickness from about 5 to about 100 nanometers.
    Type: Application
    Filed: June 7, 2012
    Publication date: April 3, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: Mahmut Askit, Richard D. Robinson
  • Patent number: 8684598
    Abstract: A thermoelement for measuring the temperature in gaseous or fluid media by means of one or more thermocouples comprising wires of different metals welded together which give off a resulting electrical voltage when heated and are configured as a measuring insert arranged in an insulating rod disposed in a heat-resistant protective tube that can be connected to a connection head, the protective tube being wholly or partially surrounded by a holding tube. To prevent a high input of heat which has an unfavourable effect on temperature measurement, the holding tube is supported against the protective tube at a radial distance from the protective tube, and a heat-resistant trace and optionally an insulating material are inserted between the protective tube and the holding tube, and the holding tube is attached to the connection head and/or the protective tube in one or both end areas and is provided with thermal insulation.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: April 1, 2014
    Assignee: innovatherm Prof. Dr. Leisenberg GmbH & Co. KG
    Inventors: Christian Hoβbach, Peter Krieg, Detlef Maiwald, Hans-Peter Mnikoleiski, Wolfgang Uhrig
  • Patent number: 8686278
    Abstract: An integrated micro-combustion power generator converts hydrocarbon fuel into electricity. The integrated micro-scale power generator includes a micro-machined combustor adapted to convert hydrocarbon fuel into thermal energy and a micro-machined thermoelectric generator adapted to convert the thermal energy into electrical energy. The combustion reaction in the combustor flows in a path in a first plane while the thermal energy flows in a second plane in the generator; the second plane being nearly orthogonal or orthogonal to the first plane. The fuel handler in the combustor is adjacent and thermally isolated from the thermoelectric generator. The fuel handler may include a nozzle and gas flow switch, where the frequency of activation of the gas flow switch controls the amount of the fuel ejected from the nozzle.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: April 1, 2014
    Inventor: Ying Hsu
  • Patent number: 8685758
    Abstract: A thermoelectric conversion module includes a pair of heat transfer plates, p-type semiconductor blocks and n-type semiconductor blocks arranged between the heat transfer plates, and terminal electrodes formed respectively on inner surfaces of the heat transfer plates and connecting the semiconductor blocks in series. The heat transfer plates include holes reaching from an outer surface to the terminal electrodes, and grooves each formed between the terminal electrodes and communicating between the adjacent holes. If a disconnection occurs, for example, a pin of a tester is brought into contact with the terminal electrode via the hole to specify a disconnected portion, and the terminal electrodes are electrically connected by injecting conductive paste into the holes in the disconnected portion as well as the groove.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 1, 2014
    Assignee: Fujitsu Limited
    Inventors: Takashi Suzuki, Takuya Nishino
  • Publication number: 20140060601
    Abstract: A thermoelectric element includes a body formed of a single thermoelectric material and extending in a first direction along which a thermal gradient is established in thermoelectric operation, wherein the body has at least first and second adjacent sections in the first direction; at least one of the sections is subject to stress which is applied to that section substantially all around a central axis of the body in the first direction; and the arrangement is such that the stress results in different strain in the first and second sections producing an energy barrier in the body to enhance thermoelectric operation.
    Type: Application
    Filed: August 14, 2013
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Bernd W. Gotsmann, Siegfried F. Karg, Heike E. Riel
  • Patent number: 8659903
    Abstract: A device has a passive cooling device having a surface, at least one active cooling device on the surface of the passive cooling device, and a thermal switch coupled to the passive cooling device, the switch having a first position that connects the active cooling device to a path of high thermal conductivity and a second position that connects the passive cooling device to the path of high thermal conductivity.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 25, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventor: David Eric Schwartz
  • Publication number: 20140020729
    Abstract: A thermoelectric conversion element includes a p-type metal thermoelectric conversion material containing a metal as its main constituent, an n-type oxide thermoelectric conversion material containing an oxide as its main constituent, and a composite oxide insulating material containing a composite oxide as its main constituent. The p-type metal thermoelectric conversion material and the n-type oxide thermoelectric conversion material are directly bonded in a region of a junction plane between the p-type metal thermoelectric conversion material and the n-type oxide thermoelectric conversion material, and the p-type metal thermoelectric conversion material and the n-type oxide thermoelectric conversion material are bonded to each other with the composite oxide insulating material interposed therebetween so as to define a pn conjunction pair in the other region of the junction plane. A perovskite-type oxide is used as the n-type oxide thermoelectric conversion material.
    Type: Application
    Filed: January 10, 2013
    Publication date: January 23, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Murata Manufacturing Co., Ltd.
  • Patent number: 8633371
    Abstract: A device and method for generating electricity. The device includes a heat source, a cold source, and a thermoelectric generating plate, having a first side and an opposed side. When heat is introduced to the heat source, heat flows across the thermoelectric generating plate and electricity is generated. In the present arrangement, because the hot and cold sources are in thermal communication with opposed sides of the thermoelectric generating plate, the thermal gradient or rate of heat flow across the thermoelectric generating plate is maximized. Thus, because the rate of heat flow is increased, the rate at which electricity is generated is also increased, and the size of the device is maintained, or minimized.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: January 21, 2014
    Assignee: The Boeing Company
    Inventors: Edward D. McCullough, James P. Huang
  • Patent number: 8618406
    Abstract: Power is generated using a thermoelectric power generation unit. The thermoelectric power generation unit has at least one thermoelectric module disposed between a first heat sink arranged inside the thermoelectric power generation unit and a second heat sink arranged outside the thermoelectric power generation unit. The thermoelectric power generation unit is inserted into a ducting network carrying relatively hot air during some periods of time and relatively cold air during other periods of time so that the relatively hot and cold air flows through the thermoelectric power generation unit during the different periods of time. The thermoelectric power generation unit generates power when the ducting network carries either the relatively hot or cold air. Energy is stored at least partially based on the power generated by the thermoelectric power generation unit.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: December 31, 2013
    Assignee: B & B Innovators, LLC
    Inventors: Mark Ronald Bilak, Ronald Edward Bilak
  • Patent number: 8614396
    Abstract: A method for processing iron disilicide for manufacture photovoltaic devices. The method includes providing a first sample of iron disilicide comprising at least an alpha phase entity, a beta phase entity, and an epsilon phase entity. The method includes maintaining the first sample of iron disilicide in an inert environment and subjects the first sample of iron disilicide to a thermal process to form a second sample of iron disilicide. The second sample of iron disilicide comprises substantially beta phase iron disilicide and is characterized by a first particle size. The method includes introducing an organic solvent to the second sample of iron disilicide, forming a first mixture of material comprising the second sample of iron disilicide and the organic solvent. The method processed the first mixture of material including the second sample of iron disilicide using a grinding process.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: December 24, 2013
    Assignee: Stion Corporation
    Inventors: Frederic Victor Mikulec, Bing Shen Gao, Howard W. H. Lee
  • Publication number: 20130319495
    Abstract: The present invention relates to a thermoelectric device using a bulk material of a nano type, a thermoelectric module having the thermoelectric device and a method of manufacturing thereof. According to the present invention, thin film of a nano thickness is formed on a bulk material formed as several nano types to be re-connected for prohibiting the phonon course.
    Type: Application
    Filed: January 20, 2012
    Publication date: December 5, 2013
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Se Joon Kim, Jong Bae Shin
  • Patent number: 8592671
    Abstract: An auxiliary power supply unit of a data center includes a thermoelectric chip module and a direct current/alternating current (DC/AC) voltage converter connected to the thermoelectric chip module. The thermoelectric chip module includes a number of thermoelectric chips. At least one sidewall of each thermoelectric chip contacts a hot pipe of the data center. The thermoelectric chips generate a direct current (DC) voltage when a temperature difference between the sidewalls of each thermoelectric chip exists. The DC/AC voltage converter converts the DC voltage into an alternating current (DC) voltage to power an air treatment device of the data center.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: November 26, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Yao-Ting Chang, Chao-Ke Wei, Hung-Chou Chan
  • Patent number: 8581469
    Abstract: A current source and method of producing the current source are provided. The current source includes a metal source, a buffer layer, a filter and a collector. An electrical connection is provided to the metal layer and semiconductor layer and a magnetic field applier may be also provided. The source metal has localized states at a bottom of the conduction band and probability amplification. The interaction of the various layers produces a spontaneous current. The movement of charge across the current source produces a voltage, which rises until a balancing reverse current appears. If a load is connected to the current source, current flows through the load and power is dissipated. The energy for this comes from the thermal energy in the current source, and the device gets cooler.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: November 12, 2013
    Assignee: Kriisa Research, Inc.
    Inventor: Toomas Kriisa
  • Patent number: 8581088
    Abstract: A thermoelectric power generation apparatus includes a thermoelectric device having a first surface, an opposed second surface, and a first thermal energy storage unit operatively coupled to the first surface of the thermoelectric device setting the first surface at a first temperature. The thermoelectric power generation apparatus also includes a second thermal energy storage unit having a second temperature, the second thermal energy unit for setting the second surface of the thermoelectric device at an operative temperature in response to a temperature difference between the first temperature of the first surface and the second temperature of the second thermal energy storage unit. The thermoelectric device generates power in response to a temperature differential between the first temperature of the first surface and the operative temperature of the second surface.
    Type: Grant
    Filed: December 3, 2011
    Date of Patent: November 12, 2013
    Inventor: Jeffery J. Bohl
  • Publication number: 20130284226
    Abstract: A thermoelectric converter for converting quantities of heat into electric energy or electric energy into quantities of heat, or quantities of heat of certain temperatures into quantities of heat of certain other temperatures, includes at least two primary volumes connected to each other by at least one connecting element. Each primary volume includes one gas volume that is suited for receiving gas. One or both of the primary volumes include a liquid volume suited for receiving a liquid. The liquid can be coupled thermally to an external heat reservoir, an external source of heat, or an external heat sink. At least one volume-changing element is provided in at least one of the primary volumes for changing the size of the gas volume. A heat transfer element is provided in at least one of the primary volumes, wherein the proportion of the heat transfer element located in the liquid volume is variable.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 31, 2013
    Inventor: Thilo Ittner
  • Patent number: 8569740
    Abstract: Growth of thermoelectric materials in the form of quantum well superlattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor superlattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: October 29, 2013
    Assignee: MicroXact Inc.
    Inventor: Vladimir Kochergin
  • Publication number: 20130276850
    Abstract: The present invention provides thermoelectric device comprising a first electrode, a second electrode, a first electrolyte composition capable of transporting cations, a second electrolyte composition capable of transporting anions and a connector comprising mobile cations and mobile anions, wherein the first electrolyte composition is connected to said first electrode by being in ionic contact and the second electrolyte composition is connected to said second electrode by being in ionic contact and said connector is in ionic contact with said first and said second electrolyte composition, such that an applied temperature difference over said electrolyte compositions or an applied voltage over said electrodes facilitate transport of ions to and/or from said electrodes via said electrolyte compositions. There is also provided a method for generating electric current and a method for generating a temperature difference.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 24, 2013
    Applicant: ACREO SWEDISH ICT AB
    Inventors: Xavier CRISPIN, Magnus BERGGREN, Hui WANG