Laminated Or Coated (i.e., Composite Having Two Or More Layers) Patents (Class 204/290.01)
  • Patent number: 7959774
    Abstract: The present invention provides a cathode for hydrogen generation comprising a cathode substrate having provided thereon a catalytic layer, wherein the catalytic layer contains at least three components of platinum, cerium and lanthanum in amounts of 50 to 98 mol %, 1 to 49 mol % and 1 to 49 mol %, respectively, in the form of metal, metal oxide or metal hydroxide.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: June 14, 2011
    Assignee: Permelec Electrode Ltd.
    Inventors: Miwako Nara, Tomohisa Suzuki, Masashi Tanaka, Yoshinori Nishiki
  • Publication number: 20110114496
    Abstract: The fabrication of electrodes and electrode surfaces as well as devices that use the electrodes are described. In an example, a metallic powder is coplated with an electroplating solution to trap the particles in an electroplated metallic layer on a substrate, for example a reticular substrate that permits flow therethrough. Applications include electrolysis cells, fuel cells and bifunctional gas electrodes. In an example, fuels are supplied to the electrodes as anolyte and catholyte mixtures composed of finely divided bubbles of hydrogen and oxygen respectively within an alkaline electrolyte.
    Type: Application
    Filed: July 13, 2009
    Publication date: May 19, 2011
    Inventors: Robert B. Dopp, Sharon Z. Stein
  • Publication number: 20110073470
    Abstract: A multi-layer cathode block (30) for an electrolytic cell (10) has at least a surface layer (32) with a surface expansion index and a second layer (34) with a second expansion index. The surface layer (32) includes a surface wetting agent in a first total amount. The second layer (34) includes a wetting agent in a second total amount. The surface layer (32) is directly superposed to the second layer (34). The second wetting agent in the second layer (34) includes metal boride precursors that react together to generate a metal boride component in situ when the cathode block (30) is exposed to start-up and operation conditions of the electrolytic cell (10). The second total amount is lower than the first total amount and is selected so as to minimize the difference between the expansion indexes of the surface layer (32) and the second layer (34).
    Type: Application
    Filed: April 30, 2009
    Publication date: March 31, 2011
    Applicant: RIO TINTO ALCAN INTERNATIONAL LIMITED
    Inventors: Jean Camiré, Jules Bergeronère, Pierre-Yves Brisson, Simon Leclerc
  • Patent number: 7914653
    Abstract: Disclosed is an anode for electrochemical reactions, such as electrolysis and electrodeposition, comprising a titanium substrate covered with metal oxide, in which the amount of platinum group element(s) is decreased in comparison with the ordinary anode of platinum group element oxides so as to decrease the cost and to mitigate the problem of natural resources, and further, durability of the anode is improved. The electrocatalyst of the anode is multiple oxide of platinum group element(s), and Sn and Sb. The cationic ratio of Sn to Sb is 1-40 and the sum of Sn and Sb is 1-90 cationic %. The electrocatalyst is prepared by coating mixed solutions of the soluble salts on the substrate and baking, so as to convert the metal salts to metal oxides.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 29, 2011
    Assignees: Koji Hashimoto, Daiki Ataka Engineering Co., Ltd.
    Inventors: Koji Hashimoto, Ahmed Abd El-Moneim, Naokazu Kumagai
  • Publication number: 20110048963
    Abstract: The present invention aim to provide a method of manufacturing an electropolishing pad, which is excellent in planarity, can reduce occurrence of scratches, and has a high polishing rate. The present invention relates to a method of manufacturing an electropolishing pad, including the steps of: laminating a tin sheet on and along a recessed structure surface of a resin layer to produce a laminated sheet having grooves in a tin sheet surface; and forming through holes penetrating the tin sheet and the resin layer in the laminated sheet.
    Type: Application
    Filed: January 7, 2009
    Publication date: March 3, 2011
    Applicant: TOYO TRIE & RUBBER CO., LTD.
    Inventors: Shinji Shimizu, Sachiko Nakajima, Hiroyuki Okumura, Satoshi Maruyama, Takashi Oga
  • Publication number: 20110043037
    Abstract: High surface area electrodes are described here. The electrodes comprise a conductive substrate and a mesh of nanostructures disposed on the conductive substrate. The nanostructures are coated with conductive or semiconducting nanoparticles to form a high surface area electrode. Methods for making high surface area electrodes are also provided. Further, energy storage devices incorporating the high surface area electrodes are described. Related systems incorporating energy storage devices are also disclosed.
    Type: Application
    Filed: January 22, 2009
    Publication date: February 24, 2011
    Inventors: David N. Mcilroy, Grant Norton
  • Patent number: 7887678
    Abstract: An electrode tool for electrochemical machining includes a machining electrode surface (1a). The machining electrode surface (1a) includes a conductive pattern defined by lands (3) and grooves (3a) that are formed by groove machining the electrode surface (1a). The machining electrode surface (1a) is then molded with a hard insulating resin layer (4), and a surface of the hard insulating resin layer (4) is mechanically polished to expose the lands (3) of the conductive pattern. The lands (3) are chemically dissolved to obtain a conductive pattern (14) having a surface that is formed below a resulting insulating resin surface (2), with the height difference between the two surfaces being between 1 and 5 ?m. The electrode tool allows precise surface machining of work pieces and can withstand prolonged use.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: February 15, 2011
    Assignee: Minebea Co., Ltd.
    Inventors: Tomoyuki Yasuda, Makoto Ide
  • Patent number: 7884044
    Abstract: The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably platinum group metal oxides with or without valve metal oxides, and containing a transition metal component such as palladium, rhodium or cobalt. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell for the electrolysis of a halogen-containing solution wherein the palladium component reduces the operating potential of the anode and eliminates the necessity of a “break-in” period to obtain the lowest anode potential.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: February 8, 2011
    Assignee: Eltech Systems Corporation
    Inventors: Dino F. DiFranco, Kenneth L. Hardee
  • Publication number: 20110024361
    Abstract: An electrochlorination and electrochemical system for the on-site generation and treatment of municipal water supplies and other reservoirs of water, by using a custom mixed oxidant and mixed reductant generating system for the enhanced destruction of water borne contaminants by creating custom oxidation-reduction-reactant chemistries with real time monitoring. A range of chemical precursors are provided that when acted upon in an electrochemical cell either create an enhanced oxidation, or reduction environment for the destruction or control of contaminants. Chemical agents that can be used to control standard water quality parameters such as total hardness, total alkalinity, pH, total dissolved solids, and the like are introduced via the chemical precursor injection subsystem infrequently or in real time based on sensor inputs and controller set points.
    Type: Application
    Filed: June 4, 2008
    Publication date: February 3, 2011
    Inventors: David T. Schwartzel, Michael L. Fraim
  • Publication number: 20110017592
    Abstract: An electrode assembly that may be used, for example, for electrochemically analysing a sample to determine the presence (or otherwise) of a species having biomembrane activity comprises at least one working electrode comprised of a conductive carrier substrate having a surface coated with mercury immobilised on the surface of the substrate. The surface of the mercury remote from said substrate is coated with a phospholipid layer. The preferred carrier substrate is platinum. The electrode assembly may be incorporated in a flow cell.
    Type: Application
    Filed: July 30, 2008
    Publication date: January 27, 2011
    Inventors: Lawrence Andrew Nelson, Zachary Coldrick
  • Patent number: 7871504
    Abstract: The invention relates to a method of forming an electrocatalytic surface on an electrode in a simple way, in particular on a lead anode used in the electrolytic recovery of metals. The catalytic coating is formed by a spraying method which does not essentially alter the characteristics of the coating powder during spraying. Transition metal oxides are used as the coating material. After the spray coating the electrode is ready for use without further treatment. The invention also relates to an electrode onto which an electrocatalytic surface is formed.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: January 18, 2011
    Assignee: Outotec Oyj
    Inventors: Michael Harold Barker, Olli Hyvärinen, Karri Osara
  • Publication number: 20110000784
    Abstract: The present invention concerns an electrochemical pattern replication method, ECPR, and a construction of a conductive electrode for production of applications involving micro and nano structures. An etching or plating pattern, which is defined by a conductive electrode, a master electrode, is replicated on an electrically conductive material, a substrate. The master electrode is put in close contact with the substrate and the etching/plating pattern is directly transferred onto the substrate by using a contact etching/plating process. The contact etching/plating process is performed in local etching/plating cells, that are formed in closed or open cavities between the master electrode and the substrate.
    Type: Application
    Filed: May 27, 2010
    Publication date: January 6, 2011
    Applicant: Replisaurus Technologies AB
    Inventors: Patrik Möller, Mikael Fredenberg, Peter Wiwen-Nilsson
  • Publication number: 20100320082
    Abstract: The present invention relates to a conductive diamond electrode, comprising a substrate having a plurality of convex and concave part disposed over the entire surface of the conductive diamond electrode, and a diamond film coated on the surface of said substrate, wherein the width of each convex part of said convex and concave part is in a range from 0.2 mm to 1 mm. The present invention can provide a conductive diamond electrode, applying a thin film of conductive diamond and a thick substrate, being less expensive than a self-supported type conductive diamond electrode and also having mechanical strength enough to be used in the zero-gap electrolysis, functioning stably for a long time with smooth water supply or gas liberation, and an ozone generator using the conductive diamond electrode.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 23, 2010
    Applicant: Chlorine Engineers Corp., Ltd.
    Inventors: Masaaki Kato, Rie Kawaguchi
  • Publication number: 20100320080
    Abstract: An electrode for an electrochemical element reversibly absorbing and releasing lithium ions including: a current collector having a higher first convex portion and a lower second convex portion on at least one surface thereof; a columnar body including an active material formed in such a manner as to rise obliquely on the first convex portion and the second convex portion of the current collector.
    Type: Application
    Filed: May 15, 2008
    Publication date: December 23, 2010
    Applicant: Panasonic Corporation
    Inventors: Hideharu Takezawa, Shoichi Imashiku, Kaoru Nagata, Takashi Otsuka
  • Patent number: 7846308
    Abstract: An anode for electrowinning of aluminium from alumina comprises a cobalt-containing metallic outer part that is covered with an integral oxide layer containing predominantly cobalt oxide CoO. The integral oxide layer can be formed by surface oxidation of cobalt from the metallic outer part before use.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: December 7, 2010
    Assignee: Riotinto Alcan International Limited
    Inventors: Vittorio De Nora, Thinh T. Nguyen
  • Patent number: 7842178
    Abstract: An electrically conducting electrode having a composite and a current collector in electrical contact with the composite, the composite can comprise at least about 10 weight percent electrically conductive particles, at least about 0.5 weight percent magnetic particles, and an optional polymeric binder, wherein composite is at least about 80 weight percent with respect to the combined weight of the electrically conductive particles, the magnetic particles and the binder. Electrochemical systems can effectively use these electrodes to improve system performance.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: November 30, 2010
    Assignee: University of Iowa Research Foundation
    Inventors: Johna Leddy, Angela Wolf, Drew Dunwoody, Wayne Gellett, Murat Ünlü
  • Publication number: 20100266896
    Abstract: A composite material in the form of a continuous structure comprises an intrinsically conducting polymer (ICP) layer coated on a substrate, the composite material having a surface area of at least 0.1 m2/g, at least 1 m2/g, or at least 5 m2/g. Methods of manufacturing the composite material comprise coating the substrate with a layer of the intrinsically conducting polymer. Electrochemical or electrical devices comprise at least one component formed of the composite material.
    Type: Application
    Filed: November 26, 2008
    Publication date: October 21, 2010
    Inventors: Maria Strömme, Leif Nyholm, Albert Mihranyan
  • Publication number: 20100258452
    Abstract: An object of the present invention is to provide an electrode for an electrochemical measurement apparatus that is less susceptible to influence from interference substances as compared to conventional technology and an electrochemical measurement apparatus using such an electrode. A working electrode 9 (an electrode 1 for an electrochemical measurement apparatus) used in an electrochemical measurement apparatus 3 of the present invention uses an alloy containing iridium and rhenium with such a composition that selectivity for hydrogen peroxide can be obtained.
    Type: Application
    Filed: October 29, 2008
    Publication date: October 14, 2010
    Inventors: Toru Matsumoto, Naoaki Sata, Yoko Mitarai
  • Patent number: 7811425
    Abstract: An anode for electrowinning aluminium comprises an electrically conductive substrate that is covered with an applied electrochemically active coating comprising a layer that contains predominantly cobalt oxide CoO. The CoO layer can be connected to the substrate through an oxygen barrier layer, in particular containing copper, nickel, tungsten, molybdenum, tantalum and/or niobium.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: October 12, 2010
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio De Nora, Thinh T. Nguyen
  • Patent number: 7811426
    Abstract: Disclosed is an oxygen evolution anode for evolving oxygen without chlorine evolution in electrolysis of aqueous solutions of sodium chloride having high performance and durability with decreased amount of the precious metal(s) in the intermediate layer to decrease manufacturing cost and to ease problem of the resources. The oxygen evolution anode comprises an electroconductive substrate, an intermediate layer and an electrocatalyst. The intermediate layer prepared by calcination consists of multiple oxide of the platinum group element(s), Sn and Sb, with the Sn/Sb ratio of 1-40 and with the sum of Sn and Sb of 90 cationic % or less. The electrocatalyst is prepared by anodic deposition and consists of 0.1-3 cationic % of Sn, 0.2-20 cationic % of Mo and/or W and the balance of Mn.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 12, 2010
    Assignees: Daiki Ataka Engineering Co., Ltd.
    Inventors: Koji Hashimoto, Ahmed Abd El-Moneim, Naokazu Kumagai
  • Patent number: 7803260
    Abstract: Disclosed is an oxygen evolution electrode for formation of only oxygen without formation of chlorine at anode in the performance and the durability of the anode is so high that they are, even in strong acid, at the same level as that in neutral solution. The electrode is prepared by anodic deposition of multiple oxide consisting of Mn—Mo—Sn, Mo—W—Sn or Mn—Mo—W—Sn on an IrO2-coated titanium substrate. The multiple oxide are composed of Mn as the main component, 0.1-3 cationic % of Sn and 0.2-20 cationic % of Mo and/or W.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: September 28, 2010
    Assignees: Daiki Ataka Engineering Co., Ltd., Koji Hashimoto
    Inventors: Koji Hashimoto, Ahmed Abd El-Moneim, Naokazu Kumagai
  • Publication number: 20100206735
    Abstract: The invention relates to an anode assembly for electroplating comprising (a) an anode body comprising soluble anode material and (b) a shielding covering at least part of the anode body and comprising a self-passivating metal electrically connected to the anode body and allowing electrolyte transport therethrough. The shielding comprises at least one layer of self-passivating metal having no openings larger than 2 mm, preferably 1 mm, in width or the shielding comprises at least two layers of self-passivating metal wherein the openings of at least one layer are at least partially covered by the metal of another layer. The invention also relates to a shielded anode basket, a method for electroplating and the use of the anode assembly and the shielded anode basket.
    Type: Application
    Filed: June 20, 2008
    Publication date: August 19, 2010
    Applicants: Metakerm Gesellschaft fur Schichtchemie der Mettalle mbH, M.P.C. Micorpulse Plating Concepts
    Inventors: Jörg Wurm, Stephane Menard, Lothar Schneider
  • Publication number: 20100143811
    Abstract: A catalyst for the photo-electrolysis of water molecules, the catalyst including catalytic groups comprising tetra-manganese-oxo clusters. A plurality of the catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can be used as part of photo-electrochemical cell for the generation of electrical energy.
    Type: Application
    Filed: March 20, 2008
    Publication date: June 10, 2010
    Inventors: Robin Brimblecombe, Leone Spiccia, Charles Gerard Dismukes, Gerry F. Swiegers
  • Publication number: 20100140111
    Abstract: Method and arrangement for making electrical contact with a membrane-enveloped object using an electrode The invention relates, inter alia, to a method for making electrical contact with a membrane-enveloped object (30) using an electrode (10, 100). According to the invention, it is provided that at least one electrode (100) comprising a conductive carrier (110) is used for making contact, on which carrier a multiplicity of nanoneedles (120) are arranged and on which carrier adjacent nanoneedles are at a distance from one another which is smaller than the size of the object, and that the object is brought into contact with the nanoneedles.
    Type: Application
    Filed: March 31, 2008
    Publication date: June 10, 2010
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V., FORSCHUNGSINSTITUT FÜR DIE BIOLOGIE LANDWIRTSCHAFTLICHER NUTZTIERE
    Inventors: Jan Gimsa, Ulrike Gimsa, Stefan Fiedler, Torsten Müller, Wolfgang Scheel
  • Publication number: 20100126851
    Abstract: An anode provided with an electrocatalytic coating comprising tin, preferably tetravalent and in form of mixed oxide, prepared by the method for the manufacturing of an electrode, comprising applying a solution of a precursor for the pyrolytic formation of a tin-containing coating to a substrate of a valve metal, followed by the execution of thermal treatment, wherein the precursor solution comprises stannic hydroxychioride and a method of preparing the same.
    Type: Application
    Filed: December 30, 2009
    Publication date: May 27, 2010
    Inventors: Alexander Morozov, Achille De Battisti, Sergio Ferro, Gian Nicola Martelli
  • Publication number: 20100101944
    Abstract: A vacuum mandrel for use in fabricating an implantable electrode comprises a hollow body member and a first groove provided radially on an outer surface of the hollow body member. The first groove is adapted to receive an implantable electrode and retain the electrode in place with a vacuum pressure during an elastomeric encapsulation of the electrode. The vacuum mandrel further comprises a vacuum port provided in the first groove.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Applicant: CYBERONICS, INC.
    Inventors: Shawn D. KOLLATSCHNY, Joseph J. SCIACCA
  • Publication number: 20100084266
    Abstract: The invention relates to a method for roughening the surface of a metal sheet used as electrode support in industrial electrochemical applications, and an electrode made by such method. Mechanical roughening is imparted by skin-passing the sheet between two rollers of a rolling mill, at least one of which is patterned according to a predetermined profile to be transferred by compression to the surface of the metal sheet.
    Type: Application
    Filed: December 10, 2009
    Publication date: April 8, 2010
    Applicant: Industrie De Nora S.p.A.
    Inventor: Dino Floriano Di Franco
  • Patent number: 7666283
    Abstract: The invention relates to an insoluble anode for electrolytic plating, the insoluble anode having two or more phases comprising an anode base body and a screen wherein the anode base body of steel, stainless steel, nickel, nickel alloy, cobalt, and cobalt alloy.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: February 23, 2010
    Assignee: Enthone Inc.
    Inventors: Andreas Möbius, Marc L. A. D. Mertens
  • Publication number: 20100021813
    Abstract: An electrode for an energy storage device has an electrode bearer and an active electrode material that is applied onto the electrode bearer on one side or on both sides, the electrode bearer being formed from an alloy that has a portion of copper and that additionally contains at least tin in a content of at least approximately 0.01 weight %.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 28, 2010
    Inventors: Tim Schafer, Andreas Gutsch
  • Publication number: 20090250355
    Abstract: Method for manufacturing anodes used for the production of aluminium by fused bath electrolysis, said anodes comprising an anode stem made of a conducting metal and at least one block made of carbonaceous material called an anode block, said method including at least the following steps: a) obtain an anode stem; b) obtain a new anode block; c) fix one end of the anode stem onto the anode block, so as to give good mechanical attachment and good electrical connection between said stem and said anode block; said method being characterised in that before, during or after step c), but before placement of said anode in the electrolytic cell, a protective layer with a controlled thickness, typically between 5 and 25 cm composed of a material resistant to temperature and corrosion by the medium above the electrolytic bath is at least partially deposited on the upper surface of said anode block.
    Type: Application
    Filed: May 10, 2007
    Publication date: October 8, 2009
    Applicant: E.C.L.
    Inventors: Ludovic Demeulenaere, Alain Van Acker, Didier Lescarcelle
  • Publication number: 20090200162
    Abstract: The invention relates to an anode comprising a titanium alloy substrate coated with noble metals by thermal decomposition of precursors thereof. The alloy of the substrate includes elements which can be oxidised during the thermal decomposition step, allowing electrical energy savings and a prolonged duration in industrial electrolytic processes. The anode of the invention is suitable for chlor-alkali electrolysis, allowing to produce chlorine with a lower oxygen content and a lower energy consumption than the anodes of the prior art.
    Type: Application
    Filed: April 16, 2009
    Publication date: August 13, 2009
    Applicant: Industrie De Nora S.p.A.
    Inventors: Giuseppe Faita, Fulvio Federico
  • Patent number: 7566389
    Abstract: The present invention relates to a method of preparing an electrode comprising providing an electrode substrate, depositing on said electrode substrate a first substantially aqueous coating solution comprising precursors of a valve metal oxide and of at least two platinum group metal oxides, treating the first coating solution to provide a first metal oxide coating layer on the electrode substrate, depositing on said first coating layer a second substantially organic coating solution comprising precursors of a valve metal oxide and at least one platinum group metal oxide, wherein at least one of the precursors is in organic form, treating said second coating solution to provide a second metal oxide coating layer on the first coating layer. The invention also relates to an electrode obtainable by said method, and the use thereof.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: July 28, 2009
    Assignee: Akzo Nobel N.V.
    Inventors: Takayuki Shimamune, Erik Zimmerman, Christer Andreasson
  • Patent number: 7566388
    Abstract: An electrode catalyst comprising a conductive carrier, and a mixture containing a particulate noble metal and at least one particulate rare-earth oxide, the mixture being supported on the conductive carrier wherein the particulate rare-earth oxide has an alkaline-earth metal as solid solution therein.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: July 28, 2009
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takeaki Sasaki, Toshinori Hachiya, Isao Morimoto
  • Publication number: 20090152118
    Abstract: An the electrode for electrolysis of an electrolytic solution comprises an electrode core serving as a base and a plurality of prominences formed on a surface of the electrode core, the prominences have each a leaf-shaped form and rises from the electrode core surface.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Inventors: Masatoshi Sugimasa, Akiyoshi Komura, Masafumi Nojima
  • Patent number: 7537678
    Abstract: The present invention uses a sensor electrode (3) in a nitrogen oxide sensor (10) which includes a nitrate or nitrite of an alkali metal and an oxide of a rare-earth element. The nitrate/nitrite of the alkali metal replaces part of the lattice of the oxide of the rare-earth element, forming a solid solution. The sensor electrode (3) therefore exhibits highly practical features, especially high water-insolubility and capability of nitrogen oxide measurement in a hot and humid atmosphere containing water vapor. Thus, a highly practical nitrogen oxide sensor electrode and nitrogen oxide sensor are provided which are usable in measurement in a hot and humid atmosphere containing water vapor.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: May 26, 2009
    Assignee: Japan Science and Technology Agency
    Inventor: Nobuhito Imanaka
  • Publication number: 20090127124
    Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
    Type: Application
    Filed: July 3, 2007
    Publication date: May 21, 2009
    Inventor: John Michael Guerra
  • Publication number: 20090114532
    Abstract: A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.
    Type: Application
    Filed: November 6, 2007
    Publication date: May 7, 2009
    Inventors: Christopher P. Rhodes, Charles L.K. Tennakoon, Waheguru Pal Singh, Kelvin C. Anderson
  • Publication number: 20090092887
    Abstract: An electrode comprising a primary and secondary metal nanoparticle coating on a metallic substrate is prepared by dispersing nanoparticles in a solvent and layering them onto the substrate, followed by heating. The enhanced surface area of the electrode due to the catalytic nanoparticles is dramatically enhanced, allowing for increased reaction efficiency. The electrode can be used in one of many different applications; for example, as an electrode in an electrolysis device to generate hydrogen and oxygen, or a fuel cell.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 9, 2009
    Applicant: QuantumSphere, Inc.
    Inventors: Kimberly McGrath, Robert Dopp, R. Douglas Carpenter
  • Publication number: 20090053583
    Abstract: The invention describes a process for producing a gas diffusion electrode which has a catalyst layer having a smooth surface, wherein the smooth surface of the catalyst layer is produced by bringing the catalyst layer in the moist state into contact with a transfer film and removing this transfer film after drying. In variant A, the catalyst layer is firstly produced on a transfer film and then transferred in the moist state to the gas diffusion layer. In variant B, the catalyst layer is applied to the gas diffusion layer, and a transfer film is then placed on top. In both cases, the structure produced in this way is subsequently dried. Before further processing, the transfer film is removed to give a gas diffusion electrode having a smooth catalyst surface which has a maximum profile peak height (Rp) of less than 25 microns. The electrodes are used for producing membrane-electrode assemblies for membrane fuel cells or other electrochemical devices.
    Type: Application
    Filed: January 11, 2006
    Publication date: February 26, 2009
    Applicant: UMICORE AG & CO KG
    Inventors: Matthias Binder, Joachim Koehler, Sandra Wittpahl, Claus-Rupert Hohenthanner, Michael Lennartz
  • Patent number: 7494583
    Abstract: An electrode having a valve metal substrate and an electrocatalytic surface composition comprising titanium dioxide doped with bismuth is provided, and an electrolytic water purification process utilizing this electrode, wherein organic substances dissolved or dispersed in water are oxidized and degraded in a nonselective manner with good current efficiency.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 24, 2009
    Inventor: Oleh Weres
  • Patent number: 7485211
    Abstract: An electro-catalyst for the oxidation of ammonia in alkaline media; the electrocatalyst being a noble metal co-deposited on a support with one or more other metals that are active to ammonia oxidation. In some embodiments, the support is platinum, gold, tantalum, or iridium. In some embodiments, the support has a layer of Raney metal deposited thereon prior to the deposition of the catalyst. Also provided are electrodes having the electro-catalyst deposited thereon, ammonia electrolytic cells, ammonia fuel cells, ammonia sensors, and a method for removing ammonia contaminants from a contaminated effluent.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: February 3, 2009
    Assignee: Ohio University
    Inventors: Gerardine G. Botte, Frederic Vitse, Matt Cooper
  • Patent number: 7470351
    Abstract: A system for producing metal particles using a discrete particle electrolyzer cathode, a discrete particle electrolyzer cathode, and methods for manufacturing the cathode. The cathode has a plurality of active zones on a surface thereof at least partially immersed in a reaction solution. The active zones are spaced from one another by between about 0.1 mm and about 10 mm, and each has a surface area no less than about 0.02 square mm. The cathode is spaced from an anode also at least partially immersed in the reaction solution. A voltage potential is applied between the anode and cathode. Metal particles form on the active zones of the cathode. The particles may be dislodged from the cathode after they have achieved a desired size. The geometry and composition of the active zones are specified to promote the growth of high quality particles suitable for use in metal/air fuel cells. Cathodes may be formed from bundled wire, machined metal, chemical etching, or chemical vapor deposition techniques.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: December 30, 2008
    Assignee: Teck Cominco Metals Ltd.
    Inventors: Stuart I. Smedley, Martin De Tezanos Pinto, Stephen R. Des Jardins, Donald James Novkov, Ronald Gulino
  • Patent number: 7468121
    Abstract: The present invention provides a conductive diamond electrode having: a conductive substrate; a coating layer formed on a surface of the conductive substrate, the coating layer containing one of a metal and an alloy each including at least one of niobium and tantalum; and a conductive diamond layer formed on a surface of the coating layer, and a process for producing the conductive diamond electrode.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: December 23, 2008
    Assignee: Permelec Electrode Ltd.
    Inventors: Masashi Hosonuma, Masaharu Uno, Tomoyasu Shibata, Yoshinori Nishiki, Tsuneto Furuta
  • Patent number: 7455754
    Abstract: The invention relates to a diamond electrode with synthetically produced, electrically conductive (doped) diamonds. The surface has diamond particles (5) embedded in a metal or metal alloy layer so as to produce a conductive connection to the metal or metal alloy.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: November 25, 2008
    Assignee: Pro Aqua Diamantelektroden Produktion GmbH & Co KEG
    Inventors: Wolfgang Wesner, Robert Hermann, Michael Schelch, Michael Kotschan, Wolfgang Staber
  • Patent number: 7452450
    Abstract: An anode for the electrolysis of aluminium made from an outer dense layer of a ceramic material on a dense core made from a composite of the ceramic material of the outer layer and an electronic conductor.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: November 18, 2008
    Assignee: Norsk Hydro ASA
    Inventors: Stein Julsrud, Turid Risdal
  • Patent number: 7445941
    Abstract: The assay devices, assay systems and device components of this invention comprise at least two opposing surfaces disposed a capillary distance apart, at least one of which is capable of immobilizing at least one target ligand or a conjugate in an amount related to the presence or amount of target ligand in the sample from a fluid sample in a zone for controlled fluid movement to, through or away the zone. The inventive device components may be incorporated into conventional assay devices with membranes or may be used in the inventive membrane-less devices herein described and claimed. These components include flow control elements, measurement elements, time gates, elements for the elimination of pipetting steps, and generally, elements for the controlled flow, timing, delivery, incubation, separation, washing and other steps of the assay process.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: November 4, 2008
    Assignee: Biosite Incorporated
    Inventor: Kenneth F. Buechler
  • Publication number: 20080237036
    Abstract: The invention relates to a method of forming an electrocatalytic surface on an electrode in a simple way, in particular on a lead anode used in the electrolytic recovery of metals. The catalytic coating is formed by a spraying method which does not essentially alter the characteristics of the coating powder during spraying. Transition metal oxides are used as the coating material. After the spray coating the electrode is ready for use without further treatment. The invention also relates to an electrode onto which an electrocatalytic surface is formed.
    Type: Application
    Filed: September 26, 2006
    Publication date: October 2, 2008
    Applicant: OUTOTEC OYJ
    Inventors: Michael Harold Barker, Olli Hyvarinen, Karri Osara
  • Publication number: 20080230379
    Abstract: A method for forming a hole in an object is provided. The method includes forming a starter hole in the object, providing an electrochemical machining electrode that includes insulation that extends only partially around the electrode, and inserting the electrode into the starter hole to form a hole in the object that has an inlet defined by a first cross-sectional area and an outlet defined by a second cross-sectional area.
    Type: Application
    Filed: March 22, 2007
    Publication date: September 25, 2008
    Inventors: Ching-Pang Lee, Bin Wei, Chen-Yu Jack Chou
  • Publication number: 20080230378
    Abstract: A method for forming holes in an object is provided. The method includes providing an electrochemical machining (ECM) electrode including a first section having insulation that circumscribes the first section, and a second section having insulation that extends only partially around the second section. The method also includes inserting the electrode into the object, such that in a single pass the electrode forms a hole that includes a first portion having a first cross-sectional area and a second portion having a second cross-sectional area.
    Type: Application
    Filed: March 22, 2007
    Publication date: September 25, 2008
    Inventors: Ching-Pang Lee, Bin Wei, Chen-Yu Jack Chou
  • Patent number: 7416652
    Abstract: The invention relates to a method for manufacturing a tool electrode for the electrochemical machining of workpieces, particularly for components for fluid bearings with the following processing steps: (a) Providing an electrode body made of a conductive base material which has an essentially smooth surface; (b) Coating the surface of the electrode body with an insulating material; (c) Removing the insulating material from locations on the surface of the electrode body that correspond to a pattern which is to be formed on the surface of the piece by means of electromechanical machining.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: August 26, 2008
    Assignee: Minebea Co., Ltd.
    Inventor: Jürgen Oelsch