Laminated Or Coated (i.e., Composite Having Two Or More Layers) Patents (Class 204/290.01)
  • Patent number: 7413638
    Abstract: A lithography device includes one or more conductive strips monolithically embedded within an insulative structure. A method of manufacturing a lithography device includes monolithically forming a conductive strip through an insulative structure. Monolithically forming such a device includes forming the conductive strip on an mixed conductive-insulative layer, and embedding the conductive-insulative layer layer within the insulative structure. Such a device may readily be manufactured, is reliable, and is capable of various lithography applications and other applications requiring sub-micron and nano-scale electrode devices and electrode arrays.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: August 19, 2008
    Assignee: Reveo, Inc.
    Inventor: Sadeg M. Faris
  • Publication number: 20080128275
    Abstract: A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: GRIGORII LEV SOLOVEICHIK
  • Publication number: 20080128289
    Abstract: A surface treatment of electrical contact pieces in electrolytic plants, in particular of machines for the treatment of circuit boards and conductor sheets is discloses, wherein the contact pieces are made of titanium or some other oxidizing and therefore chemically and electrochemically resistant material. To eliminate unwanted metallization of the contact pieces as a result of an inadequate demetallization on account of the insulating oxide layer and in order to enhance protection against wear, an electrically conductive diamond coating is applied at least on the contact-making areas of the contact pieces.
    Type: Application
    Filed: January 22, 2008
    Publication date: June 5, 2008
    Applicant: RENA Sondermaschinen GmbH
    Inventor: EGON HUBEL
  • Patent number: 7378005
    Abstract: An object is to provide an electrode for electrolysis which is preferable in generation of ozone water usable in cleaning and sterilizing of water and sewage, or cleaning in a semiconductor device manufacturing process by an electrolysis process, and a method of manufacturing this electrode for electrolysis. The surface of a conductive substrate constituting the electrode for electrolysis is coated with a noble metal such as platinum or a noble metal oxide to form an intermediate layer, further a surface layer is constituted of a dielectric material on the surface of the intermediate layer, and the surface layer is provided with holes.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: May 27, 2008
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Kazuhiro Kaneda, Mineo Ikematsu, Yurika Koizumi, Tsuyoshi Rakuma, Daizo Takaoka
  • Patent number: 7335285
    Abstract: The present invention provides an electrolytic anode for use in electrolytically synthesizing a fluorine-containing substance by using an electrolytic bath containing a fluoride ion including: an electroconductive substrate having a sure including an electroconductive carbonaceous material; and an electroconductive carbonaceous film having a diamond structure, the electroconductive carbonaceous film coating a part of the electroconductive carbonaceous substrate, and a method for electrolytically synthesizing a fluorine-containing substance using the electrolytic anode.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: February 26, 2008
    Assignees: Permelec Electrode Ltd., Toyo Tanso Co., Ltd.
    Inventors: Tsuneto Furuta, Masaharu Uno, Yoshinori Nishiki, Tetsuro Tojo, Hitoshi Takebayashi, Masashi Kodama
  • Patent number: 7332065
    Abstract: The present invention relates to a process for manufacturing an electrode comprising depositing on an electrode substrate a binder dispersion comprising a precursor of a conductive or semiconductive oxide, forming a conductive or semiconductive oxide coating from the precursor on the electrode substrate, depositing an electroconductive titanium oxide and electrode particles on the conductive or semiconductive oxide coating, adhering the electroconductive titanium oxide and the electrode particles to the formed conductive or semiconductive oxide coating. The invention also relates to an electrode obtainable by the process, and the use thereof in an electrolytic cell.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: February 19, 2008
    Assignee: Akzo Nobel N.V.
    Inventor: Takayuki Shimamune
  • Patent number: 7285194
    Abstract: A conductive diamond electrode including a conductive substrate comprising a carbonaceous material, a conductive diamond catalyst layer formed on a surface of the conductive substrate, and a carbon fluoride formed on an exposed portion present on the surface of the conductive substrate. The formed carbon fluoride prevents the conductive substrate from contacting with an electrolytic solution, thereby suppressing corrosion of the substrate. A long life of the electrode can be attained.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: October 23, 2007
    Assignees: Permelec Electrode Ltd., Toyo Tanso Co., Ltd.
    Inventors: Masaharu Uno, Yoshinori Nishiki, Tsuneto Furuta, Miho Ohashi, Tetsuro Tojo, Hitoshi Takebayashi, Tateki Kurosu
  • Patent number: 7273536
    Abstract: A conductive diamond electrode including an electrode substrate comprising a material selected from the group consisting of a valve metal and an alloy based on the valve metal, at least a surface of the metal or alloy having been subjected to plasticization processing, or heat treatment in vacuum or inert atmosphere; and a conductive diamond film formed on the plasticization processed surface of the electrode substrate. When the electrode substrate is subjected to plasticization processing and heat treatment, peeling resistance of the conductive diamond film is improved, thereby an electrode life is prolonged.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: September 25, 2007
    Assignee: Permelec Electrode Ltd.
    Inventors: Tomoyasu Shibata, Masashi Hosonuma, Tsuneto Furuta
  • Publication number: 20070199820
    Abstract: An oxygen sensor includes a base body portion; and a plurality of function layers laminated on a surface of the base body portion. The function layers includes a solid electrolyte layer adapted to conduct oxygen ions; a reference electrode layer located on a base body portion side of the solid electrolyte layer; a sensing electrode layer located on the opposite side of the solid electrolyte layer to the reference electrode layer; a heater portion adapted to activate the solid electrolyte layer by heating; and a gas diffusion layer formed between the reference electrode layer and the base body portion, and adapted to diffuse a reference gas within the gas diffusion layer. The gas diffusion layer is formed to have a porosity indicating a limit current value ranging between 60 ?A and 200 ?A.
    Type: Application
    Filed: February 28, 2007
    Publication date: August 30, 2007
    Applicant: HITACHI, LTD.
    Inventors: Futoshi Ichiyanagi, Akira Uchikawa, Shoichi Sakai, Goji Matsumoto
  • Patent number: 7258778
    Abstract: The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably platinum group metal oxides, with or without low levels of valve metal oxides. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell and in particular a cell for the electrolysis of aqueous chlor-alkali solutions.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: August 21, 2007
    Assignee: Eltech Systems Corporation
    Inventor: Kenneth L. Hardee
  • Patent number: 7255894
    Abstract: A method of manufacturing a component, in particular an aluminium electrowinning anode, for use at elevated temperature in an oxidising and/or corrosive environment comprises: applying onto a metal-based substrate layers of a particle mixture containing iron oxide particles and particles of a reactant-oxide selected from titanium, yttrium, ytterbium and tantalum oxides; and heat treating the applied layers to consolidate by reactive sintering of the iron oxide particles and the reactant-oxide particles to turn the applied layer into a protective coating made of a substantially continuous reacted oxide matrix of one or more multiple oxides of iron and the metal from the reactant-oxide. The metal-based substrate comprises at its surface during the heat treatment an integral anchorage-oxide of at least one metal of the substrate.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: August 14, 2007
    Assignee: Moltech Invent S.A.
    Inventors: Thinh T. Nguyen, Vittorio De Nora
  • Patent number: 7244887
    Abstract: Preferred electrode devices (10) including a substrate (11) and cathode (13) and anode material (12) coated thereon in discreet locations are described. The cathode materials desirably include multiple layers of thin metal films (14). Preferred cell devices including conductive elements and a solid state source of charged ions for migration into and through the conductive elements are also described.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: July 17, 2007
    Assignee: Lattice Energy LLC
    Inventor: George H. Miley
  • Patent number: 7232508
    Abstract: An electrolytic electrode having an interlayer having more excellent peeling resistance and corrosion resistance and longer electrolytic life than conventional electrolytic electrodes and capable of flowing a large amount of current at the industrial level and a process of producing the same are provided. The electrolytic electrode includes a valve metal or valve metal alloy electrode substrate on the surface of which is formed a high-temperature oxidation film by oxidation, and which is coated with an electrode catalyst. The high-temperature oxidation film is integrated with the electrode substrate, whereby peeling resistance is enhanced. Further, by heating the high-temperature oxidation film together with the electrode catalyst, non-electron conductivity of the interlayer is modified, thereby making it possible to flow a large amount of current.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: June 19, 2007
    Assignee: Permelec Electrode Ltd.
    Inventor: Masashi Hosonuma
  • Patent number: 7217347
    Abstract: A diamond electrode having a prolonged life by combining a conventional diamond electrode having a relatively short life with other components is provided. A diamond electrode for electrolysis includes an electrode substrate, at least the surface of which comprises Magneli phase titanium oxide, and conductive diamond supported as an electrode catalyst on a surface of the electrode. The electrode catalyst may contain a titanium oxide powder. Magneli phase titanium oxide improves conductivity without forming a stable oxide layer on the substrate surface.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: May 15, 2007
    Assignee: Permelec Electrode Ltd.
    Inventors: Masashi Hosonuma, Miwako Nara, Masaharu Uno, Yoshinori Nishiki, Tsuneto Furuta, Tateki Kurosu, Osamu Fukunaga, Tetsuro Tojo
  • Patent number: 7201830
    Abstract: The invention concerns an anode for gas evolution in electrochemical applications comprising a titanium or other valve metal substrate characterized by a surface with a low average roughness, having a profile typical of a localized attack on the crystal grain boundary. The invention further describes a method for preparing the anodic substrate of the invention comprising a controlled etching in a sulfuric acid solution.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: April 10, 2007
    Assignee: De Nora Elletrodi S.p.A.
    Inventors: Corrado Mojana, Ulderico Nevosi
  • Patent number: 7087348
    Abstract: Electrodes for use in electrochemical devices are disclosed. More particularly coated electrode particles for use in solid electrochemical cells and materials and systems for improving electronic conductivity and repulsive force characteristics of an electrode network are disclosed. An article containing a plurality of distinct first particles that form an electrode network in which the distinct first particles are coated with a system of electrically conductive material is also disclosed. In some embodiments, the coating layer also includes a low refractive index material. In some embodiments, the coating layer of the electroactive material includes a plurality of second particles.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: August 8, 2006
    Assignee: A123 Systems, Inc.
    Inventors: Richard K. Holman, Yet Ming Chiang, Antoni S. Gozdz, Andrew L. Loxley, Benjamin Nunes, Michele Ostraat, Gilbert N. Riley, Michael S. Viola
  • Patent number: 7077937
    Abstract: A large surface area electrode well-suited to electrochemical applications is produced by winding many turns of a metallic fiber tow on to a sheet metal rectangle. In the preferred embodiment, an anode that can be used to purify water by electrochemical production of hydroxyl free radical is made by winding titanium fiber tow on to a rectangular substrate made of titanium sheet, and applying a suitable multilayered electrocatalytic coating. Made of other metals, an electrode of this description can also serve as the cathode of an electrochemical cell, or as a battery plaque.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: July 18, 2006
    Inventors: Oleh Weres, Henry Edward O'Donnell
  • Patent number: 7070878
    Abstract: A layered oxygen electrode incorporating a peroxide decomposition catalyst. The design of the oxygen electrode promotes oxygen dissociation and absorption within the oxygen electrode. The oxygen electrode has differing layers of hydrophobicity which allow chemical impregnation of the active catalyst material into the oxygen electrode where the active catalyst material is needed most.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: July 4, 2006
    Assignee: Ovonic Fuel Cell Company LLC
    Inventors: Srinivasan Venkatesan, Hong Wang, Stanford R. Ovshinsky, Boyko Aladjov, Subhash Dhar
  • Patent number: 7056424
    Abstract: In order to regenerate permanganate solutions being utilized for the etching and roughening of plastics surfaces electrolytic methods are known. Though relatively small quantaties of by-products are produced with these methods as compared to chemical regeneration methods, large quantaties of manganese dioxide are produced when printed circuit boards are treated. In order to avoid formation of manganese dioxide during the regeneration method a novel cathode 2 has been found which is provided with a porous, electrically nonconducting layer 7 on the cathode body 3. The layer 7 preferably consists of a plastics material being resistant to acid and/or alkali.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: June 6, 2006
    Assignee: Atotech Deutschland GmbH
    Inventors: Reinhard De Boer, Sebastian Dünnebeil
  • Patent number: 7052587
    Abstract: In one aspect, the invention provides a photoelectrochemical (PEC) electrode or photoelectrode for use in splitting water by electrolysis. The photoelectrode has an electrically conductive surface in contact with an electrolyte solution. This surface is a doped tin oxide layer, which is in electrical contact with the semiconductor solar cell material of the PEC photoelectrode. In a variation of the present invention, another layer of metal oxide having transparent, anti-reflective, and conductive properties is disposed between the doped tin oxide layer and the semiconductor material.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: May 30, 2006
    Assignee: General Motors Corporation
    Inventors: Thomas L Gibson, Nelson A Kelly
  • Patent number: 7022287
    Abstract: The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: April 4, 2006
    Assignee: Sandia National Laboratories
    Inventors: Joseph Schoeniger, Albert W. Flounders, Robert C. Hughes, Antonio J. Ricco, Karl Wally, Stanley H. Kravitz, Richard P. Janek
  • Patent number: 6972078
    Abstract: A catalytic powder comprising a plurality of support metal particles with a porous coating (12) surrounding the metal particles (11), the porous coating comprising either an electrocatalytic metal or an electrocatalytic metal continuous phase in admixture with a particulate material (14). An electrode made with the catalytic powder and a method to make the electrode is also disclosed. The present invention is advantageous because the porous coating mixture is first applied to a powder rather than being applied directly to a metal substrate, thereby creating a large internal surface area on the electrode and accordingly, lower overpotential requirements.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: December 6, 2005
    Assignee: The Dow Chemical Company
    Inventors: Yu-Min Tsou, Edmond L. Manor
  • Patent number: 6936143
    Abstract: A tandem cell or photoelectrochemical system for the cleavage of water to hydrogen and oxygen by visible light has two superimposed photocells, both cells being connected electrically. The photoactive material in the top cell is a semiconducting oxide placed in contact with an aqueous solution. This semiconducting oxide absorbs the blue and green part of the solar emission spectrum of a light source or light sources and generates with the energy collected oxygen and protons from water. The not absorbed yellow and red light transmits the top cell and enters a second photocell, the bottom cell, which is mounted, in the direction of the light behind, preferably directly behind the top cell. The bottom cell includes a dye-sensitized mesoporous photovoltaic film. The bottom cell converts the yellow, red and near infrared portion of the sunlight to drive the reduction of the protons, which are produced in the top cell during the photo catalytic water oxidation process, to hydrogen.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: August 30, 2005
    Assignee: Ecole Polytechnique Federale de Lausanne
    Inventors: Michael Graetzel, Jan Augustynski
  • Patent number: 6936153
    Abstract: A semiconductor workpiece holder used in electroplating systems for plating metal layers onto a semiconductor workpieces, and is of particular advantage in connection with plating copper onto semiconductor materials. The workpiece holder includes electrodes which have a contact face which bears against the workpiece and conducts current therebetween. The contact face is provided with a contact face outer contacting surface which is made from a contact face material similar similar to the workpiece plating material which is to be plated onto the semiconductor workpiece. The contact face can be formed by pre-conditioned an electrode contact using a plating metal which is similar to the plating materials which is to be plated onto the semiconductor workpiece.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: August 30, 2005
    Assignee: Semitool, Inc.
    Inventor: Thomas L. Ritzdorf
  • Patent number: 6855660
    Abstract: A rhodium sulfide electrocatalyst formed by heating an aqueous solution of rhodium salt until a steady state distribution of isomers is obtained and then sparging hydrogen sulfide into the solution to form the rhodium sulfide and a membrane electrode assembly with the said electrode and a process for electrolyzing hydrochloric acid.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: February 15, 2005
    Assignee: De Nora Elettrodi S.p.A.
    Inventors: Yu-Min Tsou, Hua Deng, Gian Nicola Martelli, Robert J. Allen, Emory S. De Castro
  • Patent number: 6843896
    Abstract: The invention encompasses a method and apparatus for producing high-purity metals (such as, for example, high-purity cobalt), and also encompasses the high-purity metals so produced. The method can comprise a combination of electrolysis and ion exchange followed by melting to produce cobalt of a desired purity. The method can result in the production of high-purity cobalt comprising total metallic impurities of less than 50 ppm. Individual elemental impurities of the produced cobalt can be follows: Na and K less than 0.5 ppm each, Fe less than 10 ppm, Ni less than 5 ppm, Cr less than 1 ppm, Ti less than 3 ppm and O less than 450 ppm.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: January 18, 2005
    Assignee: Honeywell International Inc.
    Inventors: Guangxin Wang, Daniel M. Hydock, John Lehman
  • Publication number: 20040251129
    Abstract: A device of an electrode is disclosed, comprising a core and a surface coating of electrically-conductive material, and it is characterized by that the surface coating comprises one or several layers with a pore-free surface, each with a thickness of 0.005 mm to 0.050 mm, and formed by spraying, especially with a vacuum plasma spray technique.
    Type: Application
    Filed: August 5, 2004
    Publication date: December 16, 2004
    Inventors: Atle Mundheim, Lasse Kroknes
  • Publication number: 20040245096
    Abstract: An anode for the electrolysis of aluminium made from an outer dense layer of a ceramic material on a dense core made from a composite of the ceramic material of the outer layer and an electronic conductor.
    Type: Application
    Filed: June 10, 2004
    Publication date: December 9, 2004
    Inventors: Stein Julsrud, Turid Risdal
  • Patent number: 6811660
    Abstract: Various kinds of wastewater and water such as methane fermentation digestion liquids, domestic wastewater, sewage, service water, culture pond water, wastewater defined by an active sludge law and wastewater from food industries are decomposed, cleaned and treated with a high efficiency with oxygen radicals, hydroxyl radicals and diphenyl para picrihydoral radicals, and injurious materials are decomposed, cleaned and treated by oxidizing and reducing functions. An apparatus for cleaning dissolved organic matters and a trace amount of injurious materials consisting of a anode which is formed or welded by coating clay or glass with a material prepared by mixing 2 to 15% by weight of a transition metal with 1 to 10% of an oxidized transition metal and sintering the glass within a range from 800 to 1500° C.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: November 2, 2004
    Inventor: Takaaki Maekawa
  • Patent number: 6802948
    Abstract: There is disclosed a method for cooper electrowinning and a modified lead electrode for use in such method. The modified electrode is suitable for use as an oxygen anode in low current density, oxygen-evolving applications.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: October 12, 2004
    Assignee: Eltech Systems Corporation
    Inventors: Kenneth L. Hardee, Lynne M. Ernes, Carl W. Brown, Jr.
  • Publication number: 20040168927
    Abstract: A structure that is endowed with electric conductivity by plate-coating with a titanium nitride layer or by generation of a titanium nitride layer on a surface of a base material made of an inorganic material or an organic material, and a method of electroplating a cathode with a simple metal or an alloy, wherein the structure is used as an anode and/or a cathode. The structure is corrosion-resistant and has high electroconductivity, and thus the electroplating method using the structure allows the simplification and the cost reduction of an electroplating process.
    Type: Application
    Filed: January 22, 2004
    Publication date: September 2, 2004
    Inventor: Atsushi Matsushita
  • Patent number: 6770186
    Abstract: A hydrogen-fueled motor vehicle including at least one hydrogen-fueled locomotion subsystem and at least one refuelable hydrogen generator operative to supply hydrogen fuel to the hydrogen-fueled locomotion subsystem on demand. The refuelable hydrogen generator includes at least one electrochemical reactor operative to generate the hydrogen fuel from water on demand and a refueling subsystem providing at least one of water, electrolyte, hydrogen, a metal containing material and electrical power to the electrochemical reactor. A refueling method is also provided.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: August 3, 2004
    Assignee: Eldat Communication Ltd.
    Inventors: Oren Rosenfeld, Jonathan Russell Goldstein, Nimrod Sandeerman
  • Publication number: 20040129578
    Abstract: A high voltage electrode and method of construction is provided including a multi-layered composition to optimize dielectric strength, dielectric constant, structural strength and durability. The high voltage electrode can be utilized as a submergible drop-in unit for easy installation within a fluid holding tank such as a water cooling tower. The submergible generator includes a channel that houses a charged electrode, and functions as a ground electrode to the charged electrode, and also functions as a fluid diverter.
    Type: Application
    Filed: January 7, 2003
    Publication date: July 8, 2004
    Inventors: David McLachlan, William Bridge, Allen Wilson
  • Publication number: 20040108205
    Abstract: Described are preferred electrode structures which desirably include multiple thin conductive layers stably bonded to an electrode substrate through a bonding layer. Also described are preferred electrode structures which include reinforcing carbon layers, which include an embrittlement-sensitive material and a protective oxygen-free copper layer, and which include at least one thin metal layer including a bamboo grain pattern. Additional embodiments of the invention include electric cells incorporating such electrode structures, and methods for their operation.
    Type: Application
    Filed: March 26, 2002
    Publication date: June 10, 2004
    Inventor: Lewis G. Larsen
  • Publication number: 20040104113
    Abstract: An external electrode connector connects together external electrodes. The external electrode comprises a first metal layer, a first buffer layer and a second metal layer. The first buffer layer is formed on the first metal layer and electrically connected to the first metal layer. Conductors and elastic bodies are alternately provided or the conductors are arranged within a principal plane of the elastic body in the first buffer layer. The second metal layer is formed on the first buffer layer and electrically connected to the first buffer layer. The elastic body is lower in Young's modulus than the first metal layer, the conductor, and the second metal layer.
    Type: Application
    Filed: May 30, 2003
    Publication date: June 3, 2004
    Applicant: Renesas Technology Corp.
    Inventor: Yoshihiro Tomita
  • Publication number: 20040094409
    Abstract: A solid material (12′) circumscribing an anode system (10) in an electrolysis apparatus is made from a mixture of cryolite and/or alumina (Al2O3), where the solid material (12′) contacts and surrounds the anodes (14, 14′).
    Type: Application
    Filed: November 13, 2003
    Publication date: May 20, 2004
    Inventors: LeRoy E. D'Astolfo, Calvin Bates
  • Publication number: 20040089539
    Abstract: A method of protecting during the start-up procedure a cathode (1) of a cell for the electrowinning of aluminium where the cathode (1) is optionally coated with an aluminium-wettable refractory material (2) and on which cathode, in use, aluminium is produced. The start-up procedure comprises applying before preheating the cell one or more start-up layers (3) on the aluminium-wettable refractory coating (2). The start-up layer(s) form(s) a temporary protection (3) against damage of chemical and/or mechanical origin to the aluminium-wettable coating (2), this temporary protection (3) being in intimate contact with the aluminium-wettable coating (2) and being eliminated before or during the initial normal operation of the cell. The layers of the temporary protection (3) may be obtained from at least one pliable foil of aluminium having a thickness of less than 0.
    Type: Application
    Filed: October 14, 2003
    Publication date: May 13, 2004
    Inventors: Vittorio de Nora, Jainagesh Akkaraju Sekhar, Jean-Jacques Duruz, James Jenq Liu
  • Patent number: 6733638
    Abstract: The present invention provides an ozone generating system that combines single-use elements or segments with an extended use fixture that is used to activate the single-use elements. One embodiment of the invention consists of a strip of proton exchange membrane (PEM) having the ozone producing catalyst applied directly onto one side of membrane. Optionally, the application of this catalyst may be divided into segments or patches, wherein each segment represents the limited-use portion of the ozone generator. Each segment may be advanced into a fixture that provides the balance of the electrochemical system required for operation of the ozone generator. This balance of system may include additional subsystems, with a power supply, water source, electrical contacts, electronic controllers, sensors and feedback components, being typical examples.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: May 11, 2004
    Assignee: Lynntech, Inc.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Patent number: 6733639
    Abstract: The invention relates to a gas diffusion electrode (1) comprising a hydrophobic gas diffusion layer (3b), a reaction layer (3a), and a hydrophilic layer (5) arranged in the mentioned order wherein the reaction layer (3a) is arranged to a barrier layer (4), which barrier layer (4), on its opposite side, is arranged to the hydrophilic layer (5). The invention also relates to a method for manufacturing such a gas diffusion electrode (1), and to an electrolytic cell, and use thereof.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: May 11, 2004
    Assignee: Akzo Nobel N.V.
    Inventors: Bernd Busse, Lars-Erik Bergman
  • Publication number: 20040084303
    Abstract: An electrochemical device (18) for generating a desired gas of the type includes an ionically conductive electrolyte layer (20), a porous electrode layer (22), and a current collector layer (16) that has a high electrical conductivity and is porous to a desired gas (24) generated by the electrochemical device (18). The current collector layer (16) is substantially formed as a film comprised of a layer of spherical refractory material objects (26) having a conductive coating (12) of a precious metal. The coated spherical objects (26) have a desired diameter (28) making them suitable for forming into the film.
    Type: Application
    Filed: December 2, 2002
    Publication date: May 6, 2004
    Applicant: Litton Systems, Inc.
    Inventors: Scott R. Sehlin, Courtney J. Monzyk
  • Publication number: 20040074767
    Abstract: A one-piece edge strip to be mounted on the bottom edge of a cathode used in electrolysis has a channel running longitudinally of the edge strip. The channel is designed to receive the bottom edge of the cathode. The edge strip is provided with a receptacle at either end of the channel, and each receptacle can accommodate an end portion of an edge strip mounted on a side edge of the cathode.
    Type: Application
    Filed: October 18, 2002
    Publication date: April 22, 2004
    Inventor: Manuel G. Santoyo
  • Publication number: 20040069622
    Abstract: An oxygen-depolarised cathode for aqueous hydrchloric acid electrolysis membrane cells is described, the cathode being in contact with the membrane and capable of preventing the release of hydrogen into oxygen even at the highest current densities. Hydrochloric acid may also be of technical grade with a concentration limited to 15%, whereas the operating temperature must not exceed 60° C. The cathode contains a mixture of rhodium sulphide and a metal of the platinum group applied in a single layer or alternatively applied separately in two distinct layers.
    Type: Application
    Filed: July 17, 2003
    Publication date: April 15, 2004
    Inventors: Gian Nicola Martelli, Fulvio Federico
  • Publication number: 20040069657
    Abstract: The present invention provides a metal electrode stabilised by a coating, the coating comprising a sulfur containing moiety in its molecular structure. The coating may also include a hydrophilic group and a spacer between the sulfur containing moiety and the hydrophilic group. Preferably, the sulphur-containing moiety is selected from the group comprising thiol, disulphide and SOx, and the hydrophilic group is selected from the group comprising hydroxyl, amine, carboxyl, carbonyl, oligo (ethylene oxide) chain, and zwitterionic species. Compounds useful in the present invention include 2-mercaptoethanol, 2-mercaptoethylamine, 3-mercaptopropionic acid, thiophene, 4-carboxythiophene, cysteine, homocysteine, and cystine.
    Type: Application
    Filed: July 29, 2003
    Publication date: April 15, 2004
    Applicant: LifeScan, Inc.
    Inventors: Alastair Hodges, Ronald Chatelier
  • Patent number: 6719889
    Abstract: A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: April 13, 2004
    Assignee: Northwest Aluminum Technologies
    Inventor: Craig W. Brown
  • Publication number: 20040020766
    Abstract: A wall construction for an electrolytic cell to separate oxygen from an oxygen containing gas in which an electrolyte layer of less than 200 microns and a cathode layer of less than 500 microns are supported by an anode that can have a sufficient thickness to also contain the separated oxygen at pressure. The cathode is formed from the same material as the electrolyte and also a noble metal or noble metal alloy and a mixed conductor. The cathode contains a sufficient amount of the noble metal or noble metal allow and the mixed conductor that the total resistance thereof is not greater than about 70 percent of the total resistance of the anode and the cathode. In a preferred embodiment, first and second porous interfacial layers are situated between an anode layer and the electrolyte and the electrolyte and a cathode layer, respectively.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 5, 2004
    Inventors: Weitung Wang, Hancun Chen, Jack C. Chen
  • Publication number: 20040020767
    Abstract: A locally distributed electrode is made by placing a conducting metallic oxide layer and a counter electrode in contact with a noble metal electroplating solution and applying a negative potential to the metallic oxide layer relative to the counter electrode, such that the noble metal is electrodeposited from the solution preferentially at defect sites on a surface of the metallic oxide layer. The noble metal nuclei are selectively electrodeposited at the defect sites to form a locally distributed electrode made up of a dot matrix of metallic islands. For reversible electrochemical mirror (REM) devices, the presence of the noble metal renders mirror metal electrodeposition at the defect sites reversible so that the defects become part of the dot matrix electrode and extraneous deposition of the mirror metal on the conducting metallic oxide is avoided.
    Type: Application
    Filed: August 1, 2002
    Publication date: February 5, 2004
    Applicant: Innovative Technology Licensing, LLC
    Inventor: D. Morgan Tench
  • Publication number: 20040011669
    Abstract: An anode assembly for insertion in a gap between a section of reinforced concrete and another solid structure, which may be another section of concrete, comprises an anode attached to a body of deformable material which is preferably resiliently deformable, whereby, when the assembly is inserted into the gap, the anode is pressed into electrical contact with the concrete surface.
    Type: Application
    Filed: June 13, 2003
    Publication date: January 22, 2004
    Inventors: Gareth K. Glass, Adrian C. Roberts, John M. Taylor
  • Publication number: 20040003993
    Abstract: A large surface area electrode well-suited to electrochemical applications is produced by winding many turns of a metallic fiber tow on to a sheet metal rectangle. In the preferred embodiment, an anode that can be used to purify water by electrochemical production of hydroxyl free radical is made by winding titanium fiber tow on to a rectangular substrate made of titanium sheet, and applying a suitable multilayered electrocatalytic coating. Made of other metals, an electrode of this description can also serve as the cathode of an electrochemical cell, or as a battery plaque.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 8, 2004
    Inventors: Oleh Weres, Henry Edward O'Donnel
  • Patent number: 6669828
    Abstract: A cathode is made of an electrically conducting support with a coating of electrochemically deposited lead with a density between 0.001 and 2 g/cm3.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: December 30, 2003
    Assignee: Consortium für Elektrochemische Industrie GmbH
    Inventor: Elke Fritz-Langhals
  • Patent number: RE40035
    Abstract: A ceramic oxygen generator is described which is capable of modular construction to permit the oxygen generation capacity to be expanded. An ionically conducted ceramic electrolyte is formed into a series of rows and columns of tubes on a tube support member and like electrolyte bodies can be connected together to form a manifold therebetween of oxygen produced in the interiors of the rubes. An electrical connection between tubes is formed such that the anodes and cathodes of tubes in a column are connected in parallel while the tubes in the row are, respectively, connected anode to cathode to form a series connection.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: January 29, 2008
    Assignee: Carleton Life Support Systems, Inc.
    Inventor: Victor P. Crome