Mixture Of Vapors Or Gases (e.g., Deposition Gas And Inert Gas, Inert Gas And Reactive Gas, Two Or More Reactive Gases, Etc.) Utilized Patents (Class 427/255.23)
  • Patent number: 7651733
    Abstract: A vapor-phase growing unit of this invention includes: a reaction container in which a substrate is arranged, a first gas-introducing part having a first gas-introducing tube in which a gas-spouting port opening in the reaction container is formed, the first gas-introducing part serving to supply into the reaction container a first gas consisting of an organic-metal including gas, and a second gas-introducing part having a second gas-introducing tube in which a gas-spouting port opening in the reaction container is formed, the second gas-introducing part serving to supply into the reaction container a second gas which reacts with the organic-metal including gas and whose density is smaller than that of the organic-metal including gas. The gas-spouting port of the first gas-introducing tube and the gas-spouting port of the second gas-introducing tube are arranged along an outside periphery of the substrate arranged in the reaction container.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: January 26, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Kazuhide Hasebe, Hiroyuki Yamamoto, Takahito Umehara, Masato Kawakami
  • Patent number: 7651730
    Abstract: A silicon oxide film is formed on a target substrate by CVD, in a process field configured to be selectively supplied with an Si-containing gas, an oxidizing gas, and a deoxidizing gas. This method alternately includes first to fourth steps. The first step is arranged to perform supply of the Si-containing gas to the process field while stopping supply of the oxidizing and deoxidizing gases to the process field. The second step is arranged to stop supply of the Si-containing, oxidizing, and deoxidizing gases to the process field. The third step is arranged to perform supply of the oxidizing and deoxidizing gases to the process field at the same time, while stopping supply of the Si-containing gas to the process field. The fourth step is arranged to stop supply of the Si-containing, oxidizing, and deoxidizing gases to the process field.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: January 26, 2010
    Assignee: Tokyo Electron Limited
    Inventor: Kazuhide Hasebe
  • Publication number: 20100000607
    Abstract: The present invention provides a method of producing a nanocomposite film on a substrate. The method involves co-deposition of gaseous lead salt clusters in a conducting polymer film, such as a conductive polythiophene, on the substrate. The polymer film preferably is simultaneously deposited with the lead salt clusters, e.g., by co-depositing organic monomers and/or oligomers onto the substrate in the presence of gaseous lead salt clusters. Preferred lead salts are PbS, PbTe and PbSe. Devices and articles of manufacture including a nanocomposite film of the invention are also disclosed.
    Type: Application
    Filed: September 12, 2007
    Publication date: January 7, 2010
    Inventors: Luke Hanley, Igor L. Bolotin, Daniel J. Asunskis, Amanda T. Wroble, Adam M. Zachary
  • Patent number: 7638167
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: December 29, 2009
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Publication number: 20090311500
    Abstract: A CVD process is defined for producing a ruthenium dioxide or ruthenium metal like coating on an article. The article is preferably for use as an architectural glazing, and preferably has low emissivity and solar control properties. The method includes providing a heated glass substrate having a surface on which the coating is to be deposited. A ruthenium containing precursor, an oxygen containing compound, and optionally water vapor, in conjunction with an inert carrier gas, are directed toward and along the surface to be coated and the ruthenium containing precursor and the oxygen containing compound are reacted at or near the surface of the glass substrate to form a ruthenium dioxide coating.
    Type: Application
    Filed: November 21, 2006
    Publication date: December 17, 2009
    Applicants: PILKINGTON NORTH AMERICA, INC., PILKINGTON GROUP LIMITED
    Inventors: Liang Ye, Michael P. Remington, JR.
  • Publication number: 20090291211
    Abstract: Example embodiments provide an atomic layer deposition apparatus and a method of depositing an atomic layer using the atomic layer deposition apparatus. The atomic layer deposition apparatus may include a reaction chamber, a substrate supporter installed in the reaction chamber to support a substrate, and a shower head that is disposed above the substrate supporter and has at least one nozzle set that simultaneously inject a first source gas, a second source gas, and a purge gas onto the substrate. The method of depositing an atomic layer may include moving at least one of the substrate and the shower head in a first direction and simultaneously depositing at least one first atomic layer and at least one second atomic layer on the substrate by injecting the first source gas, the second source gas, and the purge gas through the shower head while the moving operation is performed.
    Type: Application
    Filed: November 21, 2008
    Publication date: November 26, 2009
    Inventors: Myung-kwan Ryu, Kyung-bae Park, Sang-yoon Lee, Tae-sang Kim, Jang-yeon Kwon, Byung-wook Yoo, Kyung-seok Son, Ji-sim Jung
  • Patent number: 7622153
    Abstract: This invention discloses a method of making an oxygen scavenging particle comprised of an activating component and an oxidizable component wherein one component is deposited upon the other component from a vapour phase and is particularly useful when the activating component is a protic solvent hydrolysable halogen compound and the oxygen scavenging particle is a reduced metal.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: November 24, 2009
    Assignee: M&G USA Corporation
    Inventor: Kevin L. Rollick
  • Patent number: 7615251
    Abstract: A processing device, comprising a processing container, a shower head structure provided at the ceiling part of the processing container and having a plurality of gas jetting holes for jetting specified processing gas into the processing container formed in the gas jetting surface thereof facing the inside of the processing container, and a placing stand disposed in the processing container so as to face the shower head structure, wherein a head distance between the gas jetting surface and the placing stand and the blowing speed of gas from the gas jetting holes are set within the range surrounded by connecting, in a square shape with straight lines in a plane coordinate system having the head distance plotted on an abscissa and the gas jetting speed plotted on a coordinate, a point where the blowing speed of the gas from the gas jetting holes at the head distance of 15 mm is 32 m/sec, a point where the blowing speed of the gas from the gas jetting holes at the head distance of 15 mm is 67 m/sec, a point wher
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: November 10, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Akinobu Kakimoto, Kentaro Oshimo, Masahiko Matsudo
  • Patent number: 7608301
    Abstract: This relates to an improvement to the process of aluminization or activated cementation in which a donor cement containing the aluminium is attacked at high temperature and in a neutral or reducing atmosphere by a gaseous ammonium halide to form a gaseous aluminium halide which decomposes on contact with a nickel-based substrate depositing aluminium metal thereon. According to the invention the aluminium halide is at least partly replaced by a zirconium halide leading to the inclusion of zirconium in the deposit. Improvement in the protection of the hot parts of aircraft engines made of nickel-based superalloy. No figure is to be published.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: October 27, 2009
    Assignees: ONERA (Office National d'Etudes et de Recherches Aerospatiales), SNECMA Moteurs
    Inventors: Marie-Pierre Bacos, Pierre Josso, Serge Naveos
  • Patent number: 7608299
    Abstract: The invention relates to the deposition of thin silver films on various substrates, particularly superconductor substrates. The method consists of CVD deposition of silver on a substrate with the aid of a silver precursor solution. The silver precursor is an RCO2Ag silver carboxylate, wherein R is a linear or branched radical having 3-7 carbon atoms, used in the form of an organic liquid solution. The precursor concentration of the solution ranges from 0.01 to 0.6 mol/l. The organic liquid comprises an amine and/or a nitrile and, optionally, a solvent whose evaporation temperature is lower than the decomposition temperature of the precursor. The percentage by volume of the amine and/or nitrile in the organic liquid is more than 0.1%.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: October 27, 2009
    Assignees: Centre National de la Recherche Scientifique, Qualiflow Therm
    Inventors: Jean-Manuel Decams, Hervé Guillon, Pascal Doppelt
  • Publication number: 20090263580
    Abstract: An apparatus for manufacturing a quantum-dot element is disclosed. The apparatus includes a reaction chamber for evaporating or sputtering at least one electrode layer or at least one buffer layer on the substrate. The substrate-supporting base is located inside the reaction chamber for fixing the substrate. The atomizer has a gas inlet and a sample inlet. More specifically, the gas inlet and the sample inlet feed the atomizer respectively with a gas and a precursor solution having a plurality of functionalized quantum dots, and thereby form a quantum-dot layer on the substrate. The apparatus of the present invention can form a quantum dot layer with uniformly distributed quantum dots and integrate the processes for forming a quantum-dot layer, a buffer layer, and an electrode layer together at the same chamber. Therefore, the quality of produced element can be substantially improved.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 22, 2009
    Applicant: Industrial Technology Research Institute
    Inventors: Hsueh-Shih CHEN, Dai-Luon Lo, Gwo-Yang Chang, Chien-Ming Chen
  • Patent number: 7597951
    Abstract: The present invention relates to a metal cutting tool insert with a coating comprising a metal oxide multilayer, which exhibits especially high resistance to plastic deformation as well as excellent resistance to flank and crater wear and high resistance to flaking, particular when used for machining of low carbon steel and stainless steel. The invention also relates to a method of making such a cutting tool insert.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: October 6, 2009
    Assignee: Sandvik Intellectual Property AB
    Inventors: Carl Björmander, Markus Rodmar
  • Publication number: 20090246373
    Abstract: A metal film with a lowered resistance by controlling a crystal structure. A tungsten film is formed through a first tungsten film formation in which a first tungsten film with amorphous content is formed by alternately executing multiple times a supplying a metal base material gas such as WF6 gas and supplying a hydrogen compound gas such as SiH4 gas, with a purge executed between the two gas supply by supplying an inert gas such as Ar gas or N2 gas and a second tungsten film formation in which a second tungsten film is formed by simultaneously supplying the WF6 gas and a reducing gas such as H2 gas onto the first tungsten film. The amorphous content in the first tungsten film is controlled by adjusting the length of time over which the purge is executed following the SiH4 gas supply.
    Type: Application
    Filed: July 6, 2006
    Publication date: October 1, 2009
    Applicant: Tokyo Electron Limited
    Inventors: Mitsuhiro Tachibana, Masahito Sugiura, Takashi Nishimori, Kohichi Satoh
  • Patent number: 7595088
    Abstract: A method of depositing a silicon oxide layer over a substrate having a trench formed between adjacent raised surfaces. In one embodiment the silicon oxide layer is formed in a multistep process that includes depositing a first portion of layer over the substrate and within the trench by forming a high density plasma process that has simultaneous deposition and sputtering components from a first process gas comprising a silicon source, an oxygen source and helium and/or molecular hydrogen with highD/S ratio, for example, 10-20 and, thereafter, depositing a second portion of the silicon oxide layer over the substrate and within the trench by forming a high density plasma process that has simultaneous deposition and sputtering components from a second process gas comprising a silicon source, an oxygen source and molecular hydrogen with a lowerD/S ratio of, for example, 3-10.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: September 29, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Bikram Kapoor, M. Ziaul Karim, Anchuan Wang
  • Patent number: 7592254
    Abstract: The present invention provides methods for conformally or superconformally coating and/or uniformly filling structures with a continuous, conformal layer or superconformal layer. Methods of the present invention improve conformal or superconformal coverage of surfaces and improve fill in recessed features compared to conventional physical deposition and chemical deposition methods, thereby minimizing formation of voids or gaps in a deposited conformal or superconformal layer. The present methods are capable of coating or filling features useful for the fabrication of a broad class of electronic, electrical and electromechanical devices.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 22, 2009
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John R. Abelson, Sreenivas Jayaraman, Gregory S. Girolami, Yu Yang, Do Young Kim
  • Patent number: 7592043
    Abstract: A method and apparatus for forming patterned coatings of thin film, non-polymerizable compounds on a substrate. A mixture of the non-polymerizable compound and a liquid carrier is pumped into the interior of a heated evaporation box having an internal temperature sufficient to convert substantially all of the non-polymerizable compound and liquid carrier to a gaseous form. The non-polymerizable compound and liquid carrier are then removed from the evaporation box via exit slit in the evaporation box. Adjacent to the exit slit, and maintained in a vacuum, is a first substrate upon which the non-polymerizable compound condenses. The first substrate is in motion, for example on a web roller, thereby allowing a continuous coating of the non-polymerizable compound to be applied to the first substrate. Once the non-polymerizable compound is applied to one side of the first substrate, an energy source is then directed toward the opposite side of the first substrate.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: September 22, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Paul E. Burrows, Linda S. Sapochak
  • Patent number: 7588804
    Abstract: Reactors having isolated gas connectors, systems that include such reactors, and methods for depositing materials onto micro-devices workpieces are disclosed herein. In one embodiment, a reactor for depositing material onto a micro-device workpiece includes a reaction chamber, a lid attachable to the reaction chamber, and a connector. The connector has a first portion coupled to the lid, a second portion coupled to the reaction chamber, a gas passageway extending through the first and second portions, and a seal. The seal can surround the gas passageway between the first and second portions. The first portion is detachably coupled to the second portion. In one aspect of this embodiment, the connector can also include a second gas passageway extending through the first and second portions and a second seal surrounding the second gas passageway between the first and second portions.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: September 15, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Ross S. Dando
  • Publication number: 20090226604
    Abstract: To provide a film forming apparatus capable of using an expensive organic EL raw material without waste and uniformly forming an organic EL film over a long period of time and a jig therefor. A plurality of ejection vessels are provided for a single raw material container section. A switcher is provided for carrying out switching from a piping system, which evaporates an organic EL raw material in the raw material container section and supplies it along with a carrier gas to one of the ejection vessels, to a piping system for another ejection vessel. In this manner, by supplying the organic EL raw material from the single raw material container section to the plurality of ejection vessels by switching, the use efficiency of the organic EL raw material can be improved.
    Type: Application
    Filed: September 5, 2006
    Publication date: September 10, 2009
    Applicants: TOHOKU UNIVERSITY, TOKYO ELECTRON LIMITED, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tadahiro Ohmi, Takaaki Matsuoka, Shozo Nakayama, Hironori Ito
  • Publication number: 20090226758
    Abstract: A method for coating a tool or tool part, includes providing a base structure of the tool or the tool part at a temperature of 850° C. to 950° C. and applying at least one layer to the base structure. One or more layers of the at least one layer is formed of a metal carbonitride of composed of at least one of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium. The one or more layers of the at least one layer is deposited by a deposition of a gas containing methane, nitrogen and at least one metal compound. After beginning the applying, the temperature is increased by at least 40° C. to an increased temperature and the deposition is continued for a time at the increased temperature.
    Type: Application
    Filed: November 16, 2006
    Publication date: September 10, 2009
    Applicant: BOEHLERIT GMBH & CO. KG
    Inventors: Reinhard Pitonak, Jose Garcia, Ronald Weissenbacher, Klaus Ruetz-Udier
  • Patent number: 7585545
    Abstract: The invention is a method of vacuum evaporation of a multi-element sulfur bearing thin film compositions onto a substrate. The method comprises targeting a source of gas or vapour sulfur species at one or more source materials that make up at least part of the thin film composition during evaporation of the source materials. The sulfur species is heated to a high temperature as it reaches the one or more source materials and there is a chemical interaction of the sulfur species with evaporant from the one or more source materials during deposition of said thin film composition. The method is particularly useful for the deposition of phosphors for full colour ac electroluminescent displays employing thick film dielectric layers with a high dielectric constant.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: September 8, 2009
    Assignee: Ifire IP Corporation
    Inventors: Yongbao Xin, Joe Acchione, Terry Hunt
  • Publication number: 20090214784
    Abstract: The transporting device according to the invention, in particular for transporting sheet-like substrates through a coating installation, comprises transporting rollers which are rotatably mounted on both sides and horizontally arranged transversely in relation to the transporting direction, the uppermost surface lines of the transporting rollers defining the transporting plane, and is characterized in that the end parts of the transporting rollers have a smaller diameter than the middle part of the transporting rollers and in that baffles which are mounted displaceably in the axial direction of the transporting rollers between a first position and a second position are arranged between the end parts of the transporting rollers and the transporting plane. The fact that the baffles are mounted in an axially displaceable manner has the effect of considerably extending the cleaning intervals of the transporting device.
    Type: Application
    Filed: April 7, 2006
    Publication date: August 27, 2009
    Applicants: VON ARDENNE ANLAGENTECHNIK GMBH, FRIST SOLAR INC.
    Inventors: Hubertus Von Der Waydbrink, Georg Laimer, Siegfried Scheibe, Ricky C. Powell, James Ernest Hinkle, James B. Foote
  • Publication number: 20090202721
    Abstract: A method for thin film formation that can form, at a low temperature, a good thin film having a good interfacial property between a silicon substrate and a silicon oxide film and having a low interfacial trap density is provided.
    Type: Application
    Filed: March 14, 2006
    Publication date: August 13, 2009
    Inventors: Hiroshi Nogami, Katsuhisa Yuda, Hiroshi Tanabe
  • Patent number: 7572647
    Abstract: A coil is provided for use in a semiconductor processing system to generate a plasma with a magnetic field in a chamber. The coil comprises a first coil segment, a second coil segment and an internal balance capacitor. The first coils segment has a first end and a second end. The first end of the coil segment is adapted to connect to a power source. The second coil segment has a first and second end. The second end of the first coil segment is adapted to connect to an external balance capacitor. The internal balance capacitor is connected in series between the second end of the first coil segment and the first end of the second coil segment. The internal balance capacitor and the coil segments are adapted to provide a voltage peak along the first coil segment substantially aligned with a virtual ground along the second coil segment.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Robert Chen, Canfeng Lai, Xinglong Chen, Weiyi Luo, Zhong Qiang Hua, Siqing Lu, Muhammad Rasheed, Qiwei Liang, Dmitry Lubomirsky, Ellie Y. Yieh
  • Patent number: 7566477
    Abstract: A system and method for vaporizing a solid film precursor and transporting the film precursor vapor using a precursor valve system to control delivery. The film precursor vaporization system is positioned above and coupled to the process chamber. The precursor valve system, coupled to the film precursor vaporization system, is utilized to open and close the flow of film precursor vapor from the film precursor vaporization system to the process chamber.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 28, 2009
    Assignee: Tokyo Electron Limited
    Inventor: Jozef Brcka
  • Publication number: 20090186194
    Abstract: A process for coating of at least one conformal thin film simultaneously onto the surface of a plurality or batch of substrates having nanoscaled features is provided. The process involves exposing a batch of substrates to a supercritical fluid mixture in a controlled environment, and subsequently heating and cooling the substrate, in the presence of the supercritical fluid mixture, beyond a threshold temperature at which film growth can be enabled to initiate conformal thin film deposition on the surface of the substrate and within the nanoscaled features. The supercritical fluid mixture may be generated in a manner so as to maintain a necessary concentration level of the precursor material to permit sufficient thin film growth within the controlled environment. The supercritical fluid mixture may also be introduced into the controlled environment in a manner which minimizes precipitation or loss of solubility of the precursor material in the mixture.
    Type: Application
    Filed: April 25, 2008
    Publication date: July 23, 2009
    Inventor: Robert W. Grant
  • Patent number: 7556839
    Abstract: A process for producing a semiconductor device, in which in the formation of a boron doped silicon film from, for example, monosilane and boron trichloride by vacuum CVD technique, there can be produced a film excelling in inter-batch homogeneity with respect to the growth rate and concentration of a dopant element, such as boron. The process includes the step of performing the first purge through conducting at least once of while a substrate after treatment is housed in a reaction furnace, vacuuming of the reaction furnace and inert gas supply thereto and the steps of performing the second purge through conducting at least once of after carrying of the substrate after treatment out of the reaction furnace, prior to carrying of a substrate to be next treated into the reaction furnace and while at least no product substrate is housed in the reaction furnace, vacuuming of the reaction furnace and inert gas supply thereto.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: July 7, 2009
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Takaaki Noda, Kenichi Suzaki
  • Patent number: 7553468
    Abstract: Provided is a production method for producing a solid product by a reaction of gaseous raw materials with a plurality of components including a step of conducting the reaction using a reactor disposed in a vertical direction; a step of feeding the gaseous raw materials with a plurality of components from the upper part of the reactor; a step of, in the lower part of the reactor, forming a seal gas layer composed of a gas having a high density and fed continuously from the lower part of the reactor; a step of discharging an exhaust gas containing a by-product gas generated by the reaction and unreacted gaseous raw materials from somewhere in the upper part of the formed seal gas layer; and a step of accommodating a solid product in the seal gas layer of the lower part.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 30, 2009
    Assignee: Chisso Corporation
    Inventors: Shuuichi Honda, Toru Tanaka, Satoshi Hayashida
  • Publication number: 20090148704
    Abstract: A vapor-phase process apparatus and a vapor-phase process method capable of satisfactorily maintaining quality of processes even when different types of processes are performed are obtained. A vapor-phase process apparatus includes a process chamber, gas supply ports serving as a plurality of gas introduction portions, and a gas supply portion (a gas supply member, a pipe, a flow rate control device, a pipe, and a buffer chamber). The process chamber allows flow of a reaction gas therein. The plurality of gas supply ports are formed in a wall surface (upper wall) of the process chamber along a direction of flow of the reaction gas. The gas supply portion can supply a gas into the process chamber at a different flow rate from each of one gas supply port and another gas supply port different from that one gas supply port among the plurality of gas supply ports.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 11, 2009
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Eiryo TAKASUKA, Toshio Ueda, Toshiyuki Kuramoto, Masaki Ueno
  • Patent number: 7544631
    Abstract: The present invention provides for titanium oxide-based photocatalysts having a general formula of TiO2-X-?CXN? and self-cleaning materials that are prepared by substituting O of pure TiO2 with C and N. A preparation method comprising a process for forming thin films of TiO2-X-?CXN? by using gases such as Ar, N2, CO2, CO and O are used for reactive sputtering, and a process of heat treating at around 500° C., thereby crystallizing, is provided. The titanium oxide-based photocatalysts having a general formula of TiO2-X-?CXN? and self-cleaning materials according to the present invention have a smaller optical bandgap compared to pure titanium oxides, and therefore, the photocatalysts can be activated under the visible light range. In addition, they comprise only pure anatase crystallization phase, and since the crystallized particles are small in size, the efficiency and self-cleaning effect of the photocatalysts are very high.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: June 9, 2009
    Assignee: Korea Institute of Science and Technology
    Inventors: Won-Kook Choi, Yeon-Sik Jung, Dong-Heon Kang, Kyung-Ju Lee
  • Publication number: 20090136682
    Abstract: In a process for fabricating a nanopore device, at least one carbon nanotube catalyst region is formed on a structure. A plurality of nanopores is formed in the structure at a distance from the catalyst region that is no greater than about an expected length for a carbon nanotube synthesized from the catalyst region. Then at least one carbon nanotube is synthesized from the catalyst region. This fabrication sequence enables the in situ synthesis of carbon nanotubes at the site of nanopores, whereby one or more nanotubes articulate one or more nanopores without requiring manual positioning of the nanotubes.
    Type: Application
    Filed: October 2, 2008
    Publication date: May 28, 2009
    Applicant: President and Fellows of Harvard College
    Inventors: Daniel Branton, Jene A. Golovchenko, Slaven Garaj, Dimitar M. Vlassarev, El-Hadi S. Sadki
  • Publication number: 20090136667
    Abstract: Method of forming a low dielectric k porous film on a substrate, comprising reacting at least a film matrix precursor compound having silicon, carbon, oxygen and hydrogen atoms, and either at least a pore-forming compound, of the formula (I) wherein R represents: either a linear or branched, saturated or non saturated hydrocarbon radical, or a cyclic saturated or unsaturated hydrocarbon radical, or at least one of the following pore-forming compounds: 1-methyl-4-(1-methyl ethyl)-7-oxabicyclo[2.2.1.]heptane, 1,3,3-trimethyl-2-oxabicyclo[2.2.1.]octane or 1,8-cineole, or 1-methyl-4-(1-methyl ethenyl)-7-oxabicyclo[4.1.0.]heptane; New precursor precursor mixture, and the use of a compound of formula (I), as a pore-forming compound in a chemical vapor deposition of a low dielectric k film on a substrate.
    Type: Application
    Filed: March 20, 2007
    Publication date: May 28, 2009
    Inventors: Joanne Deval, Manon Vautier
  • Publication number: 20090104460
    Abstract: An article of manufacture, or a component part thereof, having a decorative coating comprising a coating of silicon or a coating of hydrogenated amorphous silicon functionalized with a binding agent. A method of applying a decorative coating to the surface of an article of manufacture, or to the surface of a component part of an article of manufacture, by depositing a silicon coating on the surface to be decorated using silicon hydride gas, or by depositing a coating of hydrogenated amorphous silicon on the surface to be decorated and functionalizing the hydrogenated amorphous silicon coating with a binding agent.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 23, 2009
    Inventor: Gary Barone
  • Patent number: 7517557
    Abstract: An object of the present invention is to produce an oxide film having good surface morphology and crystal quality, by a metal organic chemical vapor deposition using two or more raw material gases of metal organic compounds and oxygen gas. It is used a film forming system having a first supply hole 11A, a second supply hole 11B, a third supply hole 11C and a film forming chamber 7. A first raw material gas “A” containing a first metal organic compound is supplied through the first supply hole 11A into the chamber 7. A second raw material gas “B” containing the second metal organic compound is supplied through the second supply hole 11B into the chamber 7, and oxygen gas “C” is supplied through the third supply hole 11C into the chamber 7. The oxygen gas “D” contacts the first raw material gas “E” before the oxygen gas is mixed with the second raw material gas “F” in the chamber 7.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: April 14, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Iwai, Makoto Ohmori, Takashi Yoshino, Minoru Imaeda
  • Publication number: 20090081886
    Abstract: A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material. A system capable of carrying out such a process is also disclosed.
    Type: Application
    Filed: September 26, 2007
    Publication date: March 26, 2009
    Inventors: David H. Levy, Roger S. Kerr, Jeffrey T. Carey
  • Publication number: 20090081885
    Abstract: A process for depositing a thin film material on a substrate is disclosed, comprising simultaneously directing a series of gas flows from the output face of a delivery head of a thin film deposition system toward the surface of a substrate, and wherein the series of gas flows comprises at least a first reactive gaseous material, an inert purge gas, and a second reactive gaseous material, wherein the first reactive gaseous material is capable of reacting with a substrate surface treated with the second reactive gaseous material, wherein one or more of the gas flows provides a pressure that at least contributes to the separation of the surface of the substrate from the face of the delivery head. A system capable of carrying out such a process is also disclosed.
    Type: Application
    Filed: September 26, 2007
    Publication date: March 26, 2009
    Inventors: David H. Levy, Roger S. Kerr, Jeffrey T. Carey
  • Publication number: 20090075024
    Abstract: A method for producing a ceramic thermal barrier coating on a component part for use in compressor and turbine components by a vapor depositing process, and a ceramic thermal barrier coating, is disclosed. The method includes: a) provision of a ceramic vapor for depositing on the component part; b) depositing of the ceramic vapor on the component part to form a thermal barrier coating having a columnar structure, the columns being oriented substantially perpendicular to a surface of the component part; and c) varying of at least one method parameter during method step b) such that the resultant thermal barrier coating has columns of alternating decreasing and increasing diameters. The ceramic thermal barrier coating has a columnar structure and the columns are oriented substantially perpendicular to a surface of the corresponding part. The columns have alternately decreasing and increasing diameters.
    Type: Application
    Filed: March 2, 2007
    Publication date: March 19, 2009
    Applicant: MTU Aero Engines GmbH
    Inventor: Thomas Cosack
  • Patent number: 7498059
    Abstract: The invention relates to a method and apparatus for growing a thin film onto a substrate, in which method a substrate placed in a reaction space (21) is subjected to alternately repeated surface reactions of at least two vapor-phase reactants for the purpose of forming a thin film. According to the method, said reactants are fed in the form of vapor-phase pulses repeatedly and alternately, each reactant separately from its own source, into said reaction space (21), and said vapor-phase reactants are brought to react with the surface of the substrate for the purpose of forming a solid-state thin film compound on said substrate. According to the invention, the gas volume of said reaction space is evacuated by means of a vacuum pump essentially totally between two successive vapor-phase reactant pulses.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: March 3, 2009
    Assignee: ASM America, Inc.
    Inventors: Tuomo Suntola, Sven Lindfors
  • Patent number: 7491660
    Abstract: A method is provided for making a FET device in which a nitride layer overlies the PFET gate structure, where the nitride layer has a compressive stress with a magnitude greater than about 2.8 GPa. This compressive stress permits improved device performance in the PFET. The nitride layer is deposited using a high-density plasma (HDP) process, wherein the substrate is disposed on an electrode to which a bias power in the range of about 50 W to about 500 W is supplied. The bias power is characterized as high-frequency power (supplied by an RF generator at 13.56 MHz). The FET device may also include NFET gate structures. A blocking layer is deposited over the NFET gate structures so that the nitride layer overlies the blocking layer; after the blocking layer is removed, the nitride layer is not in contact with the NFET gate structures. The nitride layer has a thickness in the range of about 300-2000 ?.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: February 17, 2009
    Assignees: International Business Machines Corporation, Novellus Systems. Inc.
    Inventors: Richard A. Conti, Ronald P. Bourque, Nancy R. Klymko, Anita Madan, Michael C. Smits, Roy H. Tilghman, Kwong Hon Wong, Daewon Yang
  • Publication number: 20090035516
    Abstract: Disclosed are an organometallic precursor that may be used in manufacturing a semiconductor device, a thin film having the same, a metal wiring including the thin film, a method of forming a thin film and a method of manufacturing a metal wiring. An organometallic precursor including a central metal, a borohydride ligand and an amine ligand for reducing a polarity of the organometallic precursor may be provided onto a substrate, and may be thermally decomposed to form a thin film on the substrate. The organometallic precursor having a reduced polarity may be provided to a chamber with a constant flow rate, and thus stability and/or efficiency of a semiconductor manufacturing process may be improved.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 5, 2009
    Inventors: Youn-Joung Cho, Jung-Ho Lee, Jun-Hyun Cho, Seung-Min Ryu, Kyoo-Chul Cho, Jung-Sik Choi
  • Patent number: 7485338
    Abstract: A method for precursor delivery includes transferring a precursor vapor from a precursor vaporization system to an intermediate precursor chamber, collecting the precursor vapor in the intermediate precursor chamber, flowing a process gas containing the collected precursor vapor to a process chamber, and exposing a substrate in the process chamber to the process gas to deposit a layer including at least one element from the precursor vapor on the substrate.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: February 3, 2009
    Assignee: Tokyo Electron Limited
    Inventor: Jacques Faguet
  • Patent number: 7485339
    Abstract: A method for chemical vapor deposition (CVD) comprises injecting a purge gas into a reaction chamber where substrates are located; and supplying a source material of vapor phase participating directly in forming a film on the substrates to an inside of the reaction chamber, thus forming a protective curtain in the inside of the reaction chamber by a mutual diffusion-suppressing action between the purge gas and source material.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: February 3, 2009
    Inventor: Chulsoo Byun
  • Patent number: 7479303
    Abstract: Disclosed is a method of chemical vapor deposition (CVD). The method provides for use of a showerhead through which a source material gas including a reactive gas of at least one kind and a purge gas is injected over a substrate located in a reaction chamber to deposit a film on the substrate. The showerhead has reactive gas outlets surrounded by purge gas outlets. The bottom surface of the showerhead is spaced apart from the substrate by a predetermined distance. Reactive gases of different kinds are injected into compartments formed inside the showerhead so that each compartment of the showerhead is filled with the reactive gas of only one kind, and a purge gas of the source material gas is supplied into another compartment formed inside the showerhead. The reactive gas and the purge gas are discharged through the reactive gas outlets and purge gas outlets. Preferably, there are more purge gas outlets than reactive gas outlets.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: January 20, 2009
    Assignee: Piezonica Co., Ltd.
    Inventor: Chul Soo Byun
  • Patent number: 7470450
    Abstract: A silicon nitride film may be deposited on a work piece using conventional deposition techniques and a selected source for use as a silicon precursor. A nitrogen precursor may also be selected for film deposition. Using the selected precursor(s), the temperature for deposition may be 500° C., or less.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: December 30, 2008
    Assignee: Intel Corporation
    Inventors: Michael L. McSwiney, Mansour Moinpour, Michael D. Goodner
  • Patent number: 7455884
    Abstract: A method for atomic layer deposition providing a dispenser unit used to prevent mixing of a precursor gas and an input gas. From the dispenser unit a flow of the input gas is provided over a surface of the workpiece wherein a beam of the electromagnetic radiation is directed into the input gas in close proximity to the surface of the workpiece, but spaced a finite distance therefrom. The input gas is dissociated by the beam producing a high flux point of use generated reactive gas species that reacts with a surface reactant formed on the surface of the workpiece by a direct flow of the precursor gas flown from the dispensing unit. The surface reactant and reactive gas species react to form a desired monolayer of a material on the surface of the workpiece.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: November 25, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 7452827
    Abstract: A method of processing a semiconductor workpiece. The method includes flowing a process gas to a semiconductor workpiece through a first plurality of orifices positioned in a gas distribution faceplate. The method also includes removing gas from over the semiconductor workpiece through a chamber exhaust port and a second plurality of orifices positioned in the gas distribution faceplate.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 18, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Steven Gianoulakis, Karthik Janakiraman
  • Patent number: 7438955
    Abstract: A procedure for the synthesis of titanium nitride (TiN) thin films on metal substrate by vapor deposition using a magnetized sheet plasma source is disclosed. TiN films on metal substrate exhibiting the stoichiometric TiN and Ti2N were synthesized in a mixed N2/Ar plasma with initial gas filing ratio of preferably 1:3 under the following conditions: total initial gas filing pressure of at least about 40 mTorr, plasma current in the range of about 2A to 3A and plasma discharge potential in the range of about 125V to about 150V.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: October 21, 2008
    Assignees: Philippine Council for Advanced Science and Technology Research and Development, University of the Philippines Diliman
    Inventor: Henry J. Ramos
  • Publication number: 20080254232
    Abstract: An interconnect structure for integrated circuits incorporates a layer of cobalt nitride that facilitates the nucleation, growth and adhesion of copper wires. The cobalt nitride may deposited on a refractory metal nitride or carbide layer, such as tungsten nitride or tantalum nitride, that serves as a diffusion barrier for copper and also increases the adhesion between the cobalt nitride and the underlying insulator. The cobalt nitride may be formed by chemical vapor deposition from a novel cobalt amidinate precursor. Copper layers deposited on the cobalt nitride show high electrical conductivity and can serve as seed layers for electrochemical deposition of copper conductors for microelectronics.
    Type: Application
    Filed: April 9, 2008
    Publication date: October 16, 2008
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Roy G. GORDON, Hoon KIM, Harish BHANDARI
  • Patent number: 7431998
    Abstract: The invention relates to a tool, especially a cutting tool, comprising a substrate member onto which at least one layer is deposited by means of CVD, and a method for the chemical vapor deposition of a two-phase layer on a sintered part. According to the invention, the single deposited layer or at least one of the layers is provided with a TiCN phase, TiOCN phase, TiOC phase, or TiC phase and an additional phase consisting of ZrO2 and/or HfO2. CH3CN, C5H5N, or C6H6 is used in the gas atmosphere for producing such a layer in addition to TiCl4, HfCl4, and/or ZrCl4 and CO2, the remainder being composed of H2 and/or Ar.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: October 7, 2008
    Assignee: Kennametal Widia Produktions GmbH & Co. KG
    Inventors: Volkmar Sottke, Hartmut Westphal, Hendrikus Van Den Berg
  • Patent number: 7431967
    Abstract: A method of filling a gap on a substrate includes providing flows of silicon-containing processing gas oxidizing processing gas, and phosphorous-containing processing gas to a chamber housing the substrate and depositing a first portion of a P-doped silicon oxide film as a substantially conformal layer in the gap by causing a reaction among the processing gases and varying over time a ratio of the gases. The temperature of the substrate is maintained below about 500° C. throughout deposition of the conformal layer. The method also includes depositing a second portion of the P-doped silicon oxide film as a bulk layer by maintaining the ratio of the gases substantially constant throughout deposition of the bulk layer. The temperature of the substrate is maintained below about 500° C. throughout deposition of the bulk layer.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Zheng Yuan, Shankar Venkataraman, Cary Ching, Shang Wong, Kevin Mikio Mukai, Nitin K. Ingle
  • Patent number: 7431968
    Abstract: A method of fabricating an organic film is provided. A non-reactive carrier gas is used to transport an organic vapor. The organic vapor is ejected through a nozzle block onto a cooled substrate, to form a patterned organic film. A device for carrying out the method is also provided. The device includes a source of organic vapors, a source of carrier gas and a vacuum chamber. A heated nozzle block attached to the source of organic vapors and the source of carrier gas has at least one nozzle adapted to eject carrier gas and organic vapors onto a cooled substrate disposed within the vacuum chamber.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: October 7, 2008
    Assignee: The Trustees of Princeton University
    Inventors: Max Shtein, Stephen R. Forrest