Thermoelectric Patents (Class 136/200)
  • Publication number: 20030209264
    Abstract: A thermocouple produced by removing insulation from a distal end of each of at least first and second thermocouple conductors, forming a thermocouple junction at the distal ends of the at least first and second thermocouple conductors, placing the thermocouple junction into the heat shrinkable polymer material by sliding a second end of the tube of heat shrinkable polymer material over the thermocouple junction and sealing the thermocouple junction by heating and melting the polymer material.
    Type: Application
    Filed: March 17, 2003
    Publication date: November 13, 2003
    Inventors: Audeen Richetto, Pete Bernier
  • Publication number: 20030084935
    Abstract: A flexible thermoelectric circuit is disclosed. Thermoelectric circuits have traditionally been of the rigid or substantially rigid form. Several different embodiments of thermoelectric circuits are disclosed which permit flexion in one or more directions to permit applications where flexible thermoelectric circuits are advantageous.
    Type: Application
    Filed: November 5, 2001
    Publication date: May 8, 2003
    Inventor: Lon E. Bell
  • Publication number: 20030079770
    Abstract: Improved thermoelectric assemblies are disclosed, wherein layers of hetrostructure thermoelectric materials or thin layers of thermoelectric material form thermoelectric elements. The layers are bound together with agents that improve structural strengths, allow electrical current to pass in a preferred direction, and minimize or reduce adverse affects, such a shear stresses, that might occur to the thermoelectric properties and materials of the assembly by their inclusion.
    Type: Application
    Filed: November 6, 2001
    Publication date: May 1, 2003
    Inventor: Lon E. Bell
  • Publication number: 20030066554
    Abstract: A thermoelectric semiconductor couple or module (10) includes a plurality of semiconductor pellets (14, 18) having Peltier characteristics are mechanically interconnected and arranged in an electrical series circuit with heat transferring means (12, 16, 20) with all interconnections being directly made. The means (12, 16, 20) can be of platelike construction with an L-shaped cross-section or, alternatively, with a U-shaped cross-section. A large number of modules (10) can be arranged in a two-dimensional or three-dimensional stack (30) with adjacent lines or planes of modules electrically interrelated by end segment connectors (32). In a further version, one side of a modular plane has heat exchanger fins (44-50) while the other side is electrically connected by ceramic segments (58) with deposited conductors (56). In yet another version, the modules are mounted onto rotating discs (94, 96) so as to act as a fluid impeller moving therepast enhancing thermal efficiency.
    Type: Application
    Filed: April 22, 2002
    Publication date: April 10, 2003
    Inventor: Steven Feher
  • Publication number: 20030047204
    Abstract: A thermoelectric device formed of nanowires on the nm scale. The nanowires are preferably of a size that causes quantum confinement effects within the wires. The wires are connected together into a bundle to increase the power density.
    Type: Application
    Filed: May 17, 2002
    Publication date: March 13, 2003
    Inventors: Jean-Pierre Fleurial, Margaret A. Ryan, Alexander Borshchevsky, Jennifer Herman
  • Publication number: 20030029491
    Abstract: Device for the installation in an air-gas feeding duct, a standard thermocouple to provide both a cold safety function in case of extinction, and a hot safety function, without any additional device, in case of internal combustion. The downstream portion of the bulb side (4) of the thermocouple penetrates into the air-gas duct (2). Its probe tip (3) is immobilized against the inner surface of the diffusion chamber (5) at the centre of the combustion chamber (6). Its connector (16) is secured to its exit point from the duct (2) at a marker-projection (17) by a lock (15). The life span of the thermocouple is considerably increased through permanent cooling by the fresh air-gas mixture of the elements proximate to combustion. In case of internal combustion, the inversion of temperature gradients of the cold and hot junctions of the thermocouple causes the generated electromotive force to fall rapidly. The device is designed for high temperature confinement burners.
    Type: Application
    Filed: August 28, 2002
    Publication date: February 13, 2003
    Inventor: Joseph Sirand
  • Publication number: 20030024566
    Abstract: This invention is intended to provide an apparatus that can heat and cool an element consisting of single or multiple elements that can be added conveniently in a portable environment, by generating its own power from the heat of combustion. Surplus power can be exported simultaneously for recharging or operating battery powered equipment such as lights, radios and cell phones or laptop computers.
    Type: Application
    Filed: July 17, 2002
    Publication date: February 6, 2003
    Inventor: Phillip Charles Watts
  • Publication number: 20030024565
    Abstract: A thermoelectric device adaptable for heating and for cooling a fluid such as air. The device includes at least one thermoelectric module and at least one rotating heat sink that transfer heat between the thermoelectric module(s) and the fluid. The heat sink(s) are mounted on a shaft and include a plurality of thermally conductive impeller blades. The thermoelectric module(s) rotate with the heat sink(s) about the shaft. Because the thermoelectric module(s) are in direct contact with the thermally conductive impeller, heat is transferred more efficiently into and out of the thermoelectric device. Because the impeller blades also act as heat sinks, fewer components are needed than with conventional devices.
    Type: Application
    Filed: August 3, 2001
    Publication date: February 6, 2003
    Inventor: James Kevan Guy
  • Publication number: 20020179135
    Abstract: Disclosed is a thermoelectric module, comprising a plurality of p-type thermoelectric elements each comprising a p-type semiconductor having a skutterdite crystal structure, a plurality of n-type thermoelectric elements each comprising a n-type semiconductor having a skutterdite crystal structure, at least one first electrode, at least one second electrode, at least one first alloy layer and at least one second alloy layer, wherein said at least one first alloy layer and said at least one second alloy layer contain Sb and at least one transition metal element selected from the group consisting of Ag, Au and Cu.
    Type: Application
    Filed: March 26, 2002
    Publication date: December 5, 2002
    Inventors: Naoki Shutoh, Hiromitsu Takeda, Naruhito Kondo
  • Publication number: 20020166839
    Abstract: A thermoelectric device with improved efficiency is provided. In one embodiment, the thermoelectric device includes a first thermoelement and a second thermoelement electrically coupled to the first thermoelement. An array of first tips are in close physical proximity to, but not necessarily in physical contact with, the first thermoelement at a first set of discrete points. An array of second tips are in close physical proximity to, but not necessarily in physical contact with, the second thermoelement at a second set of discrete points. The first and second conical are constructed entirely from metal, thus reducing parasitic resistances.
    Type: Application
    Filed: February 11, 2002
    Publication date: November 14, 2002
    Applicant: International Business Machines Corporation
    Inventors: Uttam Shyamalindu Ghoshal, Errol Wayne Robinson
  • Patent number: 6346668
    Abstract: The invention provides a solid-state cooler that provides counter-current electricity flow through a device that includes Peltier junctions interconnecting the opposing flow of current through the device. The combination of counter-current flow with the Thompson,Peltier, and Seebeck thermoelectric effects provides an apparatus having the advantages of high energy efficiency, very small size and the ability to reach very low temperatures (near liquid nitrogen temperatures) with minimal energy input. The cooling apparatus is suitable for use in variety of applications, including superconductive devices such a superconductive Quantum Interference Devices (SQUID's) used in medical imaging to increase the sensitivity and resolution of NMR techniques. It is also provides a useful tool for cryosurgery apllications without the risks associated with the use and storage of liquid nitrogen. In addition, the device can be operated in the reverse to generate current from small gradients of temperature.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: February 12, 2002
    Inventor: Stephen P. McGrew
  • Publication number: 20020005216
    Abstract: A new device is provided for controlling and maintaining the ambient air temperature within a remote telecommunications battery enclosure. A thermoelectric device located in intimate contact with heat exchangers and fans configured such that at least one heat exchanger is positioned within or spaced in thermal communication with the interior of the battery enclosure, and at least one heat exchanger is positioned outside of or spaced in thermal communication with a thermal dissipation arrangement exterior to the battery enclosure. The system further has a sensor or microprocessor connected to the thermoelectric device and configured to control the system to heat or cool the battery enclosure by responsively reversing polarity of the thermoelectric device as indicated by ambient air temperature or battery temperature to maintain the air temperature within predetermined limitations. A hydrogen vent is provided to maintain sub lower explosive levels of hydrogen gas within the battery enclosure.
    Type: Application
    Filed: September 12, 2001
    Publication date: January 17, 2002
    Inventors: Thomas A. Oravetz, Clyde J. Thompson
  • Publication number: 20010052357
    Abstract: A method of fabricating a thermoelectric element of enhanced thermoelectric performance is provided by improving the preparation of thermoelectric material and employing hot plastic working in combination. The method comprises the step (a) of mixing and heat-melting a raw material of a predetermined composition; the step (b) of turning the heat-melted material 106 (in FIG. 2) into microglobules by either of scattering and spraying, and then quenching the microglobules, thereby providing a globular powdery thermoelectric material; and the step (c) of plastically deforming the thermoelectric material in a hot condition, thereby to bring crystal grains of the thermoelectric material into a crystal orientation affording an excellent figure of merit.
    Type: Application
    Filed: May 9, 2001
    Publication date: December 20, 2001
    Inventors: Takeshi Kajihara, Akio Konishi, Yong Hoon Lee, Kiyoharu Sasaki, Kenichi Tomita, Takeji Kajiura
  • Patent number: 6313391
    Abstract: A solar powered electricity generating system comprised of a concentrator assembly that concentrates solar flux into a thermal storage unit. The thermal storage unit converts solar energy into heat energy which is then provided to three cascaded converter stages which, in the preferred embodiment, are comprised of a thermionic electric converter (TEC), an alkaline metal thermal to electric converter (AMTEC) and a thermoelectric generator stage comprised of a plurality of thermal photovoltaic cells. A phase change material is positioned within the thermal receiver such that the solar flux converts the material from a solid phase into a liquid phase such that the thermal storage unit can continue to generate heat energy when the sun is no longer providing thermal flux to the receiver as a result of the heat energy produced as the phase change material changes back from a liquid phase to a solid phase.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: November 6, 2001
    Inventor: Russell M. Abbott
  • Publication number: 20010017151
    Abstract: The present invention is a thermoelectric device comprising: a thermoelectric element composed of principally thermoelectric material, a counter element adhered to said thermoelectric material, a solder layer lying between said thermoelectric element and said counter element and adhering said thermoelectric element to said counter element, a restraining layer to prevent said solder's ingredient of said solder layer from spreading into said thermoelectric element, wherein said restraining layer comprising a first layer to prevent said solder's ingredient of said solder layer from spreading into said thermoelectric element and a second layer composed of material which gets wetter than said first layer against said solder layer.
    Type: Application
    Filed: January 17, 2001
    Publication date: August 30, 2001
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Hitoshi Tauchi, Satoru Ogawa, Hirotsugu Sugiura, Noburo Ebina
  • Patent number: 6232546
    Abstract: A microcavity apparatus and systems for maintaining microcavity spacing over a macroscopic area. An application of this invention is a microscale generator. This microscale generator includes a first element for receiving energy; a second element, opposite the first element for transferring energy; at least one panel on either of the first element or the second element, the panel facing the other element; a device for controlling the distance between the at least one panel and the facing element to form a predetermined, sub-micron gap between the panel and the facing element for increasing energy transfer to the element for receiving; and a device, responsive to the energy transfer, for generating electricity.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: May 15, 2001
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Robert Stephen DiMatteo, Marc Steven Weinberg, Gregory A. Kirkos
  • Patent number: 6103968
    Abstract: A method of producing a thermal generator has the steps of forming two working branches including a negative branch and a positive branch, so that at least one of the branches is composed of a non-porous semiconductor material, subdividing the one branch composed of semiconductor material into two sections, and providing between the two sections a semiconductor zone having a disordered structure so as to reduce heat conduction between a hot end and a cold end of the thermal generator due to the zone with the disordered structure.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: August 15, 2000
    Assignee: White Eagle International Technologies Group, Inc.
    Inventor: Timofei Gutkin
  • Patent number: 6084172
    Abstract: A .pi.-type thermoelectric conversion component detects and controls temperature and at the same time exhibits a cooling performance inherently possessed by the thermoelectric conversion component without the need for mounting a discrete temperature detecting unit. To achieve this, a temperature detecting unit, such as a thin film thermistor or doped semiconductor region, is directly integrated on a surface of a substrate forming the thermoelectric component. In one embodiment, a monocrystalline silicon wafer is used as at least one of the opposing substrates of the thermoelectric conversion component, a temperature detecting unit having a diffused resistor is formed therein. An electrode of the temperature detecting unit is connected to an electrode formed on the opposing substrate to reduce the thermal load.
    Type: Grant
    Filed: March 25, 1998
    Date of Patent: July 4, 2000
    Assignee: Seiko Instruments R&D Center Inc.
    Inventors: Matsuo Kishi, Minao Yamamoto, Yoshifumi Yoshida
  • Patent number: 6072165
    Abstract: A thin film thermocouple having junctions (2, 7) of metal and semiconducting metal oxides such as tin oxide/silver, and used as surface temperature sensors in conjunction with thin film heating elements (1) to control temperature.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: June 6, 2000
    Assignee: Thermo-Stone USA, LLC
    Inventor: Bernard Feldman
  • Patent number: 6025554
    Abstract: A thermoelectric device comprising at least two dissimilar thermoelements directly bonded to cavities within a heat absorbing interconnection member yielding a strong device.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: February 15, 2000
    Inventor: Chris Macris
  • Patent number: 6020671
    Abstract: A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: February 1, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Robert Pento, James E. Marks, Clifford D. Staffanson
  • Patent number: 6005182
    Abstract: A thermoelectric conversion module including a honeycomb structural body 3 made of an electrically insulating material, N type and P type semiconductor elements 1 and 2 inserted into through holes formed in the honeycomb structural body 3, electrically insulating filler members 4 filled in spaces between the semiconductor elements and inner walls of the through holes such that the semiconductor elements are fixed in position within respective through holes, and electrodes 7 connecting end surfaces of the semiconductor elements on polished end surfaces of the honeycomb structural body such that N type and P type semiconductor elements are alternately connected in series. According to the invention, the electrically insulating filler members are made of an inorganic adhesive of alkali metal silicate or sol-gel glass.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: December 21, 1999
    Assignee: NGK Insulators, Ltd.
    Inventors: Yuichiro Imanishi, Makoto Miyoshi, Tetsuo Watanabe, Keiko Kushibiki, Kazuhiko Shinohara, Masakazu Kobayashi, Kenji Furuya
  • Patent number: 5956569
    Abstract: The present invention provides a structure and a method of fabricating a thermoelectric Cooler directly on the backside of a semiconductor substrate. The thermoelectric (TE) cooler (thermoelectric cooler) disperses heat from an integrated circuit (IC) that is formed on the front-side of the silicon substrate. Spaced first bonding pad holes 28 are formed in the backside of a substrate that expose bonding pads 24. Second holes 32 are formed between the spaced first bonding pad holes 28. A first insulating layer 34 is formed over the backside of the substrate, but not over the bonding pad 24. A metal layer is formed lining the first bonding pad holes 28. A polysilicon layer 46 is formed over the surface of the backside of the substrate in the second holes. The polysilicon layer is implanted thereby forming alternating adjacent N and P doped sections 46p 46n in the second holes. The adjacent N and P doped polysilicon sections 46n 46p are electrically connected to the bonding pads 24 by the metal layer 38.
    Type: Grant
    Filed: October 24, 1997
    Date of Patent: September 21, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Shou-Yi Shiu, Yu-Ping Fang, Hon-Hung Lui
  • Patent number: 5824947
    Abstract: A thermoelectric device fabricated of at least two dissimilar thermoelements and at least one of the thermoelements has a conductor in parallel therewith increasing the Figure of Merit. The thermoelements are also surrounded by a conductor along the leg lengths thereby simplifying the manufacturing process.
    Type: Grant
    Filed: October 16, 1995
    Date of Patent: October 20, 1998
    Inventor: Chris Macris
  • Patent number: 5808233
    Abstract: A thermocouple formed of a length of a single composition having first solid phase section adjoining a second solid phase section, and a transition therebetween. One method of making such thermocouples is to raise the temperature of the first solid phase section above its transformation temperature while maintaining the temperature of a second adjoining solid phase section of the length of material below its transformation temperature. A second method includes rapidly solidifying a molten material by contacting it with a moving substrate formed of adjoining regions of differing thermal conductivity. A third method includes rapidly solidifying a molten material by alternatingly contacting it with a cooling fluid and air. A fourth method includes transforming a section of a length of material in a first solid to a second solid phase by mechanical means.
    Type: Grant
    Filed: July 15, 1996
    Date of Patent: September 15, 1998
    Assignee: Temple University-Of The Commonwealth System of Higher Education
    Inventors: Mikhail V. Finkel, Jim J. S. Chen, Antonio M. Goncalves
  • Patent number: 5747418
    Abstract: An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: May 5, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John D. Metzger, Mohamed S. El-Genk
  • Patent number: 5608181
    Abstract: In an electric power generating element, either positive or negative electrode includes a composition containing an organic compound as a main agent and the positive electrode has an electrically conductive substance so that relatively low-temperature thermal energy is efficiently converted to electric energy. Polyethylene glycol is employed as the organic compound and graphite or a graphite composition is employed as the conductive substance. Salt providing ionic conductivity may be added to the organic compound or polyethylene glycol, and the negative electrode may be formed of a metal having an ionization tendency as large as or larger than copper or a composition of the metal.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: March 4, 1997
    Inventor: Shigeyuki Yasuda
  • Patent number: 5563368
    Abstract: A thermoelectric conversion member formed by a thermoelectric conversion element has a split ring shaped transverse cross section. Electrodes are disposed on ring ends of the thermoelectric conversion member facing each other. A magnetic field generating unit generates a magnetic field in a direction perpendicular to the transverse cross-sectional plane of the thermoelectric conversion member. A heating unit for heating one side of an annular wall of the thermoelectric conversion member and a cooling unit provided on the opposite side of the annular wall of the thermoelectric conversion member produces a temperature gradient in a direction radially of the thermoelectric conversion member. Electric field is induced in the direction perpendicular to both directions of the magnetic field and the temperature gradient, that is in the circumferential direction of the ring of the thermoelectric conversion member under the Nernst effect, enabling an electric voltage to be taken out at the electrodes.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: October 8, 1996
    Assignees: UniNet Co., Ltd., Shikoku Research Institute Inc.
    Inventor: Sataro Yamaguchi
  • Patent number: 5525162
    Abstract: A technique for forming from staring precursors at the molecular level, a sultant thermoelectric material with a reduced thermal conductivity. All staring precursors are dissolved in solution, reduced to remove oxygen, and then combined into a single solution to yield specific stoichiometric ratios. A sol and then a gel is formed, which supercritical solvent extraction is performed upon so as to yield a material having two level porosity and a maximum of a factor of three reduction in thermal conductivity.
    Type: Grant
    Filed: June 26, 1995
    Date of Patent: June 11, 1996
    Assignee: The United States of America as represented by the Secretary of The Army
    Inventors: Stuart B. Horn, Elizabeth H. Nelson
  • Patent number: 5492570
    Abstract: The apparatus is a combined Alkali Metal Thermal to Electric Converter (AMTEC) and a thermionic energy converter which are mated by the use of a common heat transfer device which can be a heat pipe, pumped fluid or a simple heat conduction path. By adjusting the heat output surface area of the thermionic converter and the heat input surface area of the AMTEC, the heat transfer device accomplishes not only the transfer of heat from the output of the thermionic converter to the input of the AMTEC, but also the transformation of the heat density to match the requirements of the AMTEC input. The electrical current through the combined devices is also matched by adjusting the heated surface area of the AMTEC.
    Type: Grant
    Filed: July 5, 1994
    Date of Patent: February 20, 1996
    Assignee: Thermacore, Inc.
    Inventors: Kevin Horner-Richardson, William G. Anderson
  • Patent number: 5487790
    Abstract: In an electric power generating element, either positive or negative electrode includes a composition containing an organic compound as a main agent and the positive electrode has an electrically conductive substance so that relatively low-temperature thermal energy is efficiently converted to electric energy. Polyethylene glycol is employed as the organic compound and graphite or a graphite composition is employed as the conductive substance. Salt providing ionic conductivity may be added to the organic compound or polyethylene glycol, and the negative electrode may be formed of a metal having an ionization tendency as large as or larger than copper or a composition of the metal.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: January 30, 1996
    Inventor: Shigeyuki Yasuda
  • Patent number: 5439528
    Abstract: A thermoelement (leg) of a thermocouple for use in peltier heating or generation of power by the Seebeck effect including a plurality of interleaved films wherein compositions of neighboring films are selected to create Kapitza boundaries between the films such as to reduce thermal conductivity but provide adequate electrical conductivity. The plurality of interleaved films includes a semiductor with suitable doping to establish required extrinsic conductivity and metals having dissimilar lattices such as aluminum and tungsten abutting one another. The practical number of films in the composite to establish the effect is ten. A preferred thickness of the films is less than twenty thousand Angstroms.
    Type: Grant
    Filed: October 31, 1994
    Date of Patent: August 8, 1995
    Inventor: Joel Miller
  • Patent number: 5428560
    Abstract: A simulator, in particular for simulating thermal batteries, the simulator delivering an output voltage U.sub.bat across output terminals thereof, said output voltage being a function of a current I.sub.out delivered, into a load connected to said terminals, and of an e.m.f. parameter. E.sub.g and of an internal resistance parameter R.sub.g that are determined from simulation profiles that give successive values taken by said parameters under real battery operating conditions during an active life cycle of a given battery. The simulator includes computer equipment delivering the simulation profiles in the form of e.m.f. references C.sub.Eg and internal resistance references C.sub.Rg to a battery simulation card which, in order to generate the output voltage U.sub.bat of the simulator at the output of said voltage programmable power supply feeds said power supply with a battery voltage reference C.sub.
    Type: Grant
    Filed: March 31, 1993
    Date of Patent: June 27, 1995
    Assignee: Aerospatiale Societe Nationale Industrielle
    Inventors: Serge Leon, Patrick Grain, Serge Bard
  • Patent number: 5393351
    Abstract: Multijunction thermal converters are formed in an integral multifilm membrane form over a through opening in a nonmagnetic, dielectric substrate. Through the use of conventional photolithographic and etching techniques, very compact, rugged and precise integrated structures are formed to include either single linear elongate heater elements, bifilar or trifilar heater elements, and multijunction thermopiles at reasonable cost. Disposition of the heater element and hot junctions of the thermopiles over a through opening in the substrate, with the cold junctions of the thermopiles disposed over the substrate thickness, enables the heating element to provide a substantially isothermal uniform heating of the thermocouple hot junctions to obtain high thermal efficiency and reduce Thompson and Peltier heating effects. Forming the essential elements into an integrated multifilm membrane also makes possible minimization of interconnections between the elements, and this results in minimized reactance.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: February 28, 1995
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Joseph R. Kinard, De-xiang Huang, Donald B. Novotny
  • Patent number: 5356484
    Abstract: A reversible thermoelectric converter includes first and second quantum well diodes and an electrical connection between the first and second quantum well diodes without a thermal barrier between them. Each quantum well diode includes first and second electrodes wherein electrons are quantized in discrete energy levels and a dielectric layer providing a potential barrier between the first and second electrodes. When electrons in the first quantum well diode have a higher temperature than the electrons in the second quantum well diode, electric voltage fluctuations resulting from transitions of the electrons between the energy levels in the first quantum well diode are coupled from the first quantum well diode to the second quantum well diode. The reversible thermoelectric converter can be operated for power conversion of thermal energy to electric energy, as a heat pump or a refrigerator, or as an amplifier.
    Type: Grant
    Filed: March 30, 1992
    Date of Patent: October 18, 1994
    Inventors: Joseph C. Yater, Jane A. Yater, Joan E. Yater
  • Patent number: 5288336
    Abstract: A thermopile 30 comprises a stacked assembly of bimetallic layers in which there is full conductor interface contact over the distance separating hot and cold surfaces 31, 32. The assembly may include dielectric layers forming a capacitor stack. A.C. current through the stack is matched in strength to the Seebeck-generated thermoelectric current circulating in each bimetallic layer. The resulting current snakes through the stack to cause Peltier cooling at one heat surface and heating at the other. A.C. operation at a kilocycle frequency enhances the energy conversion efficiency as does heat flow parallel with the junction interface.
    Type: Grant
    Filed: November 20, 1989
    Date of Patent: February 22, 1994
    Assignee: Dr. Harold Aspden
    Inventors: John S. Strachan, Harold Aspden
  • Patent number: 5215597
    Abstract: A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium.
    Type: Grant
    Filed: August 8, 1989
    Date of Patent: June 1, 1993
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Kenneth G. Kreider
  • Patent number: 5180440
    Abstract: A thermocouple arrangement for developing, evaluating, monitoring and adjusting any process performed on or otherwise so as to thermally affect a printed circuit board assembly or other electronic assembly (including bare circuit board or boards in the manufacturing process), such as soldering/desoldering and various other production, rework and repair processes including cleaning, fluxing, preheating, thermocompression bonding and spot welding. In accordance with various embodiments, a layer of a first conductor material is applied on a first surface of an electrically insulative support, while a second layer of a second, dissimilar, conductor material is applied to at least one other surface of the support using conventional printed circuit board construction techniques.
    Type: Grant
    Filed: January 8, 1992
    Date of Patent: January 19, 1993
    Assignee: Pace Incorporated
    Inventors: William J. Siegel, Louis A. Abbagnaro, William J. Kantter
  • Patent number: 5089054
    Abstract: A flat plate alkali metal thermoelectric converter module having a plurality of generally flat plate cells grouped in stacks that are electrically connected in series within the stack, the cells being disposed to minimize the heat energy radiated to a condenser to provide a high efficiency module.
    Type: Grant
    Filed: November 28, 1990
    Date of Patent: February 18, 1992
    Assignee: Westinghouse Electric Corp.
    Inventor: Robert K. Sievers
  • Patent number: 5069726
    Abstract: An insulated ceramic coated wire with a relatively thin ceramic coating allowing flexibility. The insulation is non porous and is particularly useful for thermocouples. The application all describes thermocouple made with such wires.
    Type: Grant
    Filed: April 10, 1990
    Date of Patent: December 3, 1991
    Assignees: Industrial Pyrometers (Aust.) Pty. Ltd., The Commonwealth Scientific and Industrial Research Organisation
    Inventor: Clive L. Ragless
  • Patent number: 5064476
    Abstract: An improved thermoelectric device and fabrication process wherein in a first embodiment strips of conductive material are attached to corresponding strips of adhesive material and first and second patterned arrays of tabs are struck from the strips onto the adhesive strips. In a second embodiment strips of conductive material are blanked to form the first and second patterned arrays of tabs and substantially simultaneously therewith the arrays of tabs are partially returned to their strips which now serve as support frames for the tab arrays. The array of tabs have either flat rectangular surfaces or flat peanut shaped surfaces with or without round shaped pockets adjacent to each end. Round pockets are used to receive legs of thermoelectric material of any shape without orientation. The first and second patterned tab arrays are attached to plates of insulation material and the adhesive strips or the strip frames removed, as applicable, to form first and second side plates.
    Type: Grant
    Filed: September 17, 1990
    Date of Patent: November 12, 1991
    Inventor: Leonard J. Recine, Sr.
  • Patent number: 5048973
    Abstract: A plug-type heat flux gauge formed in a material specimen and having a thermoplug integrally formed in the material specimen, and a method for making the same. The thermoplug is surrounded by a concentric annulus, through which thermocouple wires are routed. The end of each thermocouple wire is welded to the thermoplug, with each thermocouple wire welded at a different location along the length of the thermoplug. The thermoplug and concentric annulus may be formed in the material specimen by electrical discharge machining and trepanning procedures.
    Type: Grant
    Filed: May 31, 1990
    Date of Patent: September 17, 1991
    Assignee: United States of America, as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Curt H. Liebert, John Koch, Jr.
  • Patent number: 5039351
    Abstract: An alkali metal thermoelectric conversion device formed from a porous tube or plate coated with a thin film of beta-alumina, the porous tube or plate is sintered metal or metal alloy having a coefficient of thermal expansion which approaches that of the beta-alumina to form a mechanically stable device with high electrical output.
    Type: Grant
    Filed: January 22, 1991
    Date of Patent: August 13, 1991
    Assignee: Westinghouse Electric Corp.
    Inventors: Martin H. Cooper, Robert K. Sievers
  • Patent number: 4902648
    Abstract: A thermoelectric module comprises a first electrode array having a plurality of electrode pieces and a second electrode array having a plurality of electrode pieces. The first and second electrode arrays are confronted with each other. The electrode pieces of the first electrode array are alternately connected with the electrode pieces of the second electrode array in such a way that one end portion of each electrode piece of the first electrode array is connected with one end portion of an electrode piece of the second electrode array through a thermoelectric element of first conductive type while the other end portion of the each electrode piece of the first electrode array is connected with one end portion of another electrode piece of the second electrode array through a thermoelectric element of second conductive type. The weight per unit output of the thermoelectric module is small.
    Type: Grant
    Filed: January 3, 1989
    Date of Patent: February 20, 1990
    Assignee: Agency of Industrial Science and Technology
    Inventors: Toshitaka Ohta, Takenobu Kajikawa
  • Patent number: 4676996
    Abstract: A method of producing a multiple thermocouple having a conductive open-cellular foam matrix, a portion of which forms a first pole with a plurality of discrete conductors of a different material from the foam matrix embedded in the foam having a portion of each of the discrete conductors being exposed on the insides of the cells of the foam forming a plurality of thermocouples. The remaining surface area inside the foam's cells not having an exposed discrete conductor thereon can be insulated. A second pole member is provided. Means to contact the discrete conductors in the foam and convey current produced by the thermocouples to the second pole of the thermocouple completes the multiple thermocouple. Such means to contact the discrete conductors can provide the heat to excite the thermocouples or such heat can come from other sources.
    Type: Grant
    Filed: August 27, 1986
    Date of Patent: June 30, 1987
    Inventor: Gregory R. Brotz
  • Patent number: 4004210
    Abstract: A thermal converter for transmitting electric energy fluctuations of small circuits at a higher temperature across a thermal barrier to small circuits at a lower temperature for high efficiency conversion of the electric energy fluctuations to electric power. Apparatus and circuits are disclosed which can transfer with a high coefficient of performance heat from the lower temperature circuits to the higher temperature circuits.
    Type: Grant
    Filed: September 15, 1975
    Date of Patent: January 18, 1977
    Inventor: Joseph C. Yater