Mixture Of Vapors Or Gases (e.g., Deposition Gas And Inert Gas, Inert Gas And Reactive Gas, Two Or More Reactive Gases, Etc.) Utilized Patents (Class 427/255.23)
  • Patent number: 8313806
    Abstract: Provided is a method for moving, in a vacuum chamber carrying therein a fixedly-provided evaporation source, a substrate toward the evaporation source together with a mask closely attached to the substrate surface, and onto the surface substrate, evaporating a material vaporized in the evaporation source through an aperture formed to the mask. In this method of the invention, means for moving the substrate toward the evaporation source is provided with cooling means not to come in contact with but to be in proximity to a surface of the mask on the evaporation source side, and a cooling plate formed with an aperture proximal to the evaporation source is disposed. With such a configuration, the steam of the material coming from the evaporation source is directed to the mask and the substrate through the aperture of the cooling plate.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: November 20, 2012
    Assignees: Hitachi Displays, Ltd., Panasonic Liquid Display Co., Ltd.
    Inventor: Hiroyasu Matsuura
  • Publication number: 20120288625
    Abstract: A gas supply apparatus including a raw material gas supply system supplying a raw material gas inside a raw material storage tank into the processing container by the carrier gas, the gas supply apparatus includes: a carrier gas passage introducing the carrier gas into the raw material storage tank, a raw material gas passage connecting the raw material storage tank and the processing container to supply the carrier gas and the raw material gas; a pressure control gas passage being connected to the raw material gas passage to supply the pressure control gas; and a valve control unit controlling an opening/closing valve to perform for starting a supply of the pressure control gas into the processing container and simultaneously starting supply of the raw material gas into the processing container from the raw material storage tank, and stopping the supply of the pressure control gas.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 15, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Haruhiko FURUYA, Hiromi SHIMA, Yusuke TACHINO
  • Patent number: 8309174
    Abstract: The present invention provides a process for the deposition of a iridium containing film on a substrate, the process comprising the steps of providing at least one substrate in a reactor; introducing into the reactor at least one iridium containing precursor having the formula: XIrYA, wherein A is equal to 1 or 2 and i) when A is 1, X is a dienyl ligand and Y is a diene ligand; ii) when A is 2, a) X is a dienyl ligand and Y is selected from CO and an ethylene ligand, b) X is a ligand selected from H, alkyl, alkylamides, alkoxides, alkylsilyls, alkylsilylamides, alkylamino, and fluoroalkyl and each Y is a diene ligand, and c) X is a dienyl ligand and Y is a diene ligand; reacting the at least one iridium containing precursor in the reactor at a temperature equal to or greater than 100° C.; and depositing an iridium containing film formed from the reaction of the at least one iridium containing precursor onto the at least one substrate.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: November 13, 2012
    Assignees: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude, American Air Liquide, Inc.
    Inventors: Julien Gatineau, Christian Dussarrat
  • Patent number: 8309173
    Abstract: An apparatus and method improves heating of a solid precursor inside a sublimation vessel. In one embodiment, inert, thermally conductive elements are interspersed among units of solid precursor. For example the thermally conductive elements can comprise a powder, beads, rods, fibers, etc. In one arrangement, microwave energy can directly heat the thermally conductive elements.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: November 13, 2012
    Assignee: ASM International N.V.
    Inventors: Marko Tuominen, Eric Shero, Mohith Verghese
  • Patent number: 8298337
    Abstract: The invention relates to a gas inlet element (2) for a CVD reactor with a chamber (4), which has a multitude of bottom-side outlet openings (23), via which a process gas introduced into the chamber (4) via edge-side access openings (10) exits into a process chamber (21) of the CVD reactor (1). In order to homogenize the gas composition, the invention provides that at least one mixing chamber arrangement (11, 12, 13) is situated upstream from the access openings (10), and at least two process gases are mixed with one another inside this mixing chamber arrangement.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: October 30, 2012
    Assignee: Aixtron, Inc.
    Inventors: Markus Reinhold, Peter Baumann, Gerhard Karl Strauch
  • Patent number: 8293328
    Abstract: A method for depositing a refractory metal nitride barrier layer having a thickness of about 20 angstroms or less is provided. In one aspect, the refractory metal nitride layer is formed by introducing a pulse of a metal-containing compound followed by a pulse of a nitrogen-containing compound. The refractory metal nitride barrier layer provides adequate barrier properties and allows the grain growth of the first metal layer to continue across the barrier layer into the second metal layer thereby enhancing the electrical performance of the interconnect.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: October 23, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Hua Chung, Barry L. Chin, Hong Zhang
  • Patent number: 8277891
    Abstract: A technique for effectively suppressing the generation of particles resulting from peeling-off of unnecessary films that have unavoidably adhered to the inner surface of the reaction tube of an ALD film-forming apparatus during a film formation process for forming a film on a semiconductor substrate. A precoating process utilizing ALD is performed to deposit a metal oxide film, e.g., an aluminum oxide film, onto the unnecessary films, in order to prevent peeling-off of the unnecessary films. Ozone is supplied, as a precoat gas, into the reaction tube during the precoating process by a nozzle of a different type and/or position from that of the nozzle for supplying ozone, as a film-forming gas, into the reaction tube during the film formation process.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: October 2, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Yuichiro Morozumi, Kenichi Koyanagi, Takashi Arao, Kazunori Une
  • Patent number: 8277890
    Abstract: The transporting device according to the invention, in particular for transporting sheet-like substrates through a coating installation, comprises transporting rollers which are rotatably mounted on both sides and horizontally arranged transversely in relation to the transporting direction, the uppermost surface lines of the transporting rollers defining the transporting plane, and is characterized in that the end parts of the transporting rollers have a smaller diameter than the middle part of the transporting rollers and in that baffles which are mounted displaceably in the axial direction of the transporting rollers between a first position and a second position are arranged between the end parts of the transporting rollers and the transporting plane. The fact that the baffles are mounted in an axially displaceable manner has the effect of considerably extending the cleaning intervals of the transporting device.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: October 2, 2012
    Assignees: First Solar, Inc., Von Ardenne Anlagentechnik GmbH
    Inventors: Hubertus Von Der Waydbrink, Georg Laimer, Siegfried Scheibe, Ricky C. Powell, James Ernest Hinkle, James B. Foote
  • Publication number: 20120237794
    Abstract: A coated article such as a coated cutting tool or coated wear part, which includes a substrate and a coating scheme on the substrate. The coating scheme has a titanium-containing coating layer, and an aluminum oxynitride coating layer on the titanium-containing coating layer. The aluminum oxynitride includes a mixture of phases having a hexagonal aluminum nitride type structure (space group: P63mc), a cubic aluminum nitride type structure (space group: Fm-3m), and optionally amorphous structure. The aluminum oxynitride coating layer has a composition of aluminum in an amount between about 20 atomic percent and about 50 atomic percent, nitrogen in an amount between about 40 atomic percent and about 70 atomic percent, and oxygen in an amount between about 1 atomic percent and about 20 atomic percent.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: Kennametal Inc.
    Inventors: Volkmar Sottke, Hartmut Westphal, Hendrikus Van Den Berg, Zhigang Ban, Yixiong Liu, Mark S. Greenfield
  • Patent number: 8268409
    Abstract: Methods of forming a metal carbide film are provided. In some embodiments, methods for forming a metal carbide film in an atomic layer deposition (ALD) type process comprise alternately and sequentially contacting a substrate in a reaction space with vapor phase pulses of a metal compound and one or more plasma-excited species of a carbon-containing compound. In other embodiments, methods of forming a metal carbide film in a chemical vapor deposition (CVD) type process comprise simultaneously contacting a substrate in a reaction space with a metal compound and one or more plasma-excited species of a carbon-containing compound. The substrate is further exposed to a reducing agent. The reducing agent removes impurities, including halogen atoms and/or oxygen atoms.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: September 18, 2012
    Assignee: ASM America, Inc.
    Inventors: Kai-Erik Elers, Glen Wilk, Steven Marcus
  • Publication number: 20120231166
    Abstract: An organic thin film deposition device that is compact and high in processing capability is provided. Inside a vacuum chamber, first and second substrate arrangement devices that can be in a horizontal posture and a standing posture are provided; and when in the standing posture, substrates held by the respective substrate arrangement devices and first and second organic vapor discharging devices face each other. When one of the substrate arrangement devices is in the horizontal posture, masks and the substrates are lifted up by alignment pins and transfer pins and are replaced with a substrate not yet film formed, for position adjustment. With one organic thin film deposition device, two substrates can be processed at the same time.
    Type: Application
    Filed: May 18, 2012
    Publication date: September 13, 2012
    Applicant: ULVAC, INC.
    Inventors: Masato FUKAO, Hiroshi KIKUCHI, Yoshio SUNAGA
  • Patent number: 8263180
    Abstract: Tin powder is heated in a flowing stream of an inert gas, such as argon, containing a small concentration of carbon-containing gas, at a temperature to produce metal vapor. The tin deposits as liquid on a substrate, and reacts with the carbon-containing gas to form carbon nanotubes in the liquid tin. Upon cooling and solidification, a composite of tin nanowires bearing coatings of carbon nanotubes is formed.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: September 11, 2012
    Assignees: GM Global Technology Operations LLC, The University of Western Ontario
    Inventors: Xueliang Sun, Ruying Li, Yuqin Zhou, Mei Cai, Hao Liu
  • Patent number: 8263174
    Abstract: Disclosed is a light emitting device manufacturing apparatus including a plurality of processing chambers for performing a substrate processing for forming, on a target substrate, a light emitting device having multiple layers including an organic layer, wherein each of the plurality of processing chambers is configured to perform a substrate process on the target substrate while maintaining the target substrate such that its device forming surface, on which the light emitting device is to be formed, is oriented toward a direction opposite to a direction of gravity.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: September 11, 2012
    Assignees: Tokyo Electron Limited, National University Corporation Tohoku University
    Inventors: Yasushi Yagi, Shingo Watanabe, Toshihisa Nozawa, Chuichi Kawamura, Kimihiko Yoshino, Tadahiro Ohmi
  • Patent number: 8257790
    Abstract: A Ti film is formed on a surface of a wafer W placed inside a chamber 31, while injecting a process gas containing TiCl4 gas into the chamber 31 from a showerhead 40 made of an Ni-containing material at least at a surface. The method includes performing formation of a Ti film on a predetermined number of wafers W while setting the showerhead 40 at a temperature of 300° C. or more and less than 450° C., and setting TiCl4 gas at a flow rate of 1 to 12 mL/min (sccm) or setting TiCl4 gas at a partial pressure of 0.1 to 2.5 Pa, and then, performing cleaning inside the chamber 31, while setting the showerhead 40 at a temperature of 200 to 300° C., and supplying ClF3 gas into the chamber 31.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: September 4, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Kensaku Narushima, Satoshi Wakabayashi, Kunihiro Tada
  • Patent number: 8257841
    Abstract: The invention relates to bodies coated with a hard material, comprising a multi-layer coating system containing at least one Ti1-xAlxN hard material coating and to a multi-stage CVD method for producing the bodies. The aim of the invention is to achieve excellent adhesion of the Ti1-xAlxN hard material coating in bodies coated with a hard material comprising a multi-layer coating system containing at least one Ti1-xAlxN hard material coating and a high degree of wear resistance. According to the invention, the bodies coated with a hard material comprising a multi-layer coating system containing at least one Ti1-xAlxN hard material coating are characterized by the following features: the coating system consists of a) a bonding coating applied to the body, consisting of TiN, Ti(C,N) or TiC; b) a phase gradient coating that is applied to the bonding coating; and c) the single or multi-phase Ti1-xAlxN hard material coating or coatings applied to the phase gradient coating.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: September 4, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Ingolf Endler, Mandy Hoehn
  • Patent number: 8247038
    Abstract: This application relates to a process for the application of thin layers of substantially pure spin transition molecular materials while maintaining the hysteresis properties of the material. The process makes it possible to obtain a dense uniform surface with very low roughness.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: August 21, 2012
    Assignees: Centre National de la Recherche Scientifique (C.N.R.S), Universitat de Valencia
    Inventors: Azzedine Bousseksou, Gabor Molnar, Saioa Cobo, Lionel Salmon, José Antonio Real Cabezos, Christophe Vieu
  • Patent number: 8225745
    Abstract: System and method for operating a material deposition system are disclosed. In one embodiment, the method can include periodically injecting a precursor into a vaporizer through an injector at the vaporizer, vaporizing the precursor in the vaporizer and supplying the vaporized precursor to a reaction chamber in fluid communication with the vaporizer, and shutting down the vaporizer and the reaction chamber after a period of time. The method can also include conducting maintenance of the injector at the vaporizer by using a vapor solvent rinse.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: July 24, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Eugene P. Marsh, David R. Atwell
  • Patent number: 8227030
    Abstract: A process for producing a semiconductor device, in which in the formation of a boron doped silicon film from, for example, monosilane and boron trichloride by vacuum CVD technique, there can be produced a film excelling in inter-batch homogeneity with respect to the growth rate and concentration of a dopant element, such as boron. The process includes the step of performing the first purge through conducting at least once of while a substrate after treatment is housed in a reaction furnace, vacuuming of the reaction furnace and inert gas supply thereto and the steps of performing the second purge through conducting at least once of after carrying of the substrate after treatment out of the reaction furnace, prior to carrying of a substrate to be next treated into the reaction furnace and while at least no product substrate is housed in the reaction furnace, vacuuming of the reaction furnace and inert gas supply thereto.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: July 24, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Takaaki Noda, Kenichi Suzaki
  • Publication number: 20120184110
    Abstract: An insulating film including characteristics such as low permittivity, a low etching rate and a high insulation property is formed. Supplying a gas containing an element, a carbon-containing gas and a nitrogen-containing gas to a heated substrate in a processing vessel to form a carbonitride layer including the element, and supplying the gas containing the element and an oxygen-containing gas to the heated substrate in the processing vessel to form an oxide layer including the element are alternately repeated to form on the substrate an oxycarbonitride film having the carbonitride layer and the oxide layer alternately stacked therein.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 19, 2012
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Yoshiro Hirose, Yushin Takasawa, Tsukasa Kamakura, Yoshinobu Nakamura, Ryota Sasajima
  • Patent number: 8221835
    Abstract: A process for producing a semiconductor device, in which in the formation of a boron doped silicon film from, for example, monosilane and boron trichloride by vacuum CVD technique, there can be produced a film excelling in inter-batch homogeneity with respect to the growth rate and concentration of a dopant element, such as boron. The process includes the step of performing the first purge through conducting at least once of while a substrate after treatment is housed in a reaction furnace, vacuuming of the reaction furnace and inert gas supply thereto and the steps of performing the second purge through conducting at least once of after carrying of the substrate after treatment out of the reaction furnace, prior to carrying of a substrate to be next treated into the reaction furnace and while at least no product substrate is housed in the reaction furnace, vacuuming of the reaction furnace and inert gas supply thereto.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: July 17, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Takaaki Noda, Kenichi Suzaki
  • Patent number: 8216639
    Abstract: One embodiment of the present invention provides a method for the deposition of a Carbon containing layer on a Silicon surface wherein a (i) substantially Silicon-oxide-free or reduced oxide interface results between Silicon and the Carbon containing layer during the deposition. In another embodiment, the present invention provides a method for deposition of a Carbon containing layer wherein the deposition process is substantially soot (particle)-free or reduction of soot.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: July 10, 2012
    Assignee: Qimonda AG
    Inventors: Maik Liebau, Franz Kreupl, Georg Duesberg, Eugen Unger
  • Patent number: 8211499
    Abstract: A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: July 3, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kevin C. O'Brien, Stephan A. Letts, Christopher M. Spadaccini, Jeffrey D. Morse, Steven R. Buckley, Larry E. Fischer, Keith B. Wilson
  • Patent number: 8211229
    Abstract: A solid film-formation material feeding apparatus includes a supercritical fluid supply source for supplying supercritical fluid; and a column which is connected to the supercritical fluid supply source, and has a hollow part which is filled with a filler which is inactive for the supercritical fluid, wherein the hollow part can be further filled with a solid film-formation material which is soluble in the supercritical fluid. A column assembly which includes a plurality of the columns which may be connected in parallel to each other.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: July 3, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroyuki Ode
  • Patent number: 8211500
    Abstract: A Cu film is deposited on a substrate by ALD (Atomic Layer Deposition) process, in which: a Cu-carboxyl acid complex or a derivative thereof having a high vapor pressure and wettability to a base is used in a gasified state; H2 is used as a reductive gas; and a step of adsorbing a source material gas to a substrate and a step of forming a Cu film by reducing the adsorbed gas with a reductive gas are repeated alternately. With this method, a conformal Cu film having excellent quality can be formed.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: July 3, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Yasuhiko Kojima, Naoki Yoshii
  • Publication number: 20120148745
    Abstract: This invention related to method to form silicon dioxide films that have extremely low wet etch rate in HF solution using a thermal CVD process, ALD process or cyclic CVD process in which the silicon precursor is selected from one of: R1nR2mSi(NR3R4)4-n-m; and, a cyclic silazane of (R1R2SiNR3)p, where R1 is an alkenyl or an aromatic, such as vinyl, allyl, and phenyl; R2, R3, and R4 are selected from H, alkyl with C1-C10, linear, branched, or cyclic, an alkenyl with C2-C10 linear, branched, or cyclic, and aromatic; n=1-3, m=0-2; p=3-4.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Manchao Xiao, Liu Yang, Kirk Scott Cuthill, Heather Regina Bowen, Bing Han, Mark Leonard O'Neill
  • Patent number: 8197898
    Abstract: A method and system for depositing a layer from a vaporized solid precursor. The method includes providing a substrate in a process chamber of a deposition system, forming a precursor vapor by light-induced vaporization of a solid precursor, and exposing the substrate to a process gas containing the precursor vapor to deposit a layer including at least one element from the precursor vapor on the substrate.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: June 12, 2012
    Assignee: Tokyo Electron Limited
    Inventor: Gerrit J. Leusink
  • Publication number: 20120141676
    Abstract: An ALD coating system (100) includes a fixed gas manifold (710, 1300) disposed over a moving substrate with a coating surface of the substrate facing precursor orifice plate (930). A gas control system (1400) delivers gas or vapor precursors and inert gas into the fixed gas manifold which directs input gases onto a coating surface of the moving substrate. The gas control system includes a blower (1485) interfaced with the gas manifold which draws gas through the gas manifold to remove unused precursors, inert gas and reaction byproduct from the coating surface. The gas manifold is configured segregate precursor gases at the coating surface to prevent the mixing of dissimilar precursors. The gas manifold may also segregate unused precursor gases in the exhaust system so that the unused precursors can be recovered and reused.
    Type: Application
    Filed: October 14, 2011
    Publication date: June 7, 2012
    Applicant: Cambridge NanoTech Inc
    Inventors: Michael J. Sershen, Ganesh M. Sundaram, Roger R. Coutu, Jill Svenja Becker, Mark J. Dalberth
  • Publication number: 20120121807
    Abstract: The present invention provides a film deposition system and method by combining a plurality of gas supplying apparatuses and a deposition apparatus being in communication with the plurality of gas supplying apparatuses. By means of respectively providing different types of vapor precursors with high concentration and high capacity into a process chamber of the deposition apparatus through the plurality of gas supplying apparatus, the deposition reaction is accelerated so as to improve the efficiency of film deposition. In an embodiment of the gas supplying apparatus, it utilizes a first gas for providing high pressure toward on a liquid surface of the precursor, thereby transporting the precursor into an atomizing and heating unit whereby the precursor is atomized and then is heated so as to form a high-concentration and high capacity vapor precursor transported by another carrier gas.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 17, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ming-Tung Chiang, Shih-Chin Lin
  • Patent number: 8178446
    Abstract: A method for forming a strained metal nitride film and a semiconductor device containing the strained metal nitride film. The method includes exposing a substrate to a gas containing a metal precursor, exposing the substrate to a gas containing a first nitrogen precursor configured to react with the metal precursor with a first reactivity characteristic, and exposing the substrate to a gas pulse containing a second nitrogen precursor configured to react with the metal precursor with a second reactivity characteristic different than the first reactivity characteristic such that a property of the metal nitride film formed on the substrate changes to provide a strained metal nitride film.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: May 15, 2012
    Assignee: Tokyo Electron Limited
    Inventor: Robert D. Clark
  • Patent number: 8178162
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: May 15, 2012
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Patent number: 8173213
    Abstract: A stabilized cyclic alkene composition comprising one or more cyclic alkenes, and at least one stabilizer compound having the Formula (I), R1,R2,R3,R4,R5(C6)OH??Formula (I) wherein R? through R5 can each independently be H, OH, C1-C8 linear, branched, or cyclic alkyl, C1-C8 linear, branched, or cyclic alkoxy or substituted or unsubstituted aryl, and wherein the stabilizer compound is present in an amount greater than 200 ppm up to 20,000 ppm and has a boiling point lower than 265° C. A method for forming a layer of carbon-doped silicon oxide on a substrate, which uses the stabilized alkene composition and a silicon containing compound.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: May 8, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Steven Gerard Mayorga, Mary Kathryn Haas, Mark Leonard O'Neill, Dino Sinatore
  • Publication number: 20120107504
    Abstract: A deposition system is provided which is adapted for depositing a thin film onto a substrate. The deposition system includes a substrate carrier adapted for carrying the substrate and at least one tilted evaporator crucible. The at least one tilted evaporator crucible is adapted for directing evaporated deposition material towards the substrate in a main emission direction. The main direction emission of the tilted evaporator crucible is different from a direction normal to the substrate.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Philipp MAURER, Sven SCHRAMM, Andreas LOPP, Andreas KLÖPPEL
  • Patent number: 8168256
    Abstract: A process and composition for preventing cracking in composite structures comprising a metal coated substrate and a selenide, sulfide or mixed selenide sulfide film. Specifically, cracking is prevented in the coating of molybdenum coated substrates upon which a copper, indium-gallium diselenide (CIGS) film is deposited. Cracking is inhibited by adding a Se passivating amount of oxygen to the Mo and limiting the amount of Se deposited on the Mo coating.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: May 1, 2012
    Inventors: Erten Eser, Shannon Fields
  • Patent number: 8163342
    Abstract: A low-resistivity, doped zinc oxide coated glass article is formed by providing a hot glass substrate having a surface on which a coating is to be deposited, the surface being at a temperature of at least 400° C. A zinc containing compound, an oxygen-containing compound and an aluminum- or gallium-containing compound are directed to the surface on which the coating is to be deposited. The zinc containing compound, oxygen-containing compound, and aluminum- or gallium-containing compound are mixed together for a sufficient time that an aluminum or gallium doped zinc oxide coating is formed on the surface at a deposition rate of greater than 5 nm/second.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: April 24, 2012
    Assignees: Pilkington Group Limited, Arkema, Inc.
    Inventors: Jeffery L. Stricker, Ryan C. Smith, Michael B. Abrams, Roman Y. Korotkov, Gary S. Silverman, Kevin David Sanderson, Liang Ye, Guillermo Benito Gutiérrez
  • Patent number: 8158198
    Abstract: A tantalum nitride film-forming method comprises the steps of introducing a raw gas consisting of a coordination compound constituted by an elemental tantalum (Ta) having a coordinated ligand represented by the general formula: N?(R,R?) (in the formula, R and R? may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms), and a halogen gas into a vacuum chamber; and reacting these components with one another on a substrate to thus form a surface adsorption film comprising a mono-atomic or multi (several)-atomic layer and composed of a compound represented by the following general formula: TaNx(Hal)y(R, R?)z (in the formula, Hal represents a halogen atom), then introducing radicals generated from an H atom-containing compound to thus remove Ta—N bonds present in the resulting compound through breakage thereof and remove, at the same time, the remaining R(R?) groups bonded to the N atoms present in the compound through the cleavage thereof and to thus form a tantalum nitride film
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: April 17, 2012
    Assignee: ULVAC, Inc.
    Inventors: Narishi Gonohe, Satoru Toyoda, Harunori Ushikawa, Tomoyasu Kondo, Kyuzo Nakamura
  • Patent number: 8158197
    Abstract: A tantalum nitride film-forming method comprises the steps, according to the CVD technique, of introducing a raw gas consisting of a coordination compound constituted by an elemental tantalum (Ta) having a coordinated ligand represented by the general formula: N?(R, R?) (in the formula, R and R? may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms) and a halogen gas into a film-forming chamber to thus form a film of a halogenated compound represented by the following general formula: TaNx(Hal)y(R, R?)z (in the formula, Hal represents a halogen atom), reacting the halogenated compound film with a hydrogen atom-containing gas by the introduction thereof into the chamber to thus form a tantalum nitride film rich in tantalum atoms. The resulting tantalum nitride film has a low resistance, low contents of C and N, and a high compositional ratio: Ta/N, can ensure high adherence to the electrical connection-forming film and can thus be useful as a barrier film.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: April 17, 2012
    Assignee: ULVAC, Inc.
    Inventors: Narishi Gonohe, Satoru Toyoda, Harunori Ushikawa, Tomoyasu Kondo, Kyuzo Nakamura
  • Patent number: 8148012
    Abstract: In a method for manufacturing a negative electrode for a battery, an active material layer including a metallic element M and an element A that is at least any one of oxygen, nitrogen, and carbon is formed on a current collector. This active material layer is irradiated with an X-ray and at least one of intensity of a K? ray of the element A and intensity of a K? ray of the metallic element M in fluorescent X-rays generated from the active material layer is measured.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: April 3, 2012
    Assignee: Panasonic Corporation
    Inventors: Hideharu Takezawa, Takayuki Shirane, Shinya Fujimura, Sadayuki Okazaki, Kazuyoshi Honda
  • Patent number: 8142848
    Abstract: A coated cemented carbide insert is particularly useful for wet or dry milling steels at high cutting speeds, milling of hardened steels, and high feed copy milling of tool steels. The insert is formed by a cemented carbide body including WC, NbC and TaC, a W-alloyed Co binder phase, and a coating including an innermost layer of TiCxNyOz, with equiaxed grains, a layer of TiCxNyOz with columnar grains and a layer of ?-Al2O3.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 27, 2012
    Assignee: Seco Tools AB
    Inventors: Andreas Larsson, Anna Sandberg
  • Publication number: 20120052204
    Abstract: In a workpiece processor, a head is moveable onto a bowl to form a process chamber. A workpiece can be cleaned in the processor by immersing the workpiece into a liquid bath in the bowl and then boiling the liquid. Vacuum may be applied to the chamber to reduce the pressure within the chamber, thereby reducing the boiling temperature of the liquid and allowing processing at lower temperatures. In a separate method for prewetting a workpiece, a humid gas is provided into the process chamber and condenses on the workpiece. In another separate method for wetting a workpiece, liquid water is provided into the bowl, with the workpiece above the liquid water. Water vapor is created in the process chamber by applying vacuum to the process chamber. The vapor wets the workpiece. The workpiece is then further wetted by submerging the workpiece into the liquid water.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Bryan Puch, Kyle M. Hanson, Marvin Bernt, Paul R. McHugh, Gregory J. Wilson
  • Patent number: 8124275
    Abstract: To smoothly deliver a thermal energy required in an active site of a catalyst carried on a carrier. A method of manufacturing a catalyst carrier of the present invention includes the steps of: forming a mixed thin film in which at least metal and ceramics are mixed on a metal base, by spraying aerosol, with metal powders and ceramic powders mixed therein, on the metal base; and making the mixed thin film porous, by dissolving the metal of the mixed thin film into acid or alkaline solution to remove this metal.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: February 28, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Mineo Washima, Kenji Shibata, Fumihito Oka
  • Patent number: 8119032
    Abstract: The invention provides methods functionalizing a planar surface of a graphene layer, a graphite surface, or microelectronic structure. The graphene layer, graphite surface, or planar microelectronic structure surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the graphene layer, a graphite surface, or planar microelectronic surface while providing a functionalization layer of chemically functional groups, to produce a functionalized graphene layer, graphite surface, or planar microelectronic surface.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: February 21, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer, Charles M. Marcus, James R. Williams
  • Publication number: 20120040098
    Abstract: Provided is a vaporizer that can efficiently cool a carrier gas, improve the effect of preventing a material from being clogged near the outlet port of a gas passage, contribute to prolonging the timing of maintenance and improving operating efficiency, and exert more uniform dispersing effect. A vaporizer includes: a center rod inserted into a carrier gas introduction hole formed in a disperser to form the gas passage in cooperation with the inner wall of the carrier gas introduction hole; a cooling part disposed on the outer circumferential side of the carrier gas introduction hole in the disperser to cool the inside of the gas passage; a cooling member insertion hole formed across almost the entire length of the center rod along the axial direction of the center rod; and a cooling member disposed in the inside of the cooling member insertion hole to cool the center rod.
    Type: Application
    Filed: January 27, 2010
    Publication date: February 16, 2012
    Applicant: WACOM R&D CORPORATION
    Inventors: Masayuki Toda, Masaru Umeda
  • Patent number: 8114479
    Abstract: This invention relates to a vapor or liquid phase reagent dispensing apparatus having a diptube and also a metal seal aligned and in contact with hardened opposing flat surfaces of a top wall member and a protuberance on a side wall member, wherein the hardened opposing flat surfaces of the top wall member and the protuberance have a hardness greater than the hardness of the metal seal. The dispensing apparatus may be used for dispensing of reagents such as precursors for deposition of materials in the manufacture of semiconductor materials and devices.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: February 14, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Ronald F. Spohn, David Walter Peters
  • Publication number: 20120028408
    Abstract: A vapor distributor assembly may include a carbon fiber heating element.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 2, 2012
    Inventors: Christopher Baker, Weixin Li
  • Patent number: 8105661
    Abstract: A method of forming a porous film on a processing target includes: forming fine organic particles by polymerizing an organic compound in a gaseous phase; mixing the fine organic particles with a silicon compound containing a Si—O bond in a gaseous phase, thereby depositing a film containing the fine particles on the processing target; and removing the fine organic particles from the film.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: January 31, 2012
    Assignees: ASM Japan K.K., Ulvac, Inc., NEC Corporation
    Inventors: Yasuyoshi Hyodo, Kazuo Kohmura, Nobutoshi Fujii, Nobutaka Kunimi, Keizo Kinoshita
  • Patent number: 8105647
    Abstract: The present invention relates to an oxide film forming method and an oxide deposition apparatus, which make it possible to form an oxide film at a low temperature of 350° C. or less by respectively supplying a silicon-containing gas including at least one of SiH4, Si2H6, Si3H8, TEOS, DCS, HCD and TSA, a purge gas, and a reaction gas including at least one of O2, N2O, O3, H2O and H2O2 into a reaction space continuously and simultaneously while rotating gas injector, and to form an oxide film with a uniform thickness along a step of a lower structure with a micro-pattern since step coverage is improved due to an atomic layer deposition process.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: January 31, 2012
    Assignee: Jusung Engineering Co., Ltd.
    Inventors: Jin-Ho Lee, Young-Ki Han, Jae-Chan Kwak
  • Publication number: 20120003497
    Abstract: Coated articles and methods and systems for coating the articles are described herein. The methods and systems described herein include, but are not limited to, steps for actively or passively controlling the temperature during the coating process, steps for providing intimate contact between the substrate and the support holding the substrate in order to maximize energy transfer, and/or steps for preparing gradient coatings. Methods for depositing high molecular weight polymeric coatings, end-capped polymer coatings, coatings covalently bonded to the substrate or one another, metallic coatings, and/or multilayer coatings are also disclosed. Deposition of coatings can be accelerated and/or improved by applying an electrical potential and/or through the use of inert gases.
    Type: Application
    Filed: December 28, 2010
    Publication date: January 5, 2012
    Inventors: Erik S. Handy, Aleksander J. White, W. Shannan O'Shaughnessy, Hilton G. Pryce Lewis, Neeta P. Bansal, Karen K. Gleason
  • Publication number: 20120003389
    Abstract: The invention relates to a device for depositing at least one, in particular crystalline, layer on at least one substrate (5), having a susceptor (2) for accommodating the at least one substrate (5), the susceptor forming the floor of a process chamber (1), having a cover plate (3) which forms the ceiling of the process chamber (1), and having a gas inlet element (4) for introducing process gases, which decompose into the layer-forming components in the process chamber as the result of heat input, and a carrier gas, wherein below the susceptor (2) a multiplicity of heating zones (H1-H8) are situated next to one another, by means of which in particular different heat outputs (Q1, Q2) are introduced into the susceptor (2) in order to heat the susceptor surface facing the process chamber (1) and the gas located inside the process chamber (1), a heat dissipation element (8) which is thermally coupled to the cover plate (3) being provided above the cover plate (3) in order to dissipate the heat transported from th
    Type: Application
    Filed: March 10, 2010
    Publication date: January 5, 2012
    Inventors: Daniel Brien, Roland Püsche, Walter Franken
  • Patent number: 8084088
    Abstract: Wafer-to-wafer thickness uniformity may be improved significantly in a process for depositing a silicon nitride layer in that the flow rate of the reactant and the chamber pressure are varied during a deposition cycle. By correspondingly adapting the flow rate and/or the chamber pressure before and after the actual deposition step, the process conditions may be more effectively stabilized, thereby reducing process variations, even after non-deposition phases of the deposition tool, such as a preceding plasma clean process or an idle period of the tool.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: December 27, 2011
    Assignee: Globalfoundries Inc.
    Inventors: Katja Huy, Hartmut Ruelke, Michael Turner
  • Publication number: 20110311726
    Abstract: An improved precursor vaporization device and method for vaporizing liquid and solid precursors having a low vapor pressure at a desired precursor temperature includes elements and operating methods for injecting an inert gas boost pulse into a precursor container prior to releasing a precursor pulse to a reaction chamber. An improved ALD system and method for growing thin films having more thickness and thickness uniformity at lower precursor temperatures includes devices and operating methods for injecting an inert gas boost pulse into a precursor container prior to releasing a precursor pulse to a reaction chamber and for releasing a plurality of first precursor pulses into a reaction chamber to react with substrates before releasing a different second precursor pulse into the reaction chamber to react with the substrates.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicant: Cambridge NanoTech Inc.
    Inventors: Guo Liu, Adam Bertuch, Eric W. Deguns, Mark J. Dalberth, Ganesh M. Sundaram, Jill Svenja Becker