Thermoelectric Patents (Class 136/200)
  • Publication number: 20120048323
    Abstract: The invention is a split-thermo-electric structure for cooling, heating, or stabilizing the temperature of an object or for electric power generation. The structure of the invention is comprised of one or more legs comprised of two or more layers of thermo-electric material and a connection layer between each pair of successive layers of thermo-electric material. A layer of thermo-electric material at one end of each of the legs is located at the heat absorption side of the structure and a layer of thermo-electric material at the other end of each of the legs is located at the heat dispersion side of the structure. The structure is characterized in that the layer of thermo-electric material located at the heat absorption side of the structure and the layer of thermo-electric material at the heat dispersion side of the structure are asymmetric, i.e.
    Type: Application
    Filed: June 6, 2011
    Publication date: March 1, 2012
    Applicant: LAMOS INC.
    Inventors: Noam Danenberg, David Maron
  • Publication number: 20120042921
    Abstract: The present invention provides a method for manufacturing a thermoelectric module and a thermoelectric module manufactured from the same. The method includes the steps of: forming each of first and second green laminates; forming first and second preliminary electrodes by printing a conductive paste on each of the first and second green laminates; disposing thermoelectric elements on any one of the first and second preliminary electrodes; stacking the first and second green laminates in such a manner that the thermoelectric elements are interposed between the first and second preliminary electrodes; and firing the stacked first and second green sheet laminates, thereby forming the first and second electrodes, and first and second ceramic substrates, and simultaneously bonding the first ceramic substrate to the first electrode, the first and second electrodes to the thermoelectric elements, and the second ceramic substrate to the second electrode.
    Type: Application
    Filed: December 2, 2010
    Publication date: February 23, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Yong Suk Kim, Sung Ho Lee, Young Soo Oh, Tae Kon Koo
  • Publication number: 20120042922
    Abstract: The graphite structure includes a plurality of domains of graphite where a layer body of graphene sheets is curved in domelike, wherein the plurality of domains are arranged in plane, and the domains adjacent each other are in contact with each other.
    Type: Application
    Filed: November 1, 2011
    Publication date: February 23, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Daiyu Kondo, Shintaro Sato, Taisuke Iwai
  • Publication number: 20120031453
    Abstract: A system and method to control a thermoelectric device using a microcontroller is provided. The system and method include a temperature sensor operatively coupled to a microcontroller that has a central processing unit, at least one memory device, and a module for generating at least one pulse width modulation signal. The at least one pulse width modulation signal generated by the microcontroller has “ON” and “OFF” states to drive the thermoelectric device.
    Type: Application
    Filed: May 6, 2011
    Publication date: February 9, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Anantha Krishnan Rama Rao
  • Publication number: 20120031452
    Abstract: The invention relates to a device for thermal adaptation, comprising at least one surface element arranged to assume a determined thermal distribution, said surface element comprising a first heat conducting layer, a second heat conducting layer, said first and second heat conducting layers being mutually thermally isolated by means of an intermediate insulation layer, wherein at least one thermoelectric element is arranged to generate a predetermined temperature gradient to a portion of said first layer. The invention also relates to an object such as a craft.
    Type: Application
    Filed: February 11, 2010
    Publication date: February 9, 2012
    Applicant: BAE SYSTEMS HAEGGLUNDS AKTIEBOLAG
    Inventor: Peder Sjölund
  • Publication number: 20120031449
    Abstract: A method for converting heat to electric energy is described which involves thermally cycling an electrically polarizable material sandwiched between electrodes. The material is heated by extracting thermal energy from a gas to condense the gas into a liquid and transferring the thermal energy to the electrically polarizable material. An apparatus is also described which includes an electrically polarizable material sandwiched between electrodes and a heat exchanger for heating the material in thermal communication with a heat source, wherein the heat source is a condenser. An apparatus is also described which comprises a chamber, one or more conduits inside the chamber for conveying a cooling fluid and an electrically polarizable material sandwiched between electrodes on an outer surface of the conduit. A gas introduced into the chamber condenses on the conduits and thermal energy is thereby transferred from the gas to the electrically polarizable material.
    Type: Application
    Filed: October 13, 2011
    Publication date: February 9, 2012
    Applicant: THE NEOTHERMAL ENERGY COMPANY
    Inventors: Ahmet Erbil, David F. Walbert
  • Patent number: 8109670
    Abstract: A portable temperature sensing probe (10) having a plurality of thermocouples (18) is inserted into a tank (16) mounted on a truck or other receptacle at the time of loading a hot liquid, e.g., molten sulfur (14). The probe and at least a portion of the associated wiring or leads are attached to the loading pipe (22) and/or discharge nozzle, and the probe is inserted into the interior of the tank before the molten sulfur (14) is discharged. The signals from the plurality of thermocouples (18) are amplified and the corresponding temperature information is transmitted to a display and control device (30). Due to the significant differential between the temperature of the rising molten sulfur (14) and the vapors in the tank overhead space (26), the signals generated indicate which of the thermocouple (18) are in contact with molten sulfur (14) or the vapor zone (32). The generated signals adjust the shut-off valve (38) that controls the flow of molten sulfur (14) into the tank (16).
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: February 7, 2012
    Assignee: Saudi Arabian Oil Company
    Inventor: Adel S. Al-Misfer
  • Publication number: 20120024332
    Abstract: A thermoelectric material in a shape for forming part of a thermoelectric module, the thermoelectric material is coated with a protective layer to prevent degradation by humidity, oxygen, chemicals or thermal stress.
    Type: Application
    Filed: March 30, 2010
    Publication date: February 2, 2012
    Applicant: BASF SE
    Inventors: Madalina Andreea Stefan, Kerstin Schierle-Arndt, Guenther Huber, John Stuart Blackburn, Ivor Wynn Jones, Francis Stackpool, Stephen Heavens
  • Publication number: 20120017963
    Abstract: In a thermoelectric module comprising a series of p and n type semiconductors connected in series by conductive contacts, the conductive contacts are in contact with a substrate of moderate to high thermal conductivity that is electrically insulated from the conductive contacts by a resistive surface layer comprising a ceramic material.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Applicant: BASF SE
    Inventors: Madalina Andreea Stefan, Kerstin Schierle-Arndt, Guenther Huber, Frank Haass, John Stuart Blackburn, Ivor Wynn Jones, Francis Stackpool, Stephen Heavens
  • Patent number: 8101847
    Abstract: A thermoelectric module includes a first substrate, a second substrate having a second surface which is apart from and faces a first surface of the first substrate, a plurality of thermoelectric elements arranged on the first and the second surfaces, a plurality of electrodes on the first and second surfaces each electrically connected to at least one of the plurality of thermoelectric elements, and a ground electrode on at least the first surface. The plurality of electrodes on at least the first surface comprises a plurality of columns each of which comprises two or more electrodes aligned in a longitudinal direction, and the ground electrode is between two adjacent columns among the plurality of columns.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: January 24, 2012
    Assignee: KYOCERA Corporation
    Inventor: Takeshi Okamura
  • Patent number: 8101846
    Abstract: High efficiency conversion of heat energy to electrical energy is achieved using a ring of metallic components and anodically sliced, reduced barriers, high purity n-type and p-type semiconductor wafers. Energy produced by heating one set of fins and cooling another set is extracted from a ring of bismuth telluride based n-type wafers and antimony telluride based p-type wafers using make-before-break control of MOSfet switch banks. Standard AC frequencies and DC output result from rectification of make-before-break high frequency switched very high currents in the ring and a DC to AC converter. Solar energy stored in porcelain fragments extends the time that solar energy can be used as the heat source for the thermoelectric generator device.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: January 24, 2012
    Inventors: Jon Murray Schroeder, Gerald Philip Hirsch
  • Patent number: 8097802
    Abstract: A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A8TMy11TMy22 . . . TMynnMzX46-y1-y2- . . . -yn-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM1, TM2, and TMn are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y1, y2, yn and Z are actual compositions of TM1, TM2, TMn, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8·qA?|?q1|y1?|?q2|y2? . . . ?|?qn|yn, wherein qA is a charge state of A, and wherein ?q1, ?q2, ?qn are, respectively, the nominal charge state of the first, second, and n-th TM.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: January 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jihui Yang, Xun Shi, Shengqiang Bai, Wenqing Zhang, Lidong Chen, Jiong Yang
  • Publication number: 20120000500
    Abstract: Provided is a thermoelectric conversion element which enables improvement in yield and durability, is easy to secure a temperature difference between the both ends and is easy to be bonded to an electrode without tilting, resulting in improvement of mass productivity. Also provided is a thermoelectric conversion module using the thermoelectric conversion element. A thermoelectric conversion element includes: a plurality of pole-shaped parts with one ends of which being electrically connected to a first electrode, and the pole-shaped-parts being arranged at an interval from each other; and a joining/connecting part joining/connecting the other ends of the pole-shaped parts together, and electrically connected to a second electrode. A connecting face of the joining/connecting part, the face being connected to the second electrode, is larger than the sum total of areas of one ends of the pole-shaped parts.
    Type: Application
    Filed: February 24, 2010
    Publication date: January 5, 2012
    Applicant: Tokyo University of Science Education Foundation Administration Organization
    Inventors: Tsutomu Iida, Yohei Oguni, Takashi Nemoto, Junichi Sato
  • Patent number: 8076569
    Abstract: A near-field energy conversion structure and method of assembling the same, utilizing a sub-micrometer “near field” gap between juxtaposed photocell infrared radiation receiver and heat emitter surfaces, wherein compliant membrane structures, preferably fluid-filled, are interposed in the structure.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: December 13, 2011
    Assignee: MTPV, LLC
    Inventors: Paul Greiff, Robert DiMatteo, Eric Brown, Christopher Leitz
  • Publication number: 20110290293
    Abstract: Disclosed herein is a thermoelectric module. The thermoelectric module includes: first and second substrates that are disposed to be separated from each other, facing each other and includes first and second grooves each formed on inner sides thereof; first and second electrodes that are received in the first and second grooves, respectively; and a thermoelectric device that is interposed between the first and second electrodes and is electrically bonded to the first and second electrodes. As a result, the present invention provide a thermoelectric module and a method for manufacturing the same capable of improving the figure of merit and reliability of the thermoelectric module.
    Type: Application
    Filed: August 31, 2010
    Publication date: December 1, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS CO.
    Inventors: Yong Suk Kim, Sung Ho Lee, Tae Kon Koo, Yong Soo Oh
  • Publication number: 20110290294
    Abstract: The present invention provides an energy converting device, which includes: a base substrate; and a plurality of thermoelectric element structures which are sequentially stacked on the base substrate and electrically interconnected in parallel to one another.
    Type: Application
    Filed: September 2, 2010
    Publication date: December 1, 2011
    Inventor: Seung Seoup Lee
  • Publication number: 20110293118
    Abstract: A thermal acoustic speaker comprises a body and a thermoelectric converter. The body comprises a shell with at least one hole and a side with a sound hole. The shell defines a sound cavity in the body. The thermoelectric converter, disposed around at least a part of the shell, comprises a circuit and a conductive membrane and covers at least a part of the at least one hole. The circuit receives at least one electrical audio signal. The conductive membrane contacts a part of the circuit so that the thermoelectric converter heats air in the sound cavity to emit sound.
    Type: Application
    Filed: October 24, 2010
    Publication date: December 1, 2011
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: JEN-TSORNG CHANG
  • Publication number: 20110284046
    Abstract: A semiconductor heterostructure thermoelectric device (101). The semiconductor heterostructure thermoelectric device (101) includes at least one thermoelectric heterostructure unit (110). The thermoelectric heterostructure unit (110) includes a first portion (112) composed of a first semiconductor material and a second portion (114) composed of a second semiconductor material that forms a heterojunction (116) with the first portion (112). The first semiconductor material has a first electrical conductivity and a first thermal conductivity; and, the second semiconductor material has a second electrical conductivity and a second thermal conductivity. The second semiconductor material is disposed as at least one sub-micron patch (244d) of the second portion (114). In addition, the second semiconductor material includes an alloy of the first semiconductor material with an alloying constituent.
    Type: Application
    Filed: January 29, 2009
    Publication date: November 24, 2011
    Inventors: Alexandre M. Bratkovski, Leonid Tsybeskov
  • Publication number: 20110284049
    Abstract: In order to achieve a thermoelectric transducer exhibiting a higher conversion efficiency and an electronic apparatus including such a thermoelectric transducer, a thermoelectric conversion device is provided, including a semiconductor stacked structure including semiconductor layers stacked with each other, the semiconductor layers being made from different semiconductor materials, in which a material and a composition of each semiconductor layer in the semiconductor stacked structure are selected so as to avoid conduction-band or valence-band discontinuity.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 24, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Taisuke Iwai
  • Publication number: 20110277803
    Abstract: In one aspect, the present invention relates to a thermocouple device comprising a flexible non-planar substrate, a first printed thermocouple element comprising a first metal containing ink composition applied to the flexible non-planar substrate, and a second printed thermocouple element in electrical contact with the first printed thermocouple element making a thermocouple junction. The second printed thermocouple element comprises a second metal containing ink composition with a Seebeck coefficient sufficiently different from the first metal containing ink composition for the first and second printed thermocouple elements to together produce a thermocouple effect. The present application further relates to medical devices comprising the thermocouple and methods of making such devices.
    Type: Application
    Filed: March 18, 2011
    Publication date: November 17, 2011
    Applicant: MICROPEN TECHNOLOGIES CORPORATION
    Inventors: William J. GRANDE, Lori J. SHAW-KLEIN, Li Min
  • Patent number: 8044294
    Abstract: New thermoelectric materials comprise highly [111]-oriented twinned group IV alloys on the basal plane of trigonal substrates, which exhibit a high thermoelectric figure of merit and good material performance, and devices made with these materials.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: October 25, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang H. Choi, Glen C. King, James R. Elliott, Noel A. Talcott
  • Patent number: 8044292
    Abstract: A thermoelectric material comprises core-shell particles having a core formed from a core material and a shell formed from a shell material. In representative examples, the shell material is a material showing an appreciable thermoelectric effect in bulk. The core material preferably has a lower thermal conductivity than the shell material. In representative examples, the core material is an inorganic oxide such as silica or alumina, and the shell material is a chalcogenide semiconductor such as a telluride, for example bismuth telluride. A thermoelectric material including such core-shell particles may have an improved thermoelectric figure of merit compared with a bulk sample of the shell material alone. Embodiments of the invention further include thermoelectric devices using such thermoelectric materials, and preparation techniques.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: October 25, 2011
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Administrators of the Tulane Educational Fund
    Inventors: Qiangfeng Xiao, Yunfeng Lu, Junwei Wang, Minjuan Zhang
  • Publication number: 20110247668
    Abstract: A thermoelectric system includes a first thermoelectric element including a first plurality of segments in electrical communication with one another. The thermoelectric system further includes a second thermoelectric element including a second plurality of segments in electrical communication with one another. The thermoelectric system further includes a heat transfer device including at least a first portion and a second portion. The first portion is sandwiched between the first thermoelectric element and the second thermoelectric element. The second portion projects away from the first portion and configured to be in thermal communication with a working medium.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 13, 2011
    Applicant: BSST, LLC
    Inventors: Lon E. Bell, Douglas Todd Crane
  • Publication number: 20110226302
    Abstract: An energy harvesting system for collecting energy from sources of thermal energy that exist in the environment and convert the energy to electricity. The system has N-P junctions mounted on the outer surface of a conduit, pipe or flue. A hot medium flows through the conduit, pipe or flue. The p-n junctions operate as thermoelectric power generators. Heat absorbed at the p-n junctions increases the kinetic energy of charge carriers causing migration of the charge carriers. This thermally-driven migration of charge carriers is used to drive an electrical current in an external circuit.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 22, 2011
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Joseph C. Farmer, James Kaschmitter
  • Patent number: 7997795
    Abstract: Temperature sensors and methods of manufacturing thereof, having an intermediate stop disposed along a set of wires, the intermediate stop is secured to the set of wires such that an insulator can be properly positioned around proximal end portions of the set of wires during assembly of the temperature sensor.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: August 16, 2011
    Assignee: Watlow Electric Manufacturing Company
    Inventors: William H Schwagerman, Robert K Frake
  • Patent number: 7985918
    Abstract: A novel thermoelectric module in which the thermoelectric elements are stacked together with thermal and electrical conductors integrated in the stack to perform the dual functions of conducting both heat and electricity.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 26, 2011
    Assignee: Thermohex, LLC
    Inventor: Joel Lindstrom
  • Patent number: 7956277
    Abstract: A thermoelectric module having an excellent durability is provide. The thermoelectric module comprises: a first support substrate having a first inner surface, a first outer surface and a plurality of first connecting electrodes formed on the first inner surface; a second support substrate having a second inner surface opposed to the first inner surface, a second outer surface and a plurality of second connecting electrodes formed on the second inner surface; a plurality of P-type thermoelectric elements and a plurality of N-type thermoelectric elements provided between the first inner surface and the second inner surface; a temperature-detecting element provided on the first inner surface.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: June 7, 2011
    Assignee: Kyocera Corporation
    Inventor: Kazuhiro Kuchimachi
  • Patent number: 7952015
    Abstract: The invention relates to a thermoelectrically active p- or n-conductive semiconductor material constituted by a compound of the general formula (I) (PbTe)1?x(Sn2±ySb2±zTe5)x??(I) with 0.0001?x?0.5, 0?y<2 and 0?z<2, wherein 0 to 10% by weight of the compound may be replaced by other metals or metal compounds, wherein the semiconductor material has a Seebeck coefficient of at least |S|?60 ?V/K at a temperature of 25° C. and electrical conductivity of at least 150 S/cm and power factor of at least 5 ?W/(cm·K2), further relates to a process for the preparation of such semiconductor materials, as well as to generators and Peltier arrangements containing them.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: May 31, 2011
    Assignee: Board of Trustees of Michigan State University
    Inventors: Hans-Josef Sterzel, Klaus Kuehling, Mercouri G. Kanatzidis, Duck-Young Chung
  • Patent number: 7935883
    Abstract: A thermoelectric material has a composition expressed by (Fe1-pVp)100-x(Al1-qSiq)x (0.35?p?0.7, 0.01?q?0.7, 20?x?30 atomic %). The thermoelectric material includes a crystal phase having an L21 structure or a crystal phase having a B2 structure as a main phase.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: May 3, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Sakurada, Naoki Shutoh
  • Publication number: 20110088737
    Abstract: A thermoelectric conversion module which has a P-type thermoelectric conversion material and an N-type thermoelectric conversion material electrically connected to each other. The P-type thermoelectric conversion material and the N-type thermoelectric conversion material are joined with insulating material particles (ceramic spherical particles) interposed therebetween, so as not to be electrically connected to each other.
    Type: Application
    Filed: December 23, 2010
    Publication date: April 21, 2011
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Takanori Nakamura, Shuji Matsumoto
  • Publication number: 20110073149
    Abstract: The invention, the Concentrated Solar Thermoelectric Power System, herein abbreviated as C-STEPS, is a thermo-optical system configuration for the purpose of achieving a high solar energy-to-electricity conversion efficiency based on thermoelectric (TE) devices that use the Seebeck effect. It does so by implementing a system for concentrated solar energy using a design that combines a dual-function reflector/radiator component with an active or passive heat convection mechanism to ensure that TE module operation is maintained in a safe elevated temperature range with respect to the ambient temperature. Unsafe module temperatures are avoided by automatically adjusting the TE module hot side temperature directly or indirectly by regulating the TE cold side temperature using a variety of passive or active mechanisms, including the reflector/radiator component, phase change material, or convection/conduction mechanisms.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 31, 2011
    Inventor: Daniel Ray Ladner
  • Patent number: 7915516
    Abstract: In one embodiment, an operating condition of a thermoelectric module is monitored. It is determined when the monitored operating condition exceeds a desired range. Upon determining the monitored operating condition exceeds the desired range, a thermal adjustment is applied to the thermal condition to direct the operating condition to within the desired range. The monitoring the operating condition may include measuring an operating temperature of an environment adjacent a surface of the thermoelectric module, a surface temperature of a portion of the thermoelectric module, a thermal differential between the first surface and the second surface of the thermoelectric module, and an output voltage of the thermoelectric module. The desired range includes a temperature range below a level at which the thermoelectric module will sustain thermal damage and a thermal differential capable of causing the thermoelectric module to generate a minimum desired output voltage.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: March 29, 2011
    Assignee: The Boeing Company
    Inventor: Ben P Hu
  • Publication number: 20110056530
    Abstract: A high concentrated photovoltaic (HCPV) solar cell module, comprising: a set of Fresnel lenses, a Group III-V semiconductor solar cell, and a substrate used to carry said Group III-V semiconductor solar cell. Wherein, said substrate is made of material of good heat dissipation, for assisting heat dissipation. Said set of Fresnel lenses includes a plurality of stacked-up Fresnel lenses, thus concentrating sunlights to said Group III-V semiconductor solar cell with a significantly higher concentration ratio. As such, in addition to the advantages of small volume, light weight, and cost saving, it is devoid of the problem of a conventional single piece Fresnel lens of insufficient light concentration capability. Therefore, said Group III-V semiconductor solar cell is capable of receiving much more sunlights per unit area, and achieving high photoelectric conversion efficiency; meanwhile, reducing number and area required by said Group III-V semiconductor solar cell, thus achieving reduction of production cost.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 10, 2011
    Inventor: Liann-Be CHANG
  • Patent number: 7888583
    Abstract: The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic longitudinal modulation, which may be a compositional modulation or a strain-induced modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or “nanomembranes.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: February 15, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Max G. Lagally, Paul G. Evans, Clark S. Ritz
  • Publication number: 20110016888
    Abstract: The thermoelectric module composed of p- and n-conducting thermoelectric material legs which are mutually connected to one another via electrically conductive contacts, is characterized by the fact that the electrically conductive contacts have on the cold and hot sides of the thermoelectric module between the thermoelectric material legs in their course at least one flexibility location which permits flexure and slight displacement of the thermoelectric material legs relative to one another.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 27, 2011
    Applicant: BASF SE
    Inventors: Frank Haaß, Madalina Andreea Stefan, Georg Degen
  • Publication number: 20110011434
    Abstract: An improved method and apparatus for thermal-to-electric conversion involving relatively hot and cold juxtaposed surfaces separated by a small vacuum gap wherein the cold surface provides an array of single charge carrier converter elements along the surface and the hot surface transfers excitation energy to the opposing cold surface across the gap through Coulomb electrostatic coupling interaction.
    Type: Application
    Filed: June 23, 2010
    Publication date: January 20, 2011
    Applicant: MTPV CORPORATION
    Inventors: Peter L. Hagelstein, Dennis M. Wu
  • Patent number: 7868243
    Abstract: Method for producing a nanostructure based on interconnected nanowires, nanostructure and use as thermoelectric converter The nanostructure comprises two arrays of nanowires made from respectively n-doped and p-doped semi-conducting material. The nanowires of the first array, for example of n type, are formed for example by VLS growth. A droplet of electrically conducting material that acted as catalyst during the growth step remains on the tip of each nanowire of the first array at the end of growth. A nanowire of the second array is then formed around each nanowire of the first array by covering a layer of electrically insulating material formed around each nanowire of the first array, and the associated droplet, with a layer of p-type semi-conducting material. A droplet thus automatically connects a nanowire of the first array with a single coaxial nanowire of the second array. This type of nanostructure can be used in particular to form a thermoelectric converter.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: January 11, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Marc Plissonnier, Frederic Gaillard, Raphael Salot, Jean-Antoine Gruss
  • Patent number: 7868242
    Abstract: A thermoelectric conversion module includes a tubular element unit having a plurality of ring-like thermoelectric elements coaxially arranged with air as an insulator sandwiched inbetween. The ring-like thermoelectric element is covered approximately entirely with electrodes at its outer circumference surface and inner circumference surface, respectively, and generates electricity by temperature difference between the outer circumference surface and the inner circumference surface. A lead wire electrically connects the electrode covered on the outer circumference surface of one ring-like thermoelectric element among the plurality of ring-like thermoelectric elements to the electrode covered on the inner circumference surface of another ring-like thermoelectric element adjacent to the one ring-like thermoelectric element.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: January 11, 2011
    Assignee: Universal Entertainment Corporation
    Inventor: Koh Takahashi
  • Publication number: 20110000517
    Abstract: A thermoelectric device is provided. The thermoelectric device includes first and second electrodes, a first leg, a second leg, and a common electrode. The first leg is disposed on the first electrode and includes one or more first semiconductor pattern and one or more first barrier patterns. The second leg is disposed on the second electrode and includes one or more second semiconductor pattern and one or more second barrier patterns. The common electrode is disposed on the first leg and the second leg. Herein, the first barrier pattern has a lower thermal conductivity than the first semiconductor pattern, and the second barrier pattern has a lower thermal conductivity than the second semiconductor pattern. The first/second barrier pattern has a higher electric conductivity than the first/second semiconductor pattern. The first/second barrier pattern forms an ohmic contact with the first/second semiconductor pattern.
    Type: Application
    Filed: December 7, 2009
    Publication date: January 6, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Young-Sam Park, Moon-Gyu Jang, Taehyoung Zyung, Younghoon Hyun, Myungsim Jun
  • Publication number: 20100319749
    Abstract: An MTPV thermophotovoltaic chip comprising a photovoltaic cell substrate, micron/sub-micron gap-spaced from a juxtaposed heat or infrared radiation-emitting substrate, with a radiation-transparent intermediate window substrate preferably compliantly adhered to the photovoltaic cell substrate and bounding the gap space therewith.
    Type: Application
    Filed: May 12, 2008
    Publication date: December 23, 2010
    Inventors: Paul Greiff, Robert DiMatteo, Eric Brown, Christopher Leitz
  • Publication number: 20100319744
    Abstract: An example method for making thermoelectric modules generally includes coupling a first wafer and a second wafer together, processing the first and second wafers to produce a first thermoelectric element and a second thermoelectric element where the first thermoelectric element and the second thermoelectric element are coupled together, coupling the first thermoelectric element to a first conductor, coupling the second thermoelectric element to a second conductor, separating the first thermoelectric element and the second thermoelectric element, coupling the first thermoelectric element to a third conductor whereby the first thermoelectric element, the first conductor, and the third conductor form at least part of a thermoelectric module, and coupling the second thermoelectric element to a fourth conductor whereby the second thermoelectric element, the second conductor, and the fourth conductor form at least part of another thermoelectric module.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Applicant: LAIRD TECHNOLOGIES, INC.
    Inventors: Robert Michael Smythe, Jeffrey Gerard Hershberger
  • Patent number: 7847179
    Abstract: A process for producing bulk thermoelectric compositions containing nanoscale inclusions is described. The thermoelectric compositions have a higher figure of merit (ZT) than without the inclusions. The compositions are useful for power generation and in heat pumps for instance.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: December 7, 2010
    Assignee: Board of Trustees of Michigan State University
    Inventors: Mercouri G. Kanatzidis, John Androulakis, Joseph R. Sootsman
  • Publication number: 20100294327
    Abstract: Provided are a thermoelectric device using radiant heat as a heat source and a method of fabricating the same. In the thermoelectric device, an anti-reflection layer formed on a heat absorption layer causes as much radiant light as possible to be absorbed by the heat absorption layer without being reflected to the outside so that the radiant heat absorption efficiency can be improved. Also, in the thermoelectric device, an insulating layer formed on a heat dissipation layer and a first reflection layer formed on the insulating layer can prevent external radiant heat from being absorbed by the heat dissipation layer, and as much radiant heat transferred to the heat dissipation layer as possible can be dissipated away from the heat dissipation layer by a second reflection layer thermally connected with the heat dissipation layer so that the radiant heat emission efficiency can be improved.
    Type: Application
    Filed: May 4, 2010
    Publication date: November 25, 2010
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Young Sam PARK, Jung Wook Lim, Moon Gyu Jang
  • Publication number: 20100282284
    Abstract: The invention relates to the thermoelectrical industry and can be used for producing thermoelectrical devices based on the Peltier and Seebeck effects. In particular, the invention relates to a crystalline plate made of thermoelectric laminated material, to a component which is used for producing n- and p-type conductivity legs. The invention is also related to a method of manufacture of crystalline plates of a thermoelectric layered material based on the AVBVI solid solutions by using a directional crystallization process.
    Type: Application
    Filed: June 30, 2009
    Publication date: November 11, 2010
    Inventors: Vladimir Fedorovich Ponomarev, Denis Gennadievich Ryabinin
  • Patent number: 7820905
    Abstract: A thermoelectric conversion device and a manufacture method thereof are provided. The manufacture method includes an electrode board stamping process, an insulating frame molding process, a punching process, an element fixing process, a bending process and an insulating frame integrating process. Band-shaped plate members which function as heat radiating fins and heat absorbing fins and are integrated with insulating frame members are respectively folded-back in such a manner that the folding-back directions of the band-shaped plate members are alternately reverse to each other in the longitudinal direction of the band-shaped plate member. The insulating frame members are joined to each other to be arranged substantially in line, to construct an insulating frame unit. Thus, the component number and the assembly labor can be reduced, while the manufacture quality and the product quality can be improved.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: October 26, 2010
    Assignee: Denso Corporation
    Inventors: Yuji Ito, Keizou Nimura, Akio Matsuoka, Yasuhiko Niimi
  • Publication number: 20100263700
    Abstract: Including a first insulating substrate (A) and a second insulating substrate (B) to be stacked each other. Including a first electrode (2b) formed on the upper surface of the first insulating substrate (A), a pair of second electrodes (3c, 4c) individually formed on the both surfaces thereof and connected to each other via a through-hole (7), and a thermoelectric material (5b) provided in the form of a thin film so as to contact with the first electrode (2b) and the second electrode (3c). Furthermore, including a pair of third electrodes (8b, 9b) formed on the both surfaces of the second insulating substrate (B) and connected to each other via a through-hole (10) while one of the third electrodes (8b, 9b) is connected to the first electrode (2b).
    Type: Application
    Filed: December 18, 2008
    Publication date: October 21, 2010
    Inventor: Junichi Teraki
  • Publication number: 20100252087
    Abstract: A thermoelectric device may include a thermoelectric element including a layer of a thermoelectric material and having opposing first and second surfaces. A first metal pad may be provided on the first surface of the thermoelectric element, and a second metal pad may be provided on the second surface of the thermoelectric element. In addition, the first and second metal pads may be off-set in a direction parallel with respect to the first and second surfaces of the thermoelectric element. Related methods are also discussed.
    Type: Application
    Filed: March 25, 2010
    Publication date: October 7, 2010
    Inventors: Philip A. Deane, Ramaswamy Mahadevan, Edward P. Siivola
  • Publication number: 20100252086
    Abstract: A thermoelectric element, which has higher thermoelectric properties and shows an enlarged temperature difference between the both ends thereof is provided. A thermoelectric module having such thermoelectric element is also provided. The thermoelectric element having a pillar shape and having one end face and the other end face comprises; a first region containing a central axis; and a second region located at outside of the first region and having a protrusion which protrudes toward the central axis, wherein the first region has a thermal conductivity different from that of the second region.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 7, 2010
    Applicant: KYOCERA CORPORATION
    Inventor: Kazuyuki Fujie
  • Publication number: 20100252084
    Abstract: Thermoelectric elements are arranged with a high density in a peripheral region surrounding a center region or in an outer circumferential region of an opposing surface of a substrate instead of being arranged in the center region of the opposing surface. As compared to the case when the thermoelectric elements are arranged in the center of the opposing surface, when the thermoelectric elements are arranged in the region excluding the center region of the opposing surface, the thermoelectric element serving as a reference point of warp is positioned at an outer circumference side, i.e., the distance between the warp reference point and the outer circumference of the substrate becomes shorter. As the distance between the warp reference point and the outer circumference of the substrate becomes shorter, the displacement amount and the force of the warp caused at the outer circumference of the substrate become smaller.
    Type: Application
    Filed: November 14, 2008
    Publication date: October 7, 2010
    Inventor: Akio Konishi
  • Patent number: 7804019
    Abstract: A substrate is provided including a growth surface that is offcut relative to a plane defined by a crystallographic orientation of the substrate at an offcut angle of about 5 degrees to about 45 degrees. A thermoelectric film is epitaxially grown on the growth surface. A crystallographic orientation of the thermoelectric film may be tilted about 5 degrees to about 30 degrees relative to the growth surface. The growth surface of the substrate may also be patterned to define a plurality of mesas protruding therefrom prior to epitaxial growth of the thermoelectric film. Related methods and thermoelectric devices are also discussed.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: September 28, 2010
    Assignee: Nextreme Thermal Solutions, Inc.
    Inventors: Jonathan Pierce, Robert P. Vaudo