Magnetic Nonvolatile Memory Structures, E.g., Mram (epo) Patents (Class 257/E21.665)
  • Patent number: 9490164
    Abstract: In one aspect, a method for forming a contact to a device is provided which includes the steps of: forming a conformal etch stop layer surrounding the device; forming a dielectric layer over and covering the device; forming a contact trench in the dielectric layer, wherein the contact trench is present over the device and extends down to, or beyond, the etch stop layer; exposing a contact region of the device within the contact trench by selectively removing a portion of the etch stop layer covering a top portion of the device; and filling the contact trench with a conductive material to form the contact to the device. Other methods for forming a contact to a device and also to BEOL wiring are provided as are device contact structures.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: November 8, 2016
    Assignee: International Business Machines Corporation
    Inventors: Sebastian U. Engelmann, Steve J. Holmes, Qinghuang Lin, Nathan P. Marchack, Eugene J. O'Sullivan
  • Patent number: 9490421
    Abstract: A method and system provide a magnetic junction usable in a magnetic device and which resides on a substrate. The magnetic junction includes a reference layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the reference layer and the free layer. The free layer, the nonmagnetic spacer layer and the reference layer form nonzero angle(s) with the substrate. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: November 8, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy, Vladimir Nikitin, Steven M. Watts
  • Patent number: 9484208
    Abstract: The present invention discloses a preparation method of a germanium-based Schottky junction, comprising, cleaning a surface of N-type germanium-based substrate, then depositing a layer of CeO2 on the surface, and further depositing a layer of metal. The stability Ce—O—Ge bonds can be formed at the interface after rare earth oxides CeO2 are in contact with the germanium substrate, and this is beneficial to reduce the interface state density, improve the quality of the interface, and reduce the MIGS and suppress Fermi-level pinning. Meanwhile, the tunneling resistance introduced by CeO2 between the metal and the germanium substrate is smaller relative to the case of Si3N4, Al2O3, Ge3N4 or the like. In view of the excellent surface characteristics and small conduction band offset relative to the germanium substrate, interposing of the CeO2 dielectric layer is applicable to the preparation the germanium-based Schottky junction having a low resistivity.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 1, 2016
    Assignee: Peking University
    Inventors: Ru Huang, Meng Lin, Zhiqiang Li, Xia An, Ming Li, Quanxin Yun, Min Li, Pengqiang Liu, Xing Zhang
  • Patent number: 9484348
    Abstract: Source/drain contact structures with increased contact areas for a multiple fin-based complementary metal oxide semiconductor field effect transistor (CMOSFET) having unmerged epitaxial source/drain regions and methods for forming such source/drain contact structures are provided by forming wrap-around source/drain contact structures for both n-type FinFETs and p-type FinFETs. Each of first source/drain contact structures for the n-type FinFETs includes at least one first conductive plug encapsulating epitaxial first source/drain regions on one side of a gate structure, while each of second source/drain contact structures for the p-type FinFETs includes at least a contact metal layer portion encapsulating epitaxial second source/drain regions on one side of the gate structure, and a second conductive plug located over a top surface of the contact metal layer portion.
    Type: Grant
    Filed: October 3, 2015
    Date of Patent: November 1, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Ali Khakifirooz
  • Patent number: 9478239
    Abstract: Implementations disclosed herein include a reader comprising a magnetically free layer and first barrier layer, wherein the barrier layer is in direct contact with a bottom shield in a down-track direction. Another implementation includes a device comprising a sensor stack comprising a free layer and a barrier layer; a synthetic antiferromagnetic shield layer comprising a reference layer and a pinned layer, wherein direction of magnetization of the reference layer forms an obtuse angle with direction of magnetization of the free layer in a quiescent state.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: October 25, 2016
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Victor Boris Sapozhnikov, Mohammed Sharia Ullah Patwari
  • Patent number: 9431601
    Abstract: Magnetic element including a first magnetic layer having a first magnetization; a second magnetic layer having a second magnetization; a tunnel barrier layer between the first and the second magnetic layers; and an antiferromagnetic layer exchanged coupling the second magnetic layer such that the second magnetization is pinned below a critical temperature of the antiferromagnetic layer, and can be freely varied when the antiferromagnetic layer is heated above that critical temperature. The magnetic element also includes an oxygen gettering layer between the second magnetic layer and the antiferromagnetic layer, or within the second magnetic layer. The magnetic element has reduced insertion of oxygen atoms in the antiferromagnetic layer and possibly reduced diffusion of manganese in the second magnetic layer resulting in an enhanced exchange bias and/or enhanced resistance to temperature cycles and improved life-time.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: August 30, 2016
    Assignee: CROCUS TECHNOLOGY SA
    Inventors: Sebastien Bandiera, Ioan Lucian Prejbeanu
  • Patent number: 9349772
    Abstract: A method of fabricating an integrated circuit includes depositing a bottom electrode layer, an MTJ layer, and a top electrode layer over a passivation layer and within a trench of the passivation layer and removing portions of the MTJ layer and the top electrode layer to form an MTJ/top electrode stack over the bottom electrode layer and at least partially within portions of the trench having being reopened by said removing. The method further includes forming a further passivation layer over the MTJ/top electrode stack, forming a further ILD layer of the further passivation layer, and reforming a top electrode layer over the ILD layer and over the MTJ/top electrode stack. Still further, the method includes removing portions of the bottom electrode layer, the further passivation layer, the further ILD layer, and the re-formed top electrode layer to form a bottom electrode/MTJ/top electrode stack.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 24, 2016
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Wanbing Yi, Yang Hong, Yi Jiang, Francis Poh, Tze Ho Simon Chan, Juan Boon Tan
  • Patent number: 9337415
    Abstract: A magnetic tunnel junction (MTJ) for use in a magnetoresistive random access memory (MRAM) has a CoFeB alloy free layer located between the MgO tunnel barrier layer and an upper MgO capping layer, and a CoFeB alloy enhancement layer between the MgO capping layer and a Ta cap. The CoFeB alloy free layer has high Fe content to induce perpendicular magnetic anisotropy (PMA) at the interfaces with the MgO layers. To avoid creating unnecessary PMA in the enhancement layer due to its interface with the MgO capping layer, the enhancement layer has low Fe content. After all of the layers have been deposited on the substrate, the structure is annealed to crystallize the MgO. The CoFeB alloy enhancement layer inhibits diffusion of Ta from the Ta cap layer into the MgO capping layer and creates good crystallinity of the MgO by providing CoFeB at the MgO interface.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: May 10, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Sangmun Oh, Zheng Gao, Kochan Ju
  • Patent number: 9299746
    Abstract: The present disclosure provides a memory cell that includes a resistive memory element disposed between a first conductor and a second conductor, the first conductor and the second conductor configured to activate the resistive memory element. The memory cell also includes a backward diode disposed in series with the memory element between the memory element and either the first conductor or the second conductor.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: March 29, 2016
    Assignee: Hewlett-Packard Enterprise Development LP
    Inventors: Gilberto M. Ribeiro, Janice H. Nickel
  • Patent number: 9276200
    Abstract: A magnetic sensor includes a plurality of groups, each group comprising a plurality of magnetic tunnel junction (MTJ) devices having a plurality of conductors configured to couple the MTJ devices within one group in parallel and the groups in series enabling independent optimization of the material resistance area (RA) of the MTJ and setting total device resistance so that the total bridge resistance is not so high that Johnson noise becomes a signal limiting concern, and yet not so low that CMOS elements may diminish the read signal. Alternatively, the magnetic tunnel junction devices within each of at least two groups in series and the at least two groups in parallel resulting in the individual configuration of the electrical connection path and the magnetic reference direction of the reference layer, leading to independent optimization of both functions, and more freedom in device design and layout.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: March 1, 2016
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Phillip Mather, Jon Slaughter, Nicholas Rizzo
  • Patent number: 9023662
    Abstract: A spintronic device and a method for making said spintronic device. The spintronic device includes an epitaxial crystalline ferromagnetic oxide formed directly on the semiconductor material thereby allowing spin-polarized current to be efficiently injected from the ferromagnetic oxide into the semiconductor material. A host crystal lattice includes multiple sets of stacked oxide layers of material A and B of a perovskite structure with a formula of ABO3. After an oxide layer of B is grown, magnetic ions are introduced to intermix with the B material, which may replace some of the ions of the B material. The process of growing additional stacked oxide layers of material A and B and introducing further magnetic ions after the deposition of the oxide layer of B continues until enough magnetic ions are sufficiently close to one another that they align in the same direction thereby forming a ferromagnetic oxide on the semiconductor material.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 5, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Alexander A. Demkov, Agham-Bayan S. Posadas
  • Patent number: 9006849
    Abstract: This invention comprises a method to make small MTJ element using hybrid etching and oxygen plasma immersion ion implantation. The method has no removal of the magnetic free layer (or memory layer) and hence prevents any possible physical damage near the free layer edges. After photolithography patterning, alternative Ta, Ru, Ta etchings are performed before it stops on an MgO intermediate layer above the free layer. Then an oxygen plasma immersion ion implantation is performed to completely oxidize the exposed portion of the free layer, leaving the hard mask covered portion unchanged which define the lateral width of the MTJ element.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: April 14, 2015
    Inventor: Yimin Guo
  • Patent number: 9006848
    Abstract: A nonvolatile magnetic memory device using a magnetic tunneling junction (MTJ) uses as a data storage unit an MTJ including a pinned magnetic layer, a nonmagnetic insulating layer, and a free magnetic layer which are sequentially stacked. The free magnetic layer includes at least one soft magnetic amorphous alloy layer in which zirconium (Zr) is added to a soft magnetic material formed of cobalt (Co) or a Co-based alloy.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: April 14, 2015
    Assignees: SK Hynix Inc., Industry-University Cooperation Foundation Hanyang Univerity
    Inventor: Wan Jun Park
  • Patent number: 8994130
    Abstract: A magnetic memory element includes: a first magnetization free layer formed of a ferromagnetic material having perpendicular magnetic anisotropy; a second magnetization free layer provided near the first magnetization free layer and formed of a ferromagnetic material having in-plane magnetic anisotropy; a reference layer formed of a ferromagnetic material having in-plane magnetic anisotropy; and a non-magnetic layer provided between the second magnetization free layer and the reference layer. The first magnetization free layer includes: a first magnetization fixed region of which magnetization is fixed, a second magnetization fixed region of which magnetization is fixed, and a magnetization free region which is connected to the first magnetization fixed region and the second magnetization fixed region, and of which magnetization can be switched. The second magnetization free layer is included in the first magnetization free layer in a plane parallel to a substrate.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: March 31, 2015
    Assignee: NEC Corporation
    Inventors: Shunsuke Fukami, Tetsuhiro Suzuki, Kiyokazu Nagahara, Nobuyuki Ishiwata, Norikazu Ohshima
  • Patent number: 8993351
    Abstract: [Object] To provide a method of manufacturing a perpendicular magnetization-type magnetic element, which does not need a step of depositing MgO. [Solving Means] The method of manufacturing a magnetoresistive element 1 according to the present invention includes laminating a first layer 30 on a base 10, the first layer 30 including a material containing at least one of Co, Ni, and Fe. Next, a second layer 40 is laminated on the first layer 30, the second layer 40 including Mg. Next, the Mg in the second layer 40 is oxidized to form MgO by applying an oxidation treatment to a laminated body including the first layer 30 and the second layer 40. Next, the second layer 40 is crystallized by applying a heat treatment to the laminated body, and the first layer 30 is caused to be perpendicularly magnetized. According to the manufacturing method, it is possible to manufacture a perpendicular magnetization-type CoFeB—MgO magnetic element without causing a problem arising from the deposition of MgO.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: March 31, 2015
    Assignees: Tohoku University, Ulvac, Inc.
    Inventors: Hiroki Yamamoto, Tadashi Morita, Hideo Ohno, Shoji Ikeda
  • Patent number: 8987006
    Abstract: A magnetic junction usable in a magnetic memory and a method for providing the magnetic memory are described. The method includes providing a pinned layer, providing an engineered nonmagnetic tunneling barrier layer, and providing a free layer. The pinned layer and the free layer each include at least one ferromagnetic layer. The engineered nonmagnetic tunneling barrier layer has a tuned resistance area product. In some aspects, the step of providing the engineered nonmagnetic tunneling barrier layer further includes radio-frequency depositing a first oxide layer, depositing a metal layer, and oxidizing the metal layer to provide a second oxide.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kiseok Moon, Xueti Tang, Mohamad Towfik Krounbi
  • Patent number: 8981502
    Abstract: Methods for forming a magnetic tunnel junction (MTJ) storage element and MTJ storage elements formed are disclosed. The MTJ storage element includes a MTJ stack having a pinned layer stack, a barrier layer and a free layer. An adjusting layer is formed on the free layer, such that the free layer is protected from process related damages. A top electrode is formed on the adjusting layer and the adjusting layer and the free layer are etched utilizing the top electrode as a mask. A spacer layer is then formed, encapsulating the top electrode, the adjusting layer and the free layer. The spacer layer and the remaining portions of the MTJ stack are etched. A protective covering layer is deposited over the spacer layer and the MTJ stack.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: March 17, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Wei-Chuan Chen, Seung H. Kang
  • Patent number: 8980649
    Abstract: In accordance with a method of the present invention, a method of manufacturing a magnetic random access memory (MRAM) cell and a corresponding structure thereof are disclosed to include a multi-stage manufacturing process. The multi-stage manufacturing process includes performing a front end on-line (FEOL) stage to manufacture logic and non-magnetic portions of the memory cell by forming an intermediate interlayer dielectric (ILD) layer, forming intermediate metal pillars embedded in the intermediate ILD layer, depositing a conductive metal cap on top of the intermediate ILD layer and the metal pillars, performing magnetic fabrication stage to make a magnetic material portion of the memory cell being manufactured, and performing back end on-line (BEOL) stage to make metal and contacts of the memory cell being manufactured.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: March 17, 2015
    Assignee: Avalanche Technology, Inc.
    Inventors: Rajiv Yadav Ranjan, Parviz Keshtbod, Roger Klas Malmhall
  • Patent number: 8981505
    Abstract: A MTJ is disclosed with a discontinuous Mg or Mg alloy layer having a thickness from 1 to 3 Angstroms between a free layer and a capping layer in a bottom spin valve configuration. It is believed the discontinuous Mg layer serves to block conductive material in the capping layer from diffusing through the free layer and into the tunnel barrier layer thereby preventing the formation of conductive channels that function as electrical shunts within the insulation matrix of the tunnel barrier. As a result, the “low tail” percentage in a plot of magnetoresistive ratio vs Rp is minimized which means the number of high performance MTJ elements in a MTJ array is significantly increased, especially when a high temperature anneal is included in the MTJ fabrication process. The discontinuous layer is formed by a low power physical vapor deposition process.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Takahiro Moriyama, Yu-Jen Wang, Ru-Ying Tong
  • Patent number: 8969983
    Abstract: A memory includes a semiconductor substrate. Cell transistors are on the substrate. Contact plugs each of which is buried between the adjacent cell transistors and electrically connected to a diffusion layer between the adjacent cell transistors. An interlayer dielectric film buries gaps between the contact plugs. A storage element is provided not above the contact plugs but above the interlayer dielectric film. A sidewall film covers a part of a side surface of the storage element, and is provided to overlap with one of the contact plugs as viewed from above a surface of the semiconductor substrate. A lower electrode is provided between a bottom of the storage element and the interlayer dielectric film and between the sidewall film and one of the contact plugs, and electrically connects the storage element to one of the contact plugs.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: March 3, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Kanaya
  • Patent number: 8962493
    Abstract: A manufacturing method to form a memory device includes: (1) forming a dielectric layer adjacent to a magnetic stack; (2) forming an opening in the dielectric layer; (3) applying a hard mask material adjacent to the dielectric layer to form a pillar disposed in the opening of the dielectric layer; and (4) using the pillar as a hard mask, patterning the magnetic stack to form a MRAM cell.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: February 24, 2015
    Assignee: Crocus Technology Inc.
    Inventors: Amitay Levi, Dafna Beery
  • Patent number: 8945949
    Abstract: A method for fabricating a variable resistance memory device in accordance with an embodiment of the present invention includes: sequentially forming a first conductive layer and a variable resistance layer on a substrate; forming stacked structures in which first conductive lines and variable resistance lines are sequentially stacked by selectively etching the variable resistance layer and the first conductive layer; forming an insulating layer to fill a space between the stacked structures; forming a second conductive layer on the insulating layer and the stacked structures; and forming a second conductive line and a variable resistance pattern by etching the second conductive layer and the variable resistance line using mask patterns in a line type extending in a direction intersecting the stacked structures.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: February 3, 2015
    Assignee: SK Hynix Inc.
    Inventor: Sang Min Hwang
  • Patent number: 8928055
    Abstract: According to one embodiment, a magnetic memory element includes a stacked body and a conductive shield. The stacked body includes first and second stacked units. The first stacked unit includes first and second ferromagnetic layers and a first nonmagnetic layer. The first ferromagnetic layer has a fixed magnetization in a first direction. A magnetization direction of the second ferromagnetic layer is variable in a second direction. The first nonmagnetic layer is provided between the first and second ferromagnetic layers. The second stacked unit includes a third ferromagnetic layer stacked with the first stacked unit in a stacking direction of the first stacked unit. A magnetization direction of the third ferromagnetic layer is variable in a third direction. The conductive shield is opposed to at least a part of a side surface of the second stacked unit. An electric potential of the conductive shield is controllable.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 6, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daisuke Saida, Minoru Amano, Junichi Ito
  • Patent number: 8921959
    Abstract: According to an embodiment, a magnetoresistive random access memory (MRAM) device comprises a bottom electrode, a stack, a dielectric material, a dielectric layer, and a conductive material. The bottom electrode is over a substrate, and the stack is over the bottom electrode. The stack comprises a magnetic tunnel junction (MTJ) and a top electrode. The dielectric material is along a sidewall of the stack, and the dielectric material has a height greater than a thickness of the MTJ and less than a stack height. The dielectric layer is over the stack and the dielectric material. The conductive material extends through the dielectric layer to the top electrode of the stack.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Ting Sung, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 8912614
    Abstract: Semiconductor stack structures such as magnetic tunnel junction structures having a magnetic free layer that is grown on composite, obliquely deposited seed layers to induce an increased in-plane magnetic anisotropy Hk of the magnetic free layer. In one aspect, a semiconductor device includes a composite seed layer formed on a substrate, and a magnetic layer formed on the composite seed layer. The composite seed layer includes a first seed layer obliquely formed with an incident angle from a surface normal of the substrate along a first direction of the substrate, and a second seed layer obliquely formed with the incident angle on the first seed layer along a second direction of the substrate, opposite the first direction.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Francesco A. Vetrò, Daniel C. Worledge
  • Patent number: 8912012
    Abstract: A magnetic tunnel junction (MTJ) device and fabrication method is disclosed. In a particular embodiment, a method is disclosed that includes forming a magnetic tunnel junction structure above a bottom electrode. The method also includes forming a diffusion barrier layer above and adjacent to the magnetic tunnel junction structure. The method further includes etching back the diffusion barrier layer, removing the diffusion barrier layer above the magnetic tunnel junction structure. The method also includes connecting a top of the magnetic tunnel junction structure to a conductive layer.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: December 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Seung H. Kang, Xiaochun Zhu
  • Patent number: 8902644
    Abstract: A magnetoresistive element 10 having a memory cell 100 according to the present invention contains a first lower terminal n1 and a second lower terminal n2 respectively connected to both ends of a conductive layer 3 whose longitudinal direction is different from the column direction (X direction). Further, the gates of the first transistors M1 respectively included in two memory cells among the plurality of memory cells 100 and adjacent to each other in a row direction (Y direction) are commonly connected to a first word line 14. As a result, without increase of the cell area, it becomes possible to reserve a margin in the dimension of the cell structure or in the process for MRMA.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: December 2, 2014
    Assignee: NEC Corporation
    Inventors: Noboru Sakimura, Ryusuke Nebashi, Tadahiko Sugibayashi
  • Patent number: 8883520
    Abstract: Methods and structures are described to reduce metallic redeposition material in the memory cells, such as MTJ cells, during pillar etching. One embodiment forms metal studs on top of the landing pads in a dielectric layer that otherwise covers the exposed metal surfaces on the wafer. Another embodiment patterns the MTJ and bottom electrode separately. The bottom electrode mask then covers metal under the bottom electrode. Another embodiment divides the pillar etching process into two phases. The first phase etches down to the lower magnetic layer, then the sidewalls of the barrier layer are covered with a dielectric material which is then vertically etched. The second phase of the etching then patterns the remaining layers. Another embodiment uses a hard mask above the top electrode to etch the MTJ pillar until near the end point of the bottom electrode, deposits a dielectric, then vertically etches the remaining bottom electrode.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: November 11, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Kimihiro Satoh, Dong Ha Jung, Ebrahim Abedifard, Parviz Keshtbod, Yiming Huai, Jing Zhang
  • Patent number: 8871530
    Abstract: A mechanism is provided for a spin torque transfer random access memory device. A tunnel barrier is disposed on a reference layer, and a free layer is disposed on the tunnel barrier. The free layer includes an iron layer as a top part of the free layer. A metal oxide layer is disposed on the iron layer, and a cap layer is disposed on the metal oxide layer.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: October 28, 2014
    Assignee: International Business Machines Corporation
    Inventor: Guohan Hu
  • Patent number: 8866242
    Abstract: A memory device may comprise a magnetic tunnel junction (MTJ) stack, a bottom electrode (BE) layer, and a contact layer. The MTJ stack may include a free layer, a barrier, and a pinned layer. The BE layer may be coupled to the MTJ stack, and encapsulated in a planarized layer. The BE layer may also have a substantial common axis with the MTJ stack. The contact layer may be embedded in the BE layer, and form an interface between the BE layer and the MTJ stack.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: October 21, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Seung H. Kang, Matthew M. Nowak
  • Patent number: 8866244
    Abstract: A semiconductor device includes: a spin torque written in-plane magnetization magnetoresistive element, placed over the main surface of a semiconductor substrate, whose magnetization state can be changed according to the direction of a current flow; and a first wiring electrically coupled with the magnetoresistive element and extended toward the direction along the main surface. The aspect ratio of the magnetoresistive element as viewed in a plane is a value other than 1. In a memory cell area where multiple memory cells in which the magnetoresistive element and a switching element are electrically coupled with each other are arranged, the following measure is taken: multiple magnetoresistive elements adjoining to each other in the direction of length of each magnetoresistive element as viewed in a plane are so arranged that they are not on an identical straight line extended in the direction of length.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: October 21, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Fumihiko Nitta
  • Patent number: 8860104
    Abstract: According to one embodiment, a semiconductor device includes, a semiconductor substrate including a plurality of fins formed in an upper surface of the semiconductor substrate in a first region to extend in a first direction, a first gate electrode extending in a second direction intersecting the first direction to straddle the fins, a first gate insulating film provided between the first gate electrode and the fins, a second gate electrode provided on the semiconductor substrate in the second region; and a second gate insulating film provided between the semiconductor substrate and the second gate electrode. A layer structure of the first gate electrode is different from a layer structure of the second gate electrode.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Gaku Sudo
  • Patent number: 8860105
    Abstract: A spin-current switched magnetic memory element includes a plurality of magnetic layers, at least one of the plurality of magnetic layers having a perpendicular magnetic anisotropy component and including a current-switchable magnetic moment, and at least one barrier layer formed adjacent to the plurality of magnetic layers. The plurality of magnetic layers includes at least one composite layer.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jonathan Zanhong Sun, Rolf Allenspach, Stuart Stephen Papworth Parkin, John Casimir Slonczewski, Bruce David Terris
  • Publication number: 20140301138
    Abstract: Memory cell comprising two conductors, with a serially connected magnetic storage element and a Schottky diode between the two conductors. The Schottky diode provides a unidirectional conductive path between the two conductors and through the element. The Schottky diode is formed between a metal layer in one of the two conductors and a processed junction layer. Methods for process and for operation of the memory cell are also disclosed. The memory cell using the Schottky diode can be designed for high speed operation and with high density of integration. Advantageously, the junction layer can also be used as a hard mask for defining the individual magnetic storage element in the memory cell. The memory cell is particularly useful for magnetic random access memory (MRAM) circuits.
    Type: Application
    Filed: June 6, 2011
    Publication date: October 9, 2014
    Applicant: MagSil Corporation
    Inventor: Krishnakumar Mani
  • Patent number: 8852960
    Abstract: Provided is a method of fabricating a semiconductor device. The method of fabricating a semiconductor device includes forming a plurality of magnetic memory patterns spaced apart from each other on a substrate, with each of the magnetic memory patterns including a free pattern, a tunnel barrier pattern, and a reference pattern which are stacked on the substrate, performing a magnetic thermal treatment process on the magnetic memory patterns, and forming a passivation layer on the magnetic memory patterns. The magnetic thermal treatment process and the forming of the passivation layer are simultaneously performed in one reactor.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woojin Kim, Jangeun Lee, Sechung Oh, Junho Jeong, Heeju Shin
  • Patent number: 8835190
    Abstract: A method for manufacturing a semiconductor apparatus includes forming a semiconductor device on a principal surface of a substrate, in which the semiconductor device includes an interconnect layer, forming a buffer film which covers the semiconductor device and prevents diffusion of a magnetic material, and forming a magnetic shielding film which covers the buffer film and includes the magnetic material.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: September 16, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Kishou Kaneko, Naoya Inoue, Yoshihiro Hayashi
  • Patent number: 8829631
    Abstract: There is disclosed a memory element including a memory layer that has a magnetization perpendicular to a film face and a magnetization direction thereof varies corresponding to information; a magnetization-fixed layer that has a magnetization that is perpendicular to the film face and becomes a reference for the information stored in the memory layer; and an insulating layer that is provided between the memory layer and the magnetization-fixed layer and is formed of a non-magnetic layer, wherein an electron that is spin-polarized is injected in a lamination direction of a layered structure having the memory layer, the insulating layer, and the magnetization-fixed layer, and thereby the magnetization direction varies and a recording of information is performed with respect to the memory layer, and a magnitude of an effective diamagnetic field which the memory layer receives is smaller than a saturated magnetization amount of the memory layer.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: September 9, 2014
    Assignee: Sony Corporation
    Inventors: Kazutaka Yamane, Masanori Hosomi, Hiroyuki Ohmori, Kazuhiro Bessho, Yutaka Higo, Tetsuya Asayama, Hiroyuki Uchida
  • Patent number: 8828743
    Abstract: A system and method for fabricating a memory array device. An example memory array device includes a plurality of memory cells, each including a FET over a substrate and a memory element over the FET. Each memory element includes a plurality of epitaxially grown memory element layers. The memory elements formed utilizing two etches through all epitaxially grown layers. Each of these etches can be split to two separate processes specific to CMOS transistor etch and to memory element etch. The memory array device includes a plurality of gate conductors configured along a first axis, in parallel. Each FET of the memory cells adjacent to two gate conductors. The memory array device includes a plurality of bit lines configured along a second axis, in parallel, and electrically coupled to a plurality of memory elements along the second axis.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: John K. DeBrosse, Chung H. Lam, Janusz J. Nowak
  • Patent number: 8823118
    Abstract: A STT-RAM MTJ is disclosed with a composite tunnel barrier comprised of a CoMgO layer that contacts a pinned layer and a MgO layer which contacts a free layer. A CoMg layer with a Co content between 20 and 40 atomic % is deposited on the pinned layer and is then oxidized to produce Co nanoconstrictions within a MgO insulator matrix. The nanoconstrictions control electromigration of Co into an adjoining MgO layer. The free layer may comprise a nanocurrent channel (NCC) layer such as FeSiO or a moment dilution layer such as Ta between two ferromagnetic layers. Furthermore, a second CoMgO layer or a CoMgO/MgO composite may serve as a perpendicular Hk enhancing layer formed between the free layer and a cap layer. One or both of the pinned layer and free layer may exhibit in-plane anisotropy or perpendicular magnetic anisotropy.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: September 2, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T Horng, Ru-Ying Tong
  • Patent number: 8822234
    Abstract: A method of fabricating a miniaturized semiconductor device so as to form MTJ elements therein include the steps of depositing a magnetic tunnel junction (MTJ) precursor layer on a substrate and planarizing the precursor layer; forming a sacrificial and patternable dielectric layer on the MTJ precursor layer; patterning the sacrificial dielectric layer in accordance with predetermined placements and shapes of a to-be-formed hard mask, the patterning forming corresponding openings in the sacrificial dielectric layer; depositing an etch-resistant conductive material such as Cu in the openings for example by way of plating, and selectively removing the sacrificial dielectric layer so as to leave behind the etch-resistant conductive material in the form of a desired hard mask. Using the hard mask to etch and thus pattern the MTJ precursor layer so as to form MTJ elements having desired locations, sizes and shapes.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 2, 2014
    Assignees: Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Xinpeng Wang, Haiyang Zhang
  • Patent number: 8817531
    Abstract: A magnetic random access memory (MRAM) device has read word lines, write word lines, bit lines, and a plurality of memory bit cells interconnected via the read word lines, the write word lines and the bit lines. Each memory bit cell has a fixed ferromagnetic layer element and a free ferromagnetic layer element separated by a dielectric tunnel barrier element. Each write word line and a respective number of free ferromagnetic layer elements are formed as a single continuous ferromagnetic line.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Rolf Allenspach, Carl Zinoni
  • Patent number: 8796814
    Abstract: According to one embodiment, a semiconductor substrate device includes a plurality of memory elements formed on the top surface of a semiconductor substrate, interlayer insulating films buried between the adjacent memory elements, a protection film formed on sides of each of the memory elements and the top surface of the semiconductor substrate between the adjacent memory elements, and contacts formed in the interlayer insulating films. The protection film includes a first protection film formed on the sides of each of the memory elements and the top surface of the semiconductor substrate between the adjacent memory elements and a second protection film formed on the first protection film. The first protection film is made of a silicon oxide film, a silicon nitride film, or a silicon oxynitride film, and the second protection film is made of a boron film or a boron nitride film.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: August 5, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hirotaka Ogihara
  • Patent number: 8786038
    Abstract: A semiconductor storage device according to the present embodiment includes a selection element formed on a surface of a semiconductor substrate. A lower electrode is connected to the selection element. A magnetic tunnel junction element is provided on the lower electrode. An upper electrode is provided on the magnetic tunnel junction element. A growth layer is provided on the upper electrode and is composed of a conductive material and has a larger area than the upper electrode when viewed from above the surface of the semiconductor substrate. A wiring line is provided on the growth layer.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: July 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keiji Hosotani, Hiroyuki Kanaya
  • Patent number: 8785966
    Abstract: Magnetic tunnel junction transistor devices and methods for operating and forming magnetic tunnel junction transistor devices. In one aspect, a magnetic tunnel junction transistor device includes a first source/drain electrode, a second source/drain electrode, a gate electrode, and a magnetic tunnel junction disposed between the gate electrode and the second source/drain electrode. The magnetic tunnel junction includes a magnetic free layer that extends along a length of the gate electrode toward the first source/drain electrode such that an end portion of the magnetic free layer is disposed between the gate electrode and the first source/drain electrode. The magnetic tunnel junction transistor device switches a magnetization orientation of the magnetic free layer by application of a gate voltage to the gate electrode, thereby changing a resistance between the first and second source/drain electrodes through the magnetic free layer.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Daniel Christopher Worledge, Vladislav Korenivski
  • Patent number: 8779410
    Abstract: According to one embodiment, a resistance change memory includes resistance change elements, vias and sidewall insulating layers, the elements and the vias provided alternately in a first direction and a second direction orthogonal to the first direction, and the sidewall insulating layers provided on sidewalls of the elements. The elements are provided in a lattice pattern having a constant pitch. A thickness of each of the sidewall insulating layers in a direction orthogonal to the sidewalls is a value for contacting the sidewall insulating layers each other or more to form holes between the sidewall insulating layers. The vias are provided in the holes respectively.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: July 15, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Motoyuki Sato, Yoshiaki Asao, Takashi Obara, Takashi Nakazawa
  • Patent number: 8772845
    Abstract: The present disclosure provides a semiconductor memory device. The device includes a pinning layer having an anti-ferromagnetic material and disposed over a first electrode; a pinned layer disposed over the pinning layer; a composite layer disposed over the pinned layer, the composite layer having a magnetic material randomly distributed in a non-magnetic material; a barrier layer disposed on the composite layer; a free layer disposed over the barrier layer; and a second electrode disposed over the free layer.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Ming Chen, Cheng-Yuan Tsai, Chung-Yi Yu, Kai-Wen Cheng, Kuo-Ming Wu
  • Patent number: 8772841
    Abstract: Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming an oxide over the first conductive element, implanting a reactive metal into the oxide, and forming a second conductive element over the oxide.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: D.V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Patent number: 8767454
    Abstract: A magnetic cell structure including a nonmagnetic filament contact, and methods of fabricating the structure are provided. The magnetic cell structure includes a free layer, a pinned layer, an insulative layer between the free and pinned layers, and a nonmagnetic filament contact in the insulative layer which electrically connects the free and pinned layers. The nonmagnetic filament contact is formed from a nonmagnetic source layer, also between the free and pinned layers. The filament contact directs a programming current through the magnetic cell structure such that the cross sectional area of the programming current in the free layer is less than the cross section of the structure. The decrease in the cross sectional area of the programming current in the free layer enables a lower programming current to reach a critical switching current density in the free layer and switch the magnetization of the free layer, programming the magnetic cell.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: July 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Gurtej Sandhu
  • Patent number: 8748197
    Abstract: A magnetic tunnel junction (MTJ) structure is provided over a device wherein the MTJ comprises a tunnel barrier layer between a free layer and a pinned layer; and a top and bottom electrode inside the MTJ structure. A hard mask layer is formed on the top electrode. The hard mask layer, top electrode, free layer, tunnel barrier layer, and pinned layer are patterned to define the magnetic tunnel junction (MTJ) structures. A first dielectric layer is deposited over the MTJ structures and planarized to expose the top electrode. Thereafter, the top electrode and free layer are patterned. A second dielectric layer is deposited over the MTJ structures and planarized to expose the top electrode. A third dielectric layer is deposited over the MTJ structures and a metal line contact is formed through the third dielectric layer to the top electrode to complete fabrication of the magnetic device.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: June 10, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Wang Yu-Jen, Chin Yuan-Tung
  • Patent number: 8743584
    Abstract: A shift register memory according to the present embodiment includes a magnetic pillar including a plurality of magnetic layers and a plurality of nonmagnetic layers provided between the magnetic layers adjacent to each other. A stress application part applies a stress to the magnetic pillar. A magnetic-field application part applies a static magnetic field to the magnetic pillar. The stress application part applies the stress to the magnetic pillar in order to transfer magnetization states of the magnetic layers in a stacking direction of the magnetic layers.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Hideaki Aochi