Electrically Conductive Or Emissive Compositions Patents (Class 252/500)
  • Publication number: 20150111449
    Abstract: We report a method of preparation of highly elastic graphene oxide films, and their transformation into graphene oxide fibers and electrically conductive graphene fibers by spinning. Methods typically include: 1) oxidation of graphite to graphene oxide, 2) preparation of graphene oxide slurry with high solid contents and residues of sulfuric acid impurities. 3) preparation of large area films by bar-coating or dropcasting the graphene oxide dispersion and drying at low temperature. 4) spinning the graphene oxide film into a fiber, and 5) thermal or chemical reduction of the graphene oxide fiber into an electrically conductive graphene fiber. The resulting films and fiber have excellent mechanical properties, improved morphology as compared with current graphene oxide fibers, high electrical conductivity upon thermal reduction, and improved field emission properties.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Rodolfo Cruz-Silva, Aaron Morelos, Mauricio Terrones, Ana Laura Elias, Nestor Perea-Lopez, Morinobu Endo
  • Patent number: 9011728
    Abstract: The object of the present invention is to provide a method for producing a conductive material that has a low electric resistivity and that is obtained using an inexpensive and stable conductive material composition. A conductive material having a low electric resistivity can be obtained by a method including the step of heating a conductive material composition that contains at least one of a full-cured or semi-cured thermosetting resin and a thermoplastic resin, as well as silver particles. Such a conductive material is a conductive material that includes fused silver particles, and thermosetting resin fine particles that have an average particle diameter of 0.1 ?m to 10 ?m both inclusive and are dispersed in the fused silver particles. Further, in such a conductive material is a conductive material that includes fused silver particles, and a thermoplastic resin welded among the fused silver particles.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: April 21, 2015
    Assignee: Nichia Corporation
    Inventors: Masafumi Kuramoto, Satoru Ogawa, Miki Niwa, Katsuaki Suganuma, Keun-Soo Kim
  • Patent number: 9011730
    Abstract: There is described a coating composition useful for forming a transfer member suitable for use with an image forming system. The composition includes coating an ultraviolet (UV) curable mixture comprising a chlorinated polyester resin, a reactive diluent, conductive species and a photoinitiator on a substrate. The UV curable mixture is cured with ultraviolet energy. The cured mixture is then removed from the substrate.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 21, 2015
    Assignee: Xerox Corporation
    Inventor: Jin Wu
  • Patent number: 9011729
    Abstract: An organic thin film transistor including at least a gate electrode, a source electrode, a drain electrode, an insulator layer and an organic semiconductor layer, at least one of the source electrode and the drain electrode including a conductive polyaniline composition containing (a) a substituted or unsubstituted polyaniline composite which is protonated by an organic protonic acid or its salts represented by M(XCR4(CR52COOR6)COOR7)p and (b) compound having a phenolic hydroxyl group.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: April 21, 2015
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Hiroaki Nakamura, Masatoshi Saito, Hirofumi Kondo, Toru Bando
  • Patent number: 9012088
    Abstract: An anode composition for a lithium secondary battery is provided. The anode composition comprises an anode active material, a conductive material, and an acrylonitrile-acrylic acid copolymer with a high molecular weight as a binder. The acrylonitrile-acrylic acid copolymer has a molar ratio of acrylonitrile to acrylic acid of 1:0.01-2. Further provided are a method for preparing the anode composition and a lithium secondary battery using the anode composition. The binder has improved resistance to an electrolyte solution due to its enhanced adhesive strength. In addition, the use of the anode composition prevents the active material layer from being peeled off or separated from a current collector during charge and discharge to achieve improved capacity and cycle life characteristics of the battery.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 21, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Eun Suok Oh, Young Min Kim, Ok Sun Kim, Min Ah Kang
  • Patent number: 9011727
    Abstract: Blending an electrically active, anodically coloring, electrochromic polymer with a non-electrochromic, non-electrically conductive binder polymer greatly enhances the performance of the anodically coloring, electrochromic polymer in an electrochromic device over time. In addition to improved physical characteristics of the blend, e.g., film build, durability etc, the coloristic properties, including color space and color strength, of the device comprising the blend are more durable than when using the neat polymer, and in certain instances, the color space and color intensity provided by the blend is superior to that available from the neat polymer.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Nancy Cliff, David Yale, Deanna Rodovsky, Jennifer Jankauskas
  • Patent number: 9011726
    Abstract: Electrically conductive powder includes polyhedral large particles and flakey small particles. The aspect ratio of the small particles is not less than 3 and is at least 1.3 times greater than that of the large particles. The electrically conductive powder is surface treated with a fatty acid. The electrically conductive powder has good contact among the polyhedral large particles and the flakey small particles. An electrically conductive paste of the electrically conductive powder achieves excellent electrical and thermal conductivities because the particles are in contact not at points but through surfaces. The electrically conductive paste is capable of filling via-holes in a satisfactory manner.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: April 21, 2015
    Assignee: Alpha Scientific, Corporation
    Inventors: Toyoji Nagano, Kinji Oono, Shoko Kuwajima
  • Publication number: 20150102308
    Abstract: Provided is an organic semiconductor layer including a mixture of a first polycyclic aromatic hydrocarbon to which a substituent R1 other than a hydrogen atom is bonded by a single bond, and a second polycyclic aromatic hydrocarbon.
    Type: Application
    Filed: April 5, 2013
    Publication date: April 16, 2015
    Applicant: Sony Corporation
    Inventors: Norihito Kobayashi, Eri Igarashi
  • Publication number: 20150103394
    Abstract: The present invention provides a solution for a highlight or multicolor display device, in which each display cell can display high quality color states. More specifically, an electrophoretic fluid is provided which comprises three types of charged particles and a fourth type of particles which is substantially uncharged neutral buoyancy particles, all of which are dispersed in a solvent or solvent mixture.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 16, 2015
    Inventors: Ming WANG, Hui Du, HongMei Zang, Peter Laxton
  • Publication number: 20150102264
    Abstract: This is the development of a new conductive ink utilizing modern plastics and processes for the purpose of improving modern circuitry. By dissolving polyamide-imide (PAI) resin and mixing it with a conductive material (such as carbon, silver, copper, or gold) we can create an electrically conductive ink that can be printed into circuitry. This method of circuit printing is far stronger and resistant to environmental forces.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Inventors: Ryan David Allmandinger, Donald David Allmandinger
  • Publication number: 20150102330
    Abstract: A composition comprises a low molecular weight polyelectrolyte, a high molecular weight polymer, a light-emitting material and a salt. The viscosity average molecular weight of the high molecular weight polymer in at least one solvent is at least 5 times greater than the viscosity average molecular weight of the low molecular weight polyelectrolyte in the at least one solvent, and the high molecular weight polymer and the low molecular weight polymer are preferably different molecular weight polymers of the same polyelectrolyte material, such as polyethylene oxide. The composition is used to provide a light emitting layer (103) in a light-emitting electrochemical cell between an anode (101) for injecting positive charge carriers and a cathode (105) for injecting negative charge carriers.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Applicant: Sumitomo Chemical Co. Limited
    Inventors: Julian Carter, Nicholas Dartnell
  • Publication number: 20150102265
    Abstract: A stabilized assembly including a first liquid phase of non-spherical droplets in a second liquid phase, wherein the second liquid phase is immiscible with the first phase, and nanoparticle surfactants assembled at an interface of the non-spherical droplets and the second phase is disclosed. The nanoparticle surfactants include nanoparticles and end-functionalized polymers that can interact through ligand type interactions, and the first phase is stabilized by a disordered, jammed layer of nanoparticle surfactants. A method of preparing a stabilized assembly is also disclosed.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 16, 2015
    Inventors: Thomas P. Russell, Mengmeng Cui, Todd Emrick
  • Publication number: 20150102270
    Abstract: A thermosetting conductive silicone composition comprises an organopolysiloxane having at least one structure represented by the following formula (1), wherein m is either of 0, 1 or 2; R1 represents a hydrogen atom, a phenyl group or a halogenated phenyl group; R2 represents a hydrogen atom or methyl group; R3s may be the same or different from each other and each represents a substituted or unsubstituted monovalent organic group having 1 to 12 carbon atoms; Z1 represents either of —R4—, —R4—O— or —R4(CH3)2Si—O— where R4s may be the same or different from each other and each represents a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms; and Z2s represent an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms which may be the same or different from each other; an organic peroxide; and conductive particles.
    Type: Application
    Filed: August 26, 2014
    Publication date: April 16, 2015
    Inventors: Satoshi ONAI, Toshiyuki OZAI
  • Patent number: 9005482
    Abstract: A paste composition for a rear electrode of a solar cell according to an embodiment comprises conductive powder including a first powder having a first mean particle diameter, a second powder having a second mean particle diameter larger than the first mean particle diameter, and a third powder having a third mean particle diameter larger than the second mean particle diameter, and an organic vehicle.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 14, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Sang Gon Kim, In Jae Lee, Soon Gil Kim, Jin Gyeong Park, Sun Mi Lee, Kyoung Hoon Chai
  • Patent number: 9005485
    Abstract: The present invention relates to a composition for a one-part die attach adhesives material useful for packaging semi-conductors including HB-LED. The composition of the present invention includes a thermal and electrical conductive filler, a polymer matrix and a solvent which form a material with high thermal conductivity, low curing temperature and high self-life temperature. The present invention also relates to a method of preparing said composition by mixing a size-selected and surface-modified filler formulation, a polymer matrix and a non-reactive organic solvent together followed by curing the mixture at a low temperature.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 14, 2015
    Assignee: Nano and Advanced Materials Institute Limited
    Inventors: Chenmin Liu, Dong Lu, Xianxin Lang, Bo Wang, Zhiying Li
  • Publication number: 20150097146
    Abstract: The present invention relates to oxocarbon-, pseudooxocarbon- and radialene compounds as well as to their use as doping agent for doping an organic semiconductive matrix material, as blocker material, as charge injection layer, as electrode material as well as organic semiconductor, as well as electronic components and organic semiconductive materials using them.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Inventors: Horst Hartmann, Olaf Zeika, Andrea Lux, Steffen Willmann
  • Publication number: 20150097145
    Abstract: OLED materials having the formula: T-A(-S-B(-P-B)m-S-A)n-T where A are independently selected rod-shaped, rigid molecular core units, S are independently selected flexible spacer units, B are polymerisable crosslinking groups independently selected, P are spacer groups independently selected, T are independently selected end groups, m are independently selected from values of from 1 to 4, n is equal to I to 3.
    Type: Application
    Filed: May 9, 2013
    Publication date: April 9, 2015
    Inventor: Gene Carl Koch
  • Patent number: 8999202
    Abstract: Methods of manufacturing nano-engineered carbon materials, such as carbon aerogels and carbon xerogels, and methods of manufacturing precursor solutions and sol-gels for making the same are provided. A method for manufacturing a precursor solution comprises programmed-addition of a cross-linking agent to a component mixture comprising a resorcinol compound. A method for manufacturing a sol-gel comprises subjecting a precursor solutions to at least one heat treatment. Methods for producing nano-engineered carbon materials from precursor solutions and sol-gels are also provided. Methods for using the nano-engineered carbon materials are also disclosed. The resulting nano-engineered carbon materials can be useful in a range of products including, supercapacitor applications, high-surface-area electrodes, fuel cells, and desalination systems.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 7, 2015
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Sudhir M. Mulik, Joseph F. Ludvik, Robert W. Fleming, Christopher M. Lee
  • Patent number: 9000294
    Abstract: Photoactive compositions of matter, methods for their design and synthesis, and various applications of such compositions of matter are disclosed. Such photoactive compositions may, for example, include any one or more of the following: a core moiety; a primary electron donor moiety; an electron-withdrawing moiety; and an alkyl tail. Some photoactive compositions may further include multiple additional electron donor moieties, electron-withdrawing moieties, and alkyl tails. Applications of such photoactive compositions of matter may include use in photovoltaic cells (e.g., as a p- or n-type material of the active layer of some photovoltaic cells, or as a dye to be employed in other photovoltaic cells); batteries, field-effect transistors; and light-emitting diodes.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: April 7, 2015
    Assignee: Hunt Energy Enterprises, LLC
    Inventors: Michael D. Irwin, Vivek V. Dhas, Robert D. Maher, III, Jerred A. Chute
  • Patent number: 8999200
    Abstract: A polymeric composite comprises a polymeric resin; an electrically conductive filler; and a polycyclic aromatic compound, in an amount effect to increase the electrical conductivity of the polymeric composition relative to the same composition without the polycyclic aromatic compound. The addition of the polycyclic aromatic compound in addition to a conductive filler imparts improved electrical and mechanical properties to the compositions.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: April 7, 2015
    Assignee: Sabic Global Technologies B.V.
    Inventors: Sumanda Bandyopadhyay, Darren Clark, Soumyadeb Ghosh
  • Patent number: 8999201
    Abstract: Graphene, a method of fabricating the same, and a transistor having the graphene are provided, the graphene includes a structure of carbon (C) atoms partially substituted with boron (B) atoms and nitrogen (N) atoms. The graphene has a band gap. The graphene substituted with boron and nitrogen may be used as a channel of a field effect transistor. The graphene may be formed by performing chemical vapor deposition (CVD) method using borazine or ammonia borane as a boron nitride (B-N) precursor.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: April 7, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-hoon Lee, Sun-ae Seo, Yun-sung Woo, Hyun-jong Chung, Jin-seong Heo
  • Publication number: 20150090975
    Abstract: There is provided an organic semiconductor material with which it is possible to manufacture an electronic element by a wet process which is low cost. Furthermore, the object is to provide an organic semiconductor electronic element which is hardly broken, light in weight and inexpensive, and has high characteristic. According to the present invention, it has been found that it is possible to provide an organic semiconductor material in which performance is improved and which is suitable for a wet process by optimizing a phthalocyanine derivative which configures a phthalocyanine nano-sized substance and the completion of the present invention has been reached. Furthermore, it is possible to provide an electronic element which has high durability, is hardly broken, light in weight, inexpensive and has high characteristic by using the organic semiconductor material in an electronic element active part (a semiconductor layer).
    Type: Application
    Filed: April 4, 2013
    Publication date: April 2, 2015
    Inventors: Hideki Etori, Hideyuki Murata, Shou Inagaki, Engel Michael
  • Publication number: 20150093570
    Abstract: An antistatic pressure sensitive adhesive composition, useful in electronic and optical display applications, comprising an antistatic agent and a first block copolymer comprising at least two hard A block polymeric units each independently having a Tg of at least 50° C., and at least one soft B block (meth)acrylic polymeric unit having a Tg no greater than 20° C. The composition can comprise a second block copolymer. Articles comprising an antistatic pressure sensitive adhesive composition adjacent a first surface of a substrate.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Inventors: Kiu-Yuen Tse, Vivek Bharti, Albert I. Everaerts, Eugene G. Joseph, Mark D. Purgett, Jianhui Xia, Andrew Satrijo, Wanshik Yoon
  • Patent number: 8992802
    Abstract: An intermediate transfer member that includes a crosslinked poly(ether ether ketone) polymer, an optional conductive component, an optional polymer, and an optional release additive.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 31, 2015
    Assignee: Xerox Corporation
    Inventor: Jin Wu
  • Patent number: 8992799
    Abstract: A polymer composite composed of a polymerized mixture of functionalized carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidizing or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerized. The polymerization results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consists of some polymer chains imbedded in the composite without attachment to the nanotubes.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: March 31, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw
  • Patent number: 8992800
    Abstract: There is provided an electroactive material having Formula I wherein: Q is the same or different at each occurrence and can be O, S, Se, Te, NR, SO, SO2, P, PO, PO2, and SiR2; R is the same or different at each occurrence and can be hydrogen, alkyl, aryl, alkenyl, or alkynyl; R1 through R10 are the same or different and can be hydrogen, alkyl, aryl, halogen, hydroxyl, aryloxy, alkoxy, alkenyl, alkynyl, amino, alkylthio, phosphino, silyl, —COR, —COOR, —PO3R2, —OPO3R2, or CN.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: March 31, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Hong Meng, Dengfu Wang
  • Publication number: 20150087858
    Abstract: Carbon nanotube suspensions or dispersions include carbon nanotubes and a functional group attached to an aromatic polycyclic compound on a surface of the carbon nanotubes. The carbon nanotubes in the suspensions or dispersions are pretreated by exposing the carbon nanotubes to a solvent (such as N-cyclohexyl-2-pyrrolidone) and an acid (such as concentrated sulfuric acid). The carbon nanotubes pretreated according to this method can be dispersed or suspended in a solvent to prepare high concentration suspensions, dispersions and/or inks for various applications.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 26, 2015
    Inventors: Lijie Ci, Kuanping Gong
  • Publication number: 20150087488
    Abstract: A semiconductive roller to stably generate high-quality images for a long period of time by efficiently inhibiting migration of free epichlorohydrin (ECH) component to a surface of the semiconductive roller includes an elastic layer formed of a semiconductive rubber composition including about 50 to about 70 parts by weight of a base rubber and about 30 to about 50 parts by weight of a hydrin rubber. An extracted amount of the ECH component from the elastic layer is about 2% by volume or less, wherein the extracted amount is determined based on a reduced amount of chlorine (Cl) intensity measured using X-ray fluorescence (XRF) analysis performed before and after extraction of the ECH component from the elastic layer using tetrahydrofuran (THF).
    Type: Application
    Filed: January 30, 2014
    Publication date: March 26, 2015
    Applicant: Samsung Electronics Co., Ltd
    Inventors: Kwang-ho KANG, Jae-hyeuk JEONG, Jung-ik CHOI
  • Publication number: 20150086721
    Abstract: The disclosure generally relates to a dispersion of nanoparticles in a liquid medium. The liquid medium is suitably water-based and further includes an ionic liquid-based stabilizer in the liquid medium to stabilize the dispersion of nanoparticles therein. The stabilizer can be polymeric or monomeric and generally includes a moiety with at least one quaternary ammonium cation from a corresponding ionic liquid. The dispersion suitably can be formed by shearing or otherwise mixing a mixture/combination of its components. The dispersions can be used to form nanoparticle composite films upon drying or otherwise removing the liquid medium carrier, with the stabilizer providing a nanoparticle binder in the composite film. The films can be formed on essentially any desired substrate and can impart improved electrical conductivity and/or thermal conductivity properties to the substrate.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 26, 2015
    Inventor: John Texter
  • Publication number: 20150083961
    Abstract: Electrically and/or thermally conductive polymer composites and methods of preparing same are provided. In some embodiments, a method for preparing an electrically and/or thermally conductive polymer composite may include (1) mixing a polymer, a conductive particulate filler, and a solvent compatible with the polymer to form a non-conductive polymer solution or melt; (2) processing, the non-conductive polymer solution or melt to form a non-conductive polymer network composition; wherein the presence of solvent during three-dimensional network formation manipulates the polymer network structure; and (3) removing the solvent from the non-conductive polymer network composition to form an electrically and/or thermally conductive polymer composite. The altered polymer chain structure present in the non-conductive polymer network composition is maintained in the composite, and offsets the impact of particulate filler addition including increased modulus, decreased elasticity, and decreased elongation at break.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: U.S. Army Research Laboratory ATTN: RDRL-LOC-I
    Inventors: Randy A. Mrozek, Joseph L. Lenhart
  • Patent number: 8986575
    Abstract: A conductive paste containing a conductive powder (A), a vinyl chloride-vinyl acetate resin (B), a polyester resin and/or polyurethane resin (C), a blocked isocyanate (D) blocked with an active methylene compound, and an organic solvent (E), wherein the resin (C) has a glass transition temperature of ?50° C. to 20° C., a sum of amounts of the resin (C) is 50 to 400 parts by weight relative to 100 parts by weight of the resin (B), and a sum of amounts of the resin (B), the resin (C) component, and the blocked isocyanate (D) is 10 to 60 parts by weight relative to 100 parts by weight of the conductive powder (A). An electric wiring in which this conductive paste is formed on an insulating substrate.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 24, 2015
    Assignees: Toyo Boseki Kabushiki Kaisha, Kabushiki Kaisha Toshiba
    Inventors: Yuichiro Akiba, Tomoko Honda, Fujio Takahashi, Shinji Nakata
  • Patent number: 8986576
    Abstract: A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: March 24, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory O'Bryan, Jack L. Skinner, Andrew Vance, Elaine Lai Yang, Thomas Zifer
  • Publication number: 20150076479
    Abstract: The invention provides an organic compound incorporating a specific structure into a pyridine skeleton or a 1,3,5-triazine skeleton and adapting the molecular weight to a specific range, a composition comprising the organic compound and a solvent, organic electroluminescent element comprising a layer that is formed by using the composition, and the uses thereof.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 19, 2015
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Koichi Ishibashi, Hideki Gorohmaru, Wataru Shimizu, Tomomi Okamoto
  • Publication number: 20150079511
    Abstract: A photoconductor that includes, for example, a supporting substrate, an optional ground plane layer, an optional hole blocking layer, an optional adhesive layer, an optional anticurl layer, a photogenerating layer, and a charge transport layer comprised of a first charge transport compound, a second dissimilar charge transport compound, a fluoropolymer and a polyarylatecarbonate.
    Type: Application
    Filed: September 14, 2013
    Publication date: March 19, 2015
    Applicant: Xerox Corporation
    Inventors: Jin Wu, Kenny-Tuan T. Dinh, Lanhui Zhang, Lin Ma, Nancy L. Belknap, Helen R. Cherniack
  • Publication number: 20150076415
    Abstract: The present invention relates to polymers containing oligo-triarylamine repetition units that are substituted in the ortho position, a method for the production thereof, and use thereof in electronic devices, particularly in organic electroluminescence devices, known as OLEDs (OLED=organic light emitting diodes). The present invention further relates to organic electroluminescence devices containing these polymers.
    Type: Application
    Filed: April 15, 2013
    Publication date: March 19, 2015
    Inventors: Holger Heil, Fabrice Eckes, Dominik Joosten, Anna Hayer, Katja Stegmaier
  • Publication number: 20150079472
    Abstract: A method for manufacturing silicon flakes includes steps as follows. A silicon material is contacted with a machining tool which includes at least one abrasive particle fixedly disposed thereon. The silicon material is scraped along a displacement path with respect to the machining tool to generate the silicon flakes having various particle sizes.
    Type: Application
    Filed: June 13, 2014
    Publication date: March 19, 2015
    Inventors: Kun-Fung LIN, Rong-Ruey JENG, Han-Tu LIN, Chih-Hung CHAN
  • Publication number: 20150079715
    Abstract: Ink compositions comprising polythiophenes and aprotic organic solvents that are formulated for inkjet printing the hole injecting layer (HIL) of an organic light emitting diode (OLED) are provided. Also provided are methods of inkjet printing the HILs using the ink compositions.
    Type: Application
    Filed: November 25, 2014
    Publication date: March 19, 2015
    Inventors: Inna Tregub, Rajsapan Jain, Michelle Chan
  • Publication number: 20150079404
    Abstract: An electroconductive composition including polystyrene sulfonic acid, poly(3,4-ethylenedioxythiophene), water, an organic solvent having an affinity to water and a polymer having an amide group as a side chain.
    Type: Application
    Filed: October 23, 2014
    Publication date: March 19, 2015
    Inventors: Shozo Otera, Shiego Mori
  • Publication number: 20150079423
    Abstract: A system and process for controlling electronic interactions between two or more interactable materials.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Inventors: BOGDAN BELGORODSKY, EYAL DRUG, LUDMILA FADEEV, NETTA HENDLER, ELAD MENTOVICH, SHACHAR RICHTER, MICHAEL GOZIN
  • Publication number: 20150076416
    Abstract: The embodiments described herein pertain generally to a conductive polymer blend composition including a polymer-deaggregating agent and a method for preparing the same.
    Type: Application
    Filed: August 1, 2014
    Publication date: March 19, 2015
    Inventors: Suck Hyun Lee, O Pil Kwon, Jae Eun Um, Tae Ja Kim
  • Publication number: 20150079277
    Abstract: A method and composition for coating surfaces, a corresponding coating and the use of objects coated according to said method. A cleaned, metallic surface is contacted with an aqueous composition that is a dispersion or suspension, and drying and/or baking the organic coating or optionally, drying the organic coating and coating with an equivalent or additional coating composition prior to a drying and/or baking. The aqueous composition has a pH of 4 to 11 and contains an anionic polyelectrolyte in a quantity of 0.01 to 5.0 wt. % relative to the total mass of the composition, which may have a solids content of from 2 to 40 wt. %. The solids have an average particle size from 10 to 1000 nm. A coating forms on the basis of an ionogenic gel which binds cations released from the metallic surface that originate from a pretreatment stage or from the contacting.
    Type: Application
    Filed: February 7, 2013
    Publication date: March 19, 2015
    Applicant: CHEMETALL GMBH
    Inventors: Daniel Wasserfallen, Michael Schwamb, Aliaksandr Frenkel, Vera Sotke, Wolfgang Bremser, Martin Droll, Oliver Seewald, Ron Eilinghoff, Stephanie Gerold, Evgenija Niesen
  • Publication number: 20150079863
    Abstract: The present disclosure is directed to composite or articles for protective clothing, which include an anti-static layer. The antistatic layer can 1), include an antistatic agent comprising an electronically conductive material, and the antistatic layer can have a visible light transmission of at least 70%; 2) the anti-static layer can have a surface electrical resistivity (SER), and/or a water electrode resistivity (WER) of no greater than 1011 ohms/square and a visible light transmission of at least 70%; or 3) the anti-static layer has an electrical resistivity, measured in ohms/square, which varies by no more than 1.5 order of magnitude over a range of relative humidity of 5% to 95%, and a visible light transmission of at least 70%.
    Type: Application
    Filed: August 8, 2014
    Publication date: March 19, 2015
    Inventors: Debasis Majumdar, Ryan C. Hirschey, Jenna Reynolds
  • Publication number: 20150076418
    Abstract: The invention relates to novel conjugated polymers comprising in their backbone one or more divalent donor units, like for example benzo[1,2-b:4,5-b?]dithiophene-2,6-diyl (BDT), that are linked on both sides to an acceptor unit, to methods of preparing the polymers and educts or intermediates used in such preparation, to polymer blends, mixtures and formulations containing the polymers, to the use of the polymers, polymer blends, mixtures and formulations as semiconductors organic electronic (OE) devices, especially in organic photovoltaic (OPV) devices and organic photodetectors (OPD), and to OE, OPV and OPD devices comprising these polymers, polymer blends, mixtures or formulations.
    Type: Application
    Filed: February 15, 2013
    Publication date: March 19, 2015
    Applicant: MERCK PATENT GMBH
    Inventors: Nicolas Blouin, Amy Phillips, Lana Nanson, Steven Tierney, Toby Cull, Priti Tiwana, Stephane Berney, Miguel Carrasco-Orozco, Frank Egon Meyer
  • Publication number: 20150076413
    Abstract: An intermediate transfer member that contains a mixture of a polyimide, an optional conductive component, and a perfluoropolyether phosphate.
    Type: Application
    Filed: September 15, 2013
    Publication date: March 19, 2015
    Applicant: Xerox Corporation
    Inventors: Jin Wu, Kyle B. Tallman, Qi Ying Li, Lin Ma
  • Publication number: 20150080279
    Abstract: The present invention relates to an electrorheological composition with corrosion-inhibiting properties, methods for the production thereof and the use thereof.
    Type: Application
    Filed: March 11, 2013
    Publication date: March 19, 2015
    Inventors: Daniel Kieser, Dorothea Adams, Heinz Ulrich Hensgen
  • Publication number: 20150076414
    Abstract: A polymer including a first repeating unit represented by Formula 1 and a second repeating unit including a substituted or unsubstituted C2-C30 alkenyl group: wherein, in Formula 1, groups R, R?, A, A?, Y, and Y? are defined in the specification.
    Type: Application
    Filed: March 31, 2014
    Publication date: March 19, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Seung-sik HWANG, Jong-hwan PARK, Jae-man CHOI
  • Patent number: 8980136
    Abstract: A polymer composite composed of a polymerized mixture of functionalized carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidizing or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerized. The polymerization results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consists of some polymer chains imbedded in the composite without attachment to the nanotubes.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 17, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw
  • Patent number: 8980977
    Abstract: The present invention relates to pigment granules which are distinguished by the fact that they are based on a support material, where the support material is coated with one or more flake-form effect pigments by means of an adhesion promoter. The pigment granules according to the invention are preferably used for the pigmentation of application media, in particular paints, plasters, lacquers, powder coatings and plastics, and in particular as scatter and effect granules, for example for the decoration of wallcoverings.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 17, 2015
    Assignee: Merck Patent GmbH
    Inventors: Thomas Rathschlag, Carsten Griessmann
  • Patent number: 8980137
    Abstract: A composite for providing electromagnetic shielding including a plurality of nanotubes; and a plurality of elongate metallic nanostructures.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 17, 2015
    Assignee: Nokia Corporation
    Inventors: Vladimir Alexsandrovich Ermolov, Markku Anttoni Oksanen, Khattiya Chalapat, Gheorghe Sorin Paraoanu
  • Patent number: 8980141
    Abstract: A dye for a fluid of an electrowetting element, the dye having a general formula selected from the group consisting of: wherein Q has the general formula: -Het1R1 or -Het1R1R2; V has the general formula: -Het2R3 or -Het2R3R4; Het1 and Het2 are heteroatoms; R1 and R3 are H; R2 and R4 are any functional group; T and U are any functional group; W, X, Y and Z are H or an alkyl group; and F, G, L and M are H or an alkyl group, and with the proviso that the dye does not have the general formula: The present invention further relates to a fluid comprising a dye of the present invention, an electrowetting element and an optical display device comprising the fluid, and a use of the dye to reduce photo-bleaching.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: March 17, 2015
    Assignee: Amazon Technologies, Inc.
    Inventors: Melanie Maria Hubertina Van De Weijer-Wagemans, Romaric Massard, Robert A. Hayes