With Particular Lead Geometry Patents (Class 257/692)
  • Patent number: 9165845
    Abstract: Provided is a semiconductor device having a pad on a semiconductor chip, a first passivation film formed over the semiconductor chip and having an opening portion on the pad of a probe region and a coupling region, a second passivation film formed over the pad and the first passivation film and having an opening portion on the pad of the coupling region, and a rewiring layer formed over the coupling region and the second passivation film and electrically coupled to the pad. The pad of the probe region placed on the periphery side of the semiconductor chip relative to the coupling region has a probe mark and the rewiring layer extends from the coupling region to the center side of the semiconductor chip. The present invention provides a technology capable of achieving size reduction, particularly pitch narrowing, of a semiconductor device.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: October 20, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiko Akiba, Bunji Yasumura, Masanao Sato, Hiromi Abe
  • Patent number: 9142521
    Abstract: A method of forming an integrated circuit device includes forming a mask layer overlying an under bump metallurgy (UBM) layer, wherein the mask layer comprises a first portion adjacent to the UBM layer, and a second portion overlying the first portion. The method further includes forming an opening in the mask layer to expose a portion of the UBM layer. The method further includes forming a conductive layer in the opening of the mask layer, electrically connected to the exposed portion of the UBM layer. The method further includes removing the second portion of the mask layer to expose an upper portion of the conductive layer. The method further includes forming a barrier layer on the exposed upper portion of the conductive layer.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: September 22, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Wei Sen Chang
  • Patent number: 9138191
    Abstract: An integrated circuit (IC) module with a lead frame micro-needle for a medical device, and methods of forming the IC module are described. The methods include forming a lead frame blank including a micro-needle integrally formed therein. The micro-needle may be bent beyond an initial lower side of the lead frame blank. The initial lower side may be joined with a protection layer such that the bent micro-needle is embedded in the protection layer, which may be removably attached to the initial lower side and the bent micro-needle. An IC component may be affixed to an upper side of the lead frame blank. The IC component and an upper surface of a core of the lead frame blank may be encapsulated with a molding compound forming a packaging of the IC module. Removal of the protection layer may expose the bent micro-needle projecting away from the packaging.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: September 22, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Kenneth Kaskoun, Rongtian Zhang, Matthew Michael Nowak, Shiqun Gu
  • Patent number: 9136234
    Abstract: When forming sophisticated semiconductor devices including metal pillars arranged on contact pads, which may comprise aluminum, device performance and reliability may be improved by avoiding exposure of the contact pad material to the ambient atmosphere, in particular during and between dicing and packaging processes. To this end, the contact pad material may be covered by a protection layer or may be protected by the metal pillars itself, thereby concurrently improving mechanical stress distribution in the device.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: September 15, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Matthias Lehr, Marcel Wieland, Martin O'Toole
  • Patent number: 9136235
    Abstract: Methods and apparatuses for wafer level packaging (WLP) semiconductor devices are disclosed. A redistribution layer (RDL) is formed on a first passivation layer in contact with a conductive pad over a surface of a die. The RDL layer is on top of a first region of the first passivation layer. A second passivation layer is formed on the RDL layer with an opening to expose the RDL layer, and over the first passivation layer. An under bump metallization (UBM) layer is formed over the second passivation layer in contact with the exposed RDL layer. A second region of the first passivation layer disjoint from the first region is determined by projecting an outer periphery of a solder ball or other connector onto the surface.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: September 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Wei Tu, Yian-Liang Kuo, Tsung-Fu Tsai, Ru-Ying Huang, Ming-Song Sheu, Hsien-Wei Chen
  • Patent number: 9082887
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a semiconductor wafer having a chip pad; attaching a wafer frame to the semiconductor wafer, the wafer frame having a horizontal cover integral to a protruding connector with the protruding connector on the chip pad; forming an underfill around the protruding connector and between the horizontal cover and the semiconductor wafer; removing the horizontal cover exposing the underfill and the protruding connector; and singulating an integrated circuit package from the semiconductor wafer.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: July 14, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: DaeSik Choi, Taewoo Lee, KyuWon Lee, SungWon Cho
  • Patent number: 9079761
    Abstract: A stacked semiconductor device includes a CMOS device and a MEMS device. The CMOS device includes a multilayer interconnect with metal elements disposed over the multilayer interconnect. The MEMS device includes metal sections with a first dielectric layer disposed over the metal sections. A cavity in the first dielectric layer exposes portions of the metal sections. A dielectric stop layer is disposed at least over the interior surface of the cavity. A movable structure is disposed over a front surface of the first dielectric layer and suspending over the cavity. The movable structure includes a second dielectric layer over the front surface of the first dielectric layer and suspending over the cavity, metal features over the second dielectric layer, and a flexible dielectric membrane over the metal features. The CMOS device is bonded to the MEMS device with the metal elements toward the flexible dielectric membrane.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: July 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng
  • Patent number: 9070675
    Abstract: A plating structure for wafer level packages are disclosed and may include a semiconductor wafer comprising a plurality of semiconductor die and a plating structure for forming an under bump metal on redistribution layers on the plurality of semiconductor die. The plating structure may comprise a plating connection line around a periphery of the semiconductor wafer, and a plating bar coupling the plating connection line to plating traces on the plurality of semiconductor die. The plating traces may be electrically coupled to the redistribution layers on the plurality of semiconductor die. The semiconductor wafer may comprise a reconstituted wafer of said semiconductor die. The semiconductor wafer may comprise a wafer prior to singulating the plurality of semiconductor die. The plating bar may be located in a sawing line for the singulating of the plurality of semiconductor die. A passivation layer may cover the redistribution layer and the plating traces.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: June 30, 2015
    Assignee: Amkor Technology, Inc.
    Inventors: Kwang Sup So, No Sun Park
  • Patent number: 9064855
    Abstract: A semiconductor device in which a semiconductor chip, a lead frame and metal wires for electrically connecting the lead frame are sealed with sealing resin. The lead frame has a plurality of lead terminal portions, a supporting portion for supporting the semiconductor chip, and hanging lead portions supporting the supporting portion. Each of the lead terminal portions adjacent to the hanging lead portion is a chamfered lead terminal portion having, at its head, a chamfered portion formed substantially in parallel with the hanging lead portion so as to avoid interference with the hanging lead portion.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: June 23, 2015
    Assignee: ROHM CO., LTD.
    Inventor: Kazutaka Shibata
  • Patent number: 9066453
    Abstract: A power electronic system including a casing encapsulating a circuit board and multiple power electronic components mounted to a first broad face of the circuit board. The casing includes a case body, a first lid, and a second lid. The case body includes a cooling channel region including a cooling plate having a first and second broad face, cooling features extending from the cooling plate first broad face, and a cooling block extending from the cooling plate second broad face. The case body further includes a first access gap defined through the case body. The circuit board is mounted to the casing with the first broad face proximal the cooling plate second broad face. The power electronic system additionally includes a connector that extends from the case exterior to connect to the circuit board first broad face, wherein connector connection is facilitated by the first access gap.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: June 23, 2015
    Assignee: Mission Motor Company
    Inventors: Jon Wagner, Geoff Nichols
  • Patent number: 9059127
    Abstract: Packages for a three-dimensional die stack, methods for fabricating a package for a three-dimensional die stack, and methods for distributing power in a package for a three-dimensional die stack. The package may include a first lid, a second lid, a die stack located between the first lid and the second lid, a first thermal interface material layer between the first lid and a first die of the die stack, and a second thermal interface material layer between the second lid and the second die of the die stack. The second thermal interface material layer is comprised of a thermal interface material having a high electrical conductivity and a high thermal conductivity.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Mark C. Lamorey, Janak G. Patel, Peter Slota, Jr., David B. Stone
  • Patent number: 9055701
    Abstract: An improved alignment precision of Micro-Electromechanical Systems (MEMS). A method includes two parts of MEMS separated by at least one rolling element having a first diameter, where the rolling element is maintained on one of the two parts using a thermally dissipative material, horizontally aligning the two parts by pivoting one of the two parts about the rolling element, and locking the two parts together.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 9, 2015
    Assignee: International Business Machines Corporation
    Inventors: Stefano S. Oggioni, Michel Despont, Mark Lantz, Thomas Albrecht
  • Publication number: 20150145114
    Abstract: A method and apparatus are provided for manufacturing a lead frame based thermally enhanced package (9) with exposed heat spreader lid array (96) designed to be optimized for compression mold encapsulation of an integrated circuit die (94) by including a perimeter reservoir regions (97r) in each heat spreader lid (96) for movement of mold compound (98) displaced during the mold compression process.
    Type: Application
    Filed: December 4, 2014
    Publication date: May 28, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventor: Leo M. Higgins, III
  • Patent number: 9041182
    Abstract: A semiconductor package according to embodiments includes: a semiconductor chip including a front electrode on a front surface thereof and a back electrode on a back surface thereof; a front-side cap portion including an air gap in a portion between the semiconductor chip and the front-side cap portion and a front-side penetrating electrode, and is positioned to face the front surface of the semiconductor chip; a back-side cap portion bonded with a first cap portion to hermetically seal the semiconductor chip, includes an air gap at least in a portion between the semiconductor chip and the back-side cap portion and a back-side penetrating electrode, and is positioned to face the back surface of the semiconductor chip; a front-side connecting portion which electrically connects the front electrode and the front-side penetrating electrode; and a back-side connecting portion which electrically connects the back electrode and the back-side penetrating electrode.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: May 26, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagano, Kazuhide Abe, Hiroshi Yamada, Kazuhiko Itaya, Taihei Nakada
  • Patent number: 9040359
    Abstract: A method for fabricating a molded interposer package includes performing a first anisotropic etching process to remove a portion of the metal sheet from a top surface of the metal sheet, thereby forming a plurality of first recesses in the metal sheet, forming a molding material covering the top surface, filling the first recesses, forming a plurality of first via openings in the molding material, wherein the first via openings expose the top surface, forming a plurality of first metal vias in the first via openings and a plurality of first redistribution layer patterns respectively on the first metal vias, performing a second anisotropic etching process to remove a portion of the metal sheet from a bottom surface of the metal sheet until a bottom of the molding material is exposed, and forming a solder mask layer on the molding material, leaving the first redistribution layer patterns exposed.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: May 26, 2015
    Assignee: MEDIATEK INC.
    Inventors: Thomas Matthew Gregorich, Andrew C. Chang, Tzu-Hung Lin
  • Patent number: 9040388
    Abstract: A patterned adhesive layer including holes is employed to attach a coreless substrate layer to a stiffener. The patterned adhesive layer is confined to kerf regions, which are subsequently removed during singulation. Each hole in the patterned adhesive layer has an area that is greater than the area of a bottomside interconnect footprint of the coreless substrate. The patterned adhesive layer may include a permanent adhesive that is thermally curable or ultraviolet-curable. The composition of the stiffener can be tailored so that the thermal coefficient of expansion of the stiffener provides tensile stress to the coreless substrate layer at room temperature and at the bonding temperature. The tensile stress applied to the coreless substrate layer prevents or reduces warpage of the coreless substrate layer during bonding. Upon dicing, bonded stacks of a semiconductor chip and a coreless substrate can be provided without adhesive thereupon.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: May 26, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Edmund Blackshear
  • Patent number: 9041185
    Abstract: A semiconductor device includes a substrate, a first land formed in a first surface of the substrate, a second land formed in a second surface of the substrate, a first terminal coupled to the second land, a line coupled to the first land and the second land, a second terminal formed in the second surface of the substrate and a branch line coupled to the line and the second terminal. The second terminal is coupled to the first land and the second land and is not coupled to other lands in the first surface. The second surface is different surface from the first surface.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: May 26, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Naoto Akiyama, Toshiaki Umeshima
  • Publication number: 20150137342
    Abstract: An integrated circuit package includes an integrated circuit and an interposer layer. The interposer layer is arranged above the integrated circuit and includes an inductor formed at least partially within the interposer layer. The inductor includes a first pair of conductive pillars including a first conductive pillar and a second conductive pillar formed within a first via and a second via, respectively. The first via and the second via are formed through the interposer layer. The inductor further includes a first conductive trace connected across first ends of the first conductive pillar and the second conductive pillar on a first surface of the interposer layer, and a first conductive interconnect structure connected between second ends of the first conductive pillar and the second conductive pillar and the integrated circuit.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 21, 2015
    Inventor: Sehat Sutardja
  • Publication number: 20150137341
    Abstract: A chip package including a first substrate having a first surface and a second surface opposite thereto is provided. The first substrate has a micro-electric element and a plurality of conducting pads adjacent to the first surface. The first substrate has a plurality of openings respectively exposing a portion of each conducting pad. A second substrate is disposed on the first surface. An encapsulation layer is disposed on the first surface and covers the second substrate. A redistribution layer is disposed on the second surface and extends into the openings to electrically connect the conducting pads.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 21, 2015
    Inventors: Chien-Hung LIU, Ying-Nan WEN
  • Patent number: 9035437
    Abstract: Packaged chips comprising non-integer lead pitches, systems and methods for manufacturing packaged chips are disclosed. In one embodiment a packaged device includes a first chip, a package encapsulating the first chip and a plurality of leads protruding from the package, wherein the plurality of leads comprises differing non-integer multiple lead pitches.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 19, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Otremba, Guenther Lohmann, Josef Hoeglauer, Teck Sim Lee, Matteo-Alessandro Kutschak, Wolfgang Peinhopf
  • Patent number: 9035439
    Abstract: The present embodiments provide surface mount devices and/or systems. In some embodiments, the surface mount devices comprise a casing having a recess formed extending at least partially into said casing; and first and second leads each of which is at least partially encased by said casing and each of which has a portion exposed through said recess, wherein at least one of said first and second leads has one or more size reduction features in its said exposed portion that reduces the surface area to provide an increased surface bonding area to said casing around said lead.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: May 19, 2015
    Assignee: Cree Huizhou Solid State Lighting Company Limited
    Inventors: Wong Xuan, Xie Jian Hui, Cheng Siu Cheong
  • Patent number: 9030001
    Abstract: A method of making an assembly includes the steps of applying metallic nanoparticles to exposed surfaces of conductive elements of either of or both of a first component and a second component, juxtaposing the conductive elements of the first component with the conductive elements of the second component with the metallic nanoparticles disposed therebetween, and elevating a temperature at least at interfaces of the juxtaposed conductive elements to a joining temperature at which the metallic nanoparticles cause metallurgical joints to form between the juxtaposed conductive elements. The conductive elements of either of or both of the first component and the second component can include substantially rigid posts having top surfaces projecting a height above the surface of the respective component and edge surfaces extending at substantial angles away from the top surfaces thereof.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: May 12, 2015
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba
  • Patent number: 9029894
    Abstract: The present invention relates to a lead frame for an optical semiconductor device including: a lead frame having a first plate part and a second plate part disposed so as to oppose to the first plate part; an optical semiconductor element placed in the second plate part and electrically connected to the second plate part; a wire for electrically connecting the optical semiconductor element and the first plate part to each other; a circumferential reflector formed on the lead frame so as to surround a circumference of the optical semiconductor element; and a transparent resin for encapsulating the optical semiconductor element, filled in a recess formed by the lead frame and an inner periphery of the reflector, in which the lead frame has a contour shape substantially the same as a bottom contour shape of the inner periphery of the reflector for forming the recess.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: May 12, 2015
    Assignee: Nitto Denko Corporation
    Inventor: Kazuhiro Fuke
  • Patent number: 9030000
    Abstract: A semiconductor package has a substrate with a solder mask layer, and upper and lower surfaces. Conductive traces and electrical contacts are formed on the substrate, and vias are formed in the substrate to electrically connect the conductive traces and electrical contacts. A semiconductor die is attached on the upper surface of the substrate. A mold cap is formed on the upper surface of the substrate and covers the die and the conductive traces. The mold cap includes a mold body having clipped corners and extensions that extend from each of the clipped corners. The extensions and clipped corners help prevent package cracking.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: May 12, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Poh Leng Eu, Boon Yew Low, Kai Yun Yow
  • Patent number: 9029903
    Abstract: A light emitting diode package including a package body with a cavity, a plurality of light emitting diode (LED) chips in the cavity, a plurality of wires connected to the plurality of LED chips, and a plurality of lead frames in the package body, wherein the lead frames comprise a first lead frame electrically connected to a first electrode of a first LED chip, a second lead frame electrically connected to a second electrode of the first LED chip and a second electrode of a second LED chip, a third lead frame electrically connected to a first electrode of the second LED chip, and fourth lead frame electrically connected to a second electrode of a third LED chip. Further, ends of the lead frames are exposed outside of the package body and penetrate the package body, and the first electrodes are P electrodes and the second electrodes are N electrodes.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: May 12, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventor: Won-Jin Son
  • Patent number: 9029983
    Abstract: In one embodiment, a chip comprises a capacitor and a resistor. The capacitor comprises a first capacitor terminal, a second capacitor terminal, and a dielectric layer between the first and second capacitor terminals. The second capacitor terminal and the resistor are both fabricated from a resistor metal layer.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: May 12, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Xiangdong Chen, Haining Yang
  • Patent number: 9024431
    Abstract: A system and method for forming a semiconductor die contact structure is disclosed. An embodiment comprises a top level metal contact, such as copper, with a thickness large enough to act as a buffer for underlying low-k, extremely low-k, or ultra low-k dielectric layers. A contact pad or post-passivation interconnect may be formed over the top level metal contact, and a copper pillar or solder bump may be formed to be in electrical connection with the top level metal contact.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Shi Liu, Chen-Hua Yu
  • Patent number: 9018749
    Abstract: Described herein is a stacked package using laser direct structuring. The stacked package includes a die attached to a substrate. The die is encapsulated with a laser direct structuring mold material. The laser direct structuring mold material is laser activated to form circuit traces on the top and side surfaces of the laser direct structuring mold material. The circuit traces then undergo metallization. A package is then attached to the metalized circuit traces and is electrically connected to the substrate via the metalized circuit traces.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: April 28, 2015
    Assignee: Flextronics AP, LLC
    Inventors: Samuel Tam, Bryan Lee Sik Pong, Dick Pang
  • Patent number: 9018768
    Abstract: A semiconductor device includes a circuit pattern over a first surface of a substrate, an insulating interlayer covering the circuit pattern, a TSV structure filling a via hole through the insulating interlayer and the substrate, an insulation layer structure on an inner wall of the via hole and on a top surface of the insulating interlayer, a buffer layer on the TSV structure and the insulation layer structure, a conductive structure through the insulation layer structure and a portion of the insulating interlayer to be electrically connected to the circuit pattern, a contact pad onto a bottom of the TSV structure, and a protective layer structure on a second surface the substrate to surround the contact pad.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: April 28, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-lyul Park, Gil-heyun Choi, Suk-chul Bang, Kwang-jin Moon, Dong-chan Lim, Deok-young Jung
  • Patent number: 9006911
    Abstract: A method for forming patterns of dense conductor lines and their contact pads is described. Parallel base line patterns are formed over a substrate. Each of the base line patterns is trimmed. Derivative line patterns and derivative transverse patterns are formed as spaces on the sidewalls of the trimmed base line patterns, wherein the derivative transverse patterns are formed between the ends of the derivative line patterns and adjacent to the ends of the trimmed base line patterns. The trimmed base line patterns are removed. At least end portions of the derivative line patterns are removed, such that the derivative line patterns are separated from each other and all or portions of the derivative transverse patterns become patterns of contact pads each connected with a derivative line pattern.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: April 14, 2015
    Assignee: Nanya Technology Corporation
    Inventors: Jonathan Doebler, Scott Sills
  • Patent number: 9000579
    Abstract: An integrated circuit package system includes a substrate having an opening provided therein, forming a conductor in the opening having a closed end at the bottom, attaching an integrated circuit die over the substrate, and connecting a die interconnect to the integrated circuit die and the closed end of the conductor.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 7, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Il Kwon Shim, Dario S. Filoteo, Jr., Emmanuel Espiritu, Rachel Layda Abinan
  • Patent number: 9000576
    Abstract: The invention discloses a package structure for better heat-dissipation or EMI performance. A first conductive element and a second conductive element are both disposed between the top lead frame and the bottom lead frame. The first terminal of the first conductive element is electrically connected to the bottom lead frame, and the second terminal of the first conductive element is electrically connected to the top lead frame. The third terminal of the second conductive element is electrically connected to the bottom lead frame, and the fourth terminal of the second conductive element is electrically connected to the top lead frame. In one embodiment, a heat dissipation device is disposed on the top lead frame. In one embodiment, the molding compound is provided such that the outer leads of the top lead frame are exposed outside the molding compound.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: April 7, 2015
    Assignee: Cyntec Co., Ltd.
    Inventors: Han-Hsiang Lee, Yi-Cheng Lin, Da-Jung Chen
  • Patent number: 9000571
    Abstract: An SMT LED device includes an LED and a circuit board carrying the LED. The circuit board has two copper pads thereon, each being provided with a solder on an inner later side thereof which faces the other copper pad. The LED includes two pins and each pin includes a horizontal protrusion and a vertical portion. The LED is mounted on the circuit board between the two copper pads. The solders securely and electrically connect the two pins of the LED with the circuit board.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: April 7, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chih-Chen Lai
  • Patent number: 8994157
    Abstract: A circuit packaging system allows a combination of integrated circuit dice and surface mount electronic components to be mounted on a printed circuit board which is in turn mounted on a lead frame and encapsulated, thus providing an environmentally sealed package which is manufactured using standard circuit fabrication methods and machinery.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: March 31, 2015
    Assignee: Scientific Components Corporation
    Inventor: Kelvin K. Kiew
  • Patent number: 8994161
    Abstract: Some embodiments have a semiconductor chip supported above a substrate, a filler layer encapsulating the semiconductor chip, a heat sink; and through contacts extending upwardly from the substrate nearly to an upper surface of the filler layer. In some embodiments of electronic packages, the through contacts separated from the heat sink by a trench cut into the upper surface of the filler layer, the through contacts intersecting one wall of the trench and the heat sink intersecting the other wall of the trench an electronic semiconductor package. A method of forming the package and a lead frame are also disclosed.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: March 31, 2015
    Assignee: Infineon Technologies AG
    Inventors: Michael Ahr, Bakuri Lanchava
  • Patent number: 8994158
    Abstract: Semiconductor packages having lead frames include a lead frame, which supports a semiconductor chip and is electrically connected to the semiconductor chip by bonding wires, and a molding layer encapsulating the semiconductor chip. The lead frame includes first lead frames extending in a first direction and second lead frames extending in a second direction. The first lead frames may run across the semiconductor chip and support the semiconductor chip and the second lead frames may run across the bottom surface of the semiconductor chip.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 31, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Do-Hyun Kim, Won-young Kim
  • Patent number: 8994164
    Abstract: A semiconductor device includes an insulating substrate having a semiconductor element mounted thereon; an outer case accommodating the insulating substrate; and a metallic terminal bar disposed above the insulating substrate and fixed to side walls of the outer case at both ends thereof. Each of both ends of the terminal bar at a position close to the side wall of the outer case at a surface on an opposite side to a surface facing the insulating substrate is provided with a pressed groove.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 31, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Hideaki Takahashi, Tatsuya Karasawa, Yo Sakamoto
  • Patent number: 8987890
    Abstract: A flexible chip set encapsulation structure includes a chip set. The chip set comprises a plurality of spaced chips and a fixing film. The fixing film is adapted to wrap and fix the chips. The fixing film has at least one bending portion at a predetermined position for the fixing film to have flexibility in a predetermined direction. Thus, the flexible chip set encapsulation structure is flexible for bending. When the user wears the flexible chip set, the movement of the user won't be confined. Besides, the chip set is completely attached to the body to provide a comfortable wear, and the chips provide a better far infrared radiation effect.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: March 24, 2015
    Assignee: Ghi Fu Technology Co., Ltd.
    Inventor: Li-Chi Lin
  • Patent number: 8987889
    Abstract: An integrated electromagnetic interference (EMI) shield for a semiconductor module package. The integrated EMI shield includes a plurality of wirebond springs electrically connected between a ground plane in the substrate of the package and a conductive layer printed on the top of the package mold compound. The wirebond springs have a defined shape that causes a spring effect to provide contact electrical connection between the tops of the wirebond springs and the conductive layer. The wirebond springs can be positioned anywhere in the module package, around all or some of the devices included in the package, to create a complete EMI shield around those devices.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: March 24, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Patrick Lawrence Welch, Yifan Guo
  • Patent number: 8987888
    Abstract: Disclosed herein is a semiconductor package including: a semiconductor chip having a bonding pad; and a first substrate including a rerouting layer having short type rerouting patterns electrically connected with the bonding pad and formed to be seamlessly connected with each other and a plurality of open type rerouting patterns separately formed on the same layer as the short type rerouting patterns and connection terminals for signal connection each formed on the open type rerouting patterns.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Mi Jin Park, Christian Romero, Seung Wook Park
  • Patent number: 8987877
    Abstract: A semiconductor device of the present invention comprises: an outer package; a first lead frame including a first relay lead, a first die pad with a power element mounted thereon, and a first external connection lead which has an end protruding from the outer package; and a second lead frame including a second relay lead, a second die pad with a control element mounted thereon, and a second external connection lead which has an end protruding from the outer package, wherein the first die pad and the second die pad or the first external connection lead and the second relay lead are joined to each other at a joint portion, and an end of the second relay lead extending from a joint portion with the first relay lead is located inside the outer package.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: March 24, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masanori Minamio, Zyunya Tanaka, Shin-ichi Ijima
  • Patent number: 8987875
    Abstract: An assembly for packaging one or more electronic devices in die form. The assembly includes substrates on opposite sides of the assembly, with lead frames between the electronic devices and the substrates. The substrates, lead frames, and electronic devices are sintered together using silver-based sintering paste between each layer. The material and thicknesses of the substrates and lead frames are selected so stress experienced by the electronic devices caused by changes in temperature of the assembly are balanced from the center of the assembly, thereby eliminating the need for balancing stresses at a substrate level by applying substantially matching metal layers to both sides of the substrates.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 24, 2015
    Assignee: Delphi Technologies, Inc.
    Inventors: Carl W. Berlin, Gary L. Eesley
  • Patent number: 8987912
    Abstract: A semiconductor device includes a substrate having a conductor; a semiconductor chip disposed on the substrate and electrically connected to the conductor; a tubular electrode having one end electrically connected to the conductor; and a sealing resin sealing the substrate, the semiconductor chip and the electrode. The electrode is configured to be extendable and contractible in the stacking direction in which the substrate and the semiconductor chip are stacked in the state before sealing of the sealing resin. The edge of the other end of the electrode is exposed from the sealing resin. The electrode has a hollow space opened at the edge of the other end. Therefore, a semiconductor device reduced in size and a method of manufacturing this semiconductor device can be provided.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: March 24, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoshihiro Yamaguchi
  • Patent number: 8981551
    Abstract: A semiconductor device may include at least one pad adjacent a top surface of the device, and a metal crack stop structure below the at least one pad. The metal crack structure may have an inner envelope and an outer envelope, and may be configured to be vertically aligned with the at least one pad so that an edge of the at least one pad is between the inner and outer envelopes.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: March 17, 2015
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Philippe Delpech, Eric Sabouret, Sebastien Gallois-Garreignot
  • Patent number: 8981539
    Abstract: A power semiconductor device comprises a lead frame unit, a control die, a first MOSFET die and a second MOSFET die, wherein the lead frame unit comprises at least a die paddle for mounting the first and second MOSFET dies, a first pin and a second pin for connecting to top electrodes of the first and second MOSFET dies, a first row of carrier pins and a second row of carrier pins disposed in-line with the first and second pins respectively for the control die to mount thereon.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Hamza Yilmaz
  • Patent number: 8981540
    Abstract: A package structure is disclosed, which includes: a carrier having a recessed portion formed on a lower side thereof and filled with a dielectric material; a semiconductor element disposed on an upper side of the carrier and electrically connected to the carrier; and an encapsulant formed on the upper side of the carrier for encapsulating the semiconductor element. Therein, the dielectric material is exposed from the encapsulant. As such, when the carrier is disposed on a circuit board, the dielectric material is sandwiched between the lower side of the carrier and the circuit board to form a decoupling capacitor, thereby improving the power integrity.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: March 17, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Cheng-Yu Chiang, Wen-Jung Chiang, Hsing-Hung Lee
  • Patent number: 8975738
    Abstract: A structure may include a spacer element overlying a first portion of a first surface of a substrate; first terminals at a second surface of the substrate opposite the first surface; and second terminals overlying a third surface of the spacer element facing away from the first surface. Traces extend from the second terminals along an edge surface of the spacer element that extends from the third surface towards the first surface, and may be electrically coupled between the second terminals and the first terminals or electrically conductive elements at the first surface. The spacer element may at least partially define a second portion of the first surface, which is other than the first portion and has an area sized to accommodate an entire area of a microelectronic element. Some of the conductive elements are at the second portion and may permit connection with such microelectronic element.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: March 10, 2015
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed
  • Patent number: 8975739
    Abstract: The invention provides an electronic device package and method for manufacturing thereof. The electronic device package includes a substrate, an electronic chip, a bonding pad, a first passivation layer, a conductive layer, a second passivation layer, and a solder ball. The conductive layer has a first side end and a second side end, and the solder ball is positioned on the first side end of the conductive layer. The second passivation layer contacts with both the upper surface and the sidewall of the second side end of the conductive layer, and the first passivation layer contacts with the lower surface of the second side end of the conductive layer, so as to completely encapsulate the second end of the conductive layer. The electronic device package accordingly prevents the moisture penetration and to enhance the reliability of the electronic device.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 10, 2015
    Assignee: Xintec Inc.
    Inventor: Ming-Chung Chung
  • Patent number: 8975752
    Abstract: A multiple access Proximity Communication system in which electrical elements on an integrated circuit chip provide the multiplexing of multiple signals to a single electrical receiving element on another chip. Multiple pads formed on one chip and receiving separate signals may be capacitively coupled to one large pad on the other chip. Multiple inductive coils on one chip may be magnetically coupled to one large coil on another chip or inductive coils on three or more chips may be used for either transmitting or receiving. The multiplexing may be based on time, frequency, or code.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: March 10, 2015
    Assignee: Oracle America, Inc.
    Inventors: Alex Chow, R. David Hopkins, Robert J. Drost
  • Publication number: 20150061102
    Abstract: An electronic device package and fabrication method thereof is provided. First, a semiconductor substrate is provided and the upper surface of it is etched to from recesses. A first isolation layer is formed on the upper surface and the sidewalls of the recesses. A conductive part is formed to fulfill the recesses and a conductive pad is formed on the first isolation layer to connect the conductive part. An electronic device is combined with the semiconductor substrate on the supper surface, wherein the electronic device has a connecting pad electrically connected to the conductive pad. The semiconductor substrate is thinned form its lower surface to expose the conductive part. A second isolation layer is formed below the lower surface and has an opening to expose the conductive part. A redistribution metal line is formed below the second isolation layer and in the opening to electrically connect to the conductive part.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Inventors: Chia-Sheng LIN, Yen-Shih HO, Tsang-Yu LIU