Making Electromagnetic Responsive Array Patents (Class 438/73)
  • Patent number: 8476102
    Abstract: A method for manufacturing a solid state image pickup device including a first active region provided with a first conversion unit, a second active region provided with a second conversion unit, and a third active region adjoining the first and the second active regions with a field region therebetween and being provided with a pixel transistor, the method including the steps of ion-implanting first conductivity type impurity ions to form a semiconductor region serving as a potential barrier against the signal carriers at a predetermined depth in the third active region and ion-implanting second conductivity type impurity ions into the third active region with energy lower than the above-described ion-implantation energy.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: July 2, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hideaki Takada, Toru Koizumi, Yasuo Yamazaki, Tatsuya Ryoki
  • Patent number: 8476727
    Abstract: A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: July 2, 2013
    Assignee: InVisage Technologies, Inc.
    Inventors: Hui Tian, Edward Sargent
  • Patent number: 8476725
    Abstract: The present invention is a front-side contact, back-side illuminated (FSC-BSL) photodiode arrays and front-side illuminated, back-side contact (FSL-BSC) photodiode arrays having improved characteristics, including high production throughput, low-cost manufacturing via implementation of batch processing techniques; uniform, as well as high, photocurrent density owing to presence of a large continuous homogeneous, heavily doped layer; and back to front intrachip connections via the homogenous, heavily doped layers on the front and back sides of the substrate.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 2, 2013
    Assignee: OSI Optoelectronics, Inc.
    Inventors: Peter Steven Bui, Narayan Dass Taneja
  • Patent number: 8476101
    Abstract: A method of making a semiconductor radiation detector includes the steps of providing a semiconductor substrate having front and rear major opposing surfaces, forming a solder mask layer over the rear major surface, patterning the solder mask layer into a plurality of pixel separation regions, and after the step of patterning the solder mask layer, forming anode pixels over the rear major surface. Each anode pixel is formed between adjacent pixel-separation regions and a cathode electrode is located over the front major surface of the substrate. The solder mask can be used as a permanent photoresist in developing patterned electrodes on CdZnTe/CdTe devices as well as a permanent reliability protection coating. The method is very robust and ensures long-term reliability, outstanding detector performance, and may be used in applications such as medical imaging and for demanding other highly spectroscopic applications.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: July 2, 2013
    Assignee: Redlen Technologies
    Inventors: Henry Chen, Pramodha Marthandam, Salah Awadalla, Pinghe Lu
  • Patent number: 8476100
    Abstract: A method of forming thin film solar cell includes the following steps. A substrate is provided, and a plurality of first electrodes are formed on the substrate. A printing process is performed to print a light-absorbing material on the substrate and the first electrodes to form a plurality of light-absorbing patterns. Each of the light-absorbing patterns corresponds to two adjacent first electrodes, partially covers the two adjacent first electrodes, and partially exposes the two adjacent first electrodes. A plurality of second electrodes are formed on the light-absorbing patterns.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: July 2, 2013
    Assignee: AU Optronics Corp.
    Inventors: Kuang-Ting Chou, Han-Tang Chou, Ming-Yuan Huang, Han-Tu Lin
  • Publication number: 20130161523
    Abstract: A radiation detector is provided employing a focus grid electrode. The focus grid electrode is biased relative to one or more anode electrodes. In this manner, movement of electrons to the anode electrodes may be enhanced, such as due to a higher electrical field strength in a conversion material and/or due to focusing of the resulting electrical field on the anode electrodes.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 27, 2013
    Applicant: General Electric Company
    Inventors: John Eric Tkaczyk, Vladimir A. Lobastov, Yanfeng Du
  • Publication number: 20130162833
    Abstract: An imaging apparatus includes: a plurality of pixels each of which includes a conversion element and a first transistor of which one of a source and a drain is connected to the conversion element; and a second transistor which is shared by the plurality of pixels and has a gate connected respectively to the other of the source and the drain of the first transistor of each of the plurality of pixels. At least one among the gate, a source, a drain and a channel portion of the second transistor is formed to be extended over the plurality of pixels, and the conversion element is arranged over the first and second transistors.
    Type: Application
    Filed: November 21, 2012
    Publication date: June 27, 2013
    Applicant: Canon Kabushiki Kaisha
    Inventor: Canon Kabushiki Kaisha
  • Publication number: 20130161773
    Abstract: A detector element is disclosed, including a semiconducting converter element and a number of pixilated contacts arranged thereon. A radiation detector is also disclosed including such a detector element, along with a medical device having one or more such radiation detectors. Finally, a method for producing a detector element is disclosed, which includes forming pixelated contacts by way of a photolithographic process on the semiconducting converter element using a lithographic mask arranged on a converter element protective layer.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Inventors: Fabrice DIERRE, Peter HACKENSCHMIED, Hiroshi KATAKABE, Noriyuki KISHI, Christian SCHRÖTER, Hiroyuki SHIRAKI, Matthias STRASSBURG, Mitsuru TAMASHIRO
  • Publication number: 20130155283
    Abstract: An image sensor including a pixel array, each pixel including, in a substrate of a doped semiconductor material of a first conductivity type, a first doped region of a second conductivity type at the surface of the substrate; an insulating trench surrounding the first region; a second doped region of the first conductivity type, more heavily doped than the substrate, at the surface of the substrate and surrounding the trench; a third doped region of the second conductivity type, forming with the substrate a photodiode junction, extending in depth into the substrate under the first and second regions and being connected to the first region; and a fourth region, more lightly doped than the second and third regions, interposed between the second and third regions and in contact with the first region and/or with the third region.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 20, 2013
    Applicants: STMicroelectronics (Crolles2) SAS, STMicroelectronics S.A.
    Inventors: STMicroelectronics S.A., STMicroelectronics (Crolles2) SAS
  • Publication number: 20130153976
    Abstract: Provided is a solid-state imaging apparatus including: a plurality of photoelectric conversion units; an element isolation unit that performs element isolation between the plurality of photoelectric conversion units; and a diffusion prevention unit that prevents diffusion of a dark current component generated on an interfacial surface of the element isolation unit to a region surrounding the dark current component generation region.
    Type: Application
    Filed: November 29, 2012
    Publication date: June 20, 2013
    Applicant: SONY CORPORATION
    Inventor: Sony Corporation
  • Publication number: 20130154047
    Abstract: A photoelectric conversion device includes a substrate, a plurality of photoelectric conversion cells formed on the main surface of the substrate, a current-collecting wiring formed on the plurality of photoelectric conversion cells, an output wiring connected to the current-collecting wiring, and a back-side protective member bonded to the plurality of photoelectric conversion cells via a sealing member in a manner such that the plurality of photoelectric conversion cells formed on the main surface of the substrate are interposed between the substrate and the back-side protective member via the sealing member. The current-collecting wiring and the output wiring are positioned such that the current-collecting wiring and the output wiring do not overlap with each other above the main surface of the substrate.
    Type: Application
    Filed: February 19, 2013
    Publication date: June 20, 2013
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: SANYO Electric Co., Ltd.
  • Patent number: 8466533
    Abstract: A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: June 18, 2013
    Assignee: InVisage Technologies, Inc.
    Inventors: Hui Tian, Edward Sargent
  • Patent number: 8466530
    Abstract: A system and method for image sensing is disclosed. An embodiment comprises a substrate with a pixel region, the substrate having a front side and a backside. A co-implant process is performed along the backside of the substrate opposing a photosensitive element positioned along the front side of the substrate. The co-implant process utilizes a first pre-amorphization implant process that creates a pre-amorphization region. A dopant is then implanted wherein the pre-amorphization region retards or reduces the diffusion or tailing of the dopants into the photosensitive region. An anti-reflective layer, a color filter, and a microlens may also be formed over the co-implant region.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 18, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Tsung Chen, Hsun-Ying Huang, Yung-Cheng Chang, Yung-Fu Yeh, Yu-Ping Chen, Chi-Yuan Liang, Shou Shu Lu, Juan-Lin Chen, Jia-Ren Chen, Horng-Daw Shen, Chi-Hsun Hsieh
  • Publication number: 20130149807
    Abstract: A backside illuminated CMOS image sensor comprises a photo active region formed over a substrate using a front side ion implantation process and an extended photo active region formed adjacent to the photo active region, wherein the extended photo active region is formed by using a backside ion implantation process. The backside illuminated CMOS image sensor may further comprise a laser annealed layer on the backside of the substrate. The extended photo active region helps to increase the number of photons converted into electrons so as to improve quantum efficiency.
    Type: Application
    Filed: March 9, 2012
    Publication date: June 13, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Volume Chien, Szu-An Wu
  • Patent number: 8461451
    Abstract: A vertical multi-junction photovoltaic device includes a structured substrate including a plurality of substantially vertical elongated structures protruding from a planar surface of the structured substrate. An areal density of the elongated structures at a first sliced plane parallel to the planer surface is different than an areal density of the elongated structures at a second sliced plane parallel to the planar surface. The device further includes least a first sub-cell and a second sub-cell, each having a corresponding vertical p-n or p-i-n junction formed of conformal layers, the first sub-cell being formed in a first region incorporating the first sliced plane and the second sub-cell being formed above the first sub-cell in a second region incorporating the second sliced plane.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: June 11, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Ying Jun James Huang, Stephen Day
  • Publication number: 20130143351
    Abstract: A pixel of an image sensor, the pixel includes a floating diffusion node to sense photo-generated charge, a reset diode to reset the floating diffusion node in response to a reset signal, and a set diode to set the floating diffusion node.
    Type: Application
    Filed: January 9, 2013
    Publication date: June 6, 2013
    Applicant: CROSSTEK CAPITAL, LLC.
    Inventor: Jaroslav Hynecek
  • Publication number: 20130140666
    Abstract: A method of preparing self-aligned isolation regions between two neighboring sensor elements on a substrate. The method includes patterning an oxide layer to form an opening between the two neighboring sensor elements on the substrate. The method further includes performing a first implant to form a deep doped region between the two neighboring sensor elements and starting at a distance below a top surface of the substrate. The method further includes performing a second implant to form a shallow doped region between the two neighboring sensor elements, wherein a bottom portion of the shallow doped region overlaps with a top portion of the deep doped region.
    Type: Application
    Filed: January 8, 2013
    Publication date: June 6, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Chi FU, Kai TZENG, Wen-Chen LU
  • Publication number: 20130143350
    Abstract: An embodiment of the invention discloses a manufacture method of a sensor comprising: preparing gate scanning lines on a substrate; depositing a gate insulating layer on the gate scanning lines; sequentially depositing a gate insulation thin film, an active layer thin film, an ohmic contact layer thin film, a first conducting layer thin film and a photoelectric conversion layer thin film, and after the depositing, processing a lamination structure of the thin films with a gray-tone mask plate to obtain switch devices and photoelectric sensing devices; and then sequentially preparing a first passivation layer, bias lines and a second passivation layer.
    Type: Application
    Filed: November 8, 2012
    Publication date: June 6, 2013
    Applicant: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Shaoying Xu, Zhenyu Xie, Xu Chen
  • Patent number: 8455294
    Abstract: A method for making the image sensor structure, for avoiding or mitigating lens shading effect. The image sensor structure includes a substrate, a sensor array disposed at the surface of the substrate, a dielectric layer covering the sensor array, wherein the dielectric layer includes a top surface having a dishing structure, an under layer filled into the dishing structure and having a refraction index greater than that of the dielectric layer, a filter array disposed on the under layer corresponding to the sensor array, and a microlens array disposed above the filter array. A top layer may be additionally disposed to cover the filter array and the microlens array is disposed on the top layer.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: June 4, 2013
    Assignee: United Microelectronics Corp.
    Inventor: Cheng-Hung Yu
  • Patent number: 8455293
    Abstract: A method for processing solar cells comprising: providing a vertical furnace to receive an array of mutually spaced circular semiconductor wafers for integrated circuit processing; composing a process chamber loading configuration for solar cell substrates, wherein a size of the solar cell substrates that extends along a first surface to be processed is smaller than a corresponding size of the circular semiconductor wafers, such that multiple arrays of mutually spaced solar cell substrates can be accommodated in the process chamber, loading the solar cell substrates into the process chamber; subjecting the solar cell substrates to a process in the process chamber.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: June 4, 2013
    Assignee: ASM International N.V.
    Inventors: Chris G. M. de Ridder, Klaas P. Boonstra, Adriaan Garssen, Frank Huussen
  • Publication number: 20130134541
    Abstract: A device includes a semiconductor substrate having a front side and a backside. A photo-sensitive device is disposed at a surface of the semiconductor substrate, wherein the photo-sensitive device is configured to receive a light signal from the backside of the semiconductor substrate, and convert the light signal to an electrical signal. An amorphous-like adhesion layer is disposed on the backside of the semiconductor substrate. The amorphous-like adhesion layer includes a compound of nitrogen and a metal. A metal shielding layer is disposed on the backside of the semiconductor substrate and contacting the amorphous-like adhesion layer.
    Type: Application
    Filed: March 14, 2012
    Publication date: May 30, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chieh Chang, Jian-Shin Tsai, Chih-Chang Huang, Ing-Ju Lee, Ching-Yao Sun, Jyun-Ru Wu, Ching-Che Huang, Szu-An Wu, Ying-Lang Wang
  • Publication number: 20130133735
    Abstract: Provided are a solar cell module and a method of manufacturing the same. The solar cell module including: a substrate; a bottom electrode layer discontinuously formed on the substrate; a light absorbing layer formed on the bottom electrode layer and including a first trench that exposes the bottom electrode layer; and a transparent electrode layer extending from the top of the light absorbing layer to the bottom electrode layer at the bottom of the first trench, and including a first oxide layer, a metal layer, and a second oxide layer, all of which are staked on the light absorbing layer and the bottom electrode layer.
    Type: Application
    Filed: September 13, 2012
    Publication date: May 30, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Woo-Seok CHEONG, Rae-Man Park
  • Publication number: 20130126952
    Abstract: A solid-state imaging device includes: a semiconductor substrate; and a plurality of pixels arrayed two-dimensionally in the semiconductor substrate, each of the pixels having a photoelectric conversion element that performs photoelectric conversion, the photoelectric conversion element having a first impurity region, formed in the semiconductor substrate, containing an impurity of a first conductivity type; a second impurity region formed in the semiconductor substrate so as to be in contact with the first impurity region, containing an impurity of a second conductivity type different from the first conductivity type; and a PN junction portion in which the first impurity region and the second impurity region are in contact with each other, formed in a protruding shape projecting toward a surface side of the semiconductor substrate.
    Type: Application
    Filed: January 16, 2013
    Publication date: May 23, 2013
    Applicant: SONY CORPORATION
    Inventor: Satoe MIYATA
  • Publication number: 20130125954
    Abstract: A back metal electrode, a bottom cell using microcrystalline silicon for a photoelectric conversion layer, a front cell using amorphous silicon for a photoelectric conversion layer, and a transparent front electrode are formed in this order on a supporting substrate. At least one of the concentration of impurities contained in the front photoelectric conversion layer and the concentration of impurities contained in the bottom photoelectric conversion layer is controlled such that the concentration of impurities in the bottom photoelectric conversion layer is higher than the concentration of impurities in the front photoelectric conversion layer. Impurities do not include a p-type dopant or an n-type dopant but are any one, two, or all of carbon, nitrogen, and oxygen.
    Type: Application
    Filed: January 11, 2013
    Publication date: May 23, 2013
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: Sanyo Electric Co., Ltd.
  • Publication number: 20130126744
    Abstract: Imaging detectors and methods of manufacturing are provided. One imaging detector includes a first detector layer within a detector module and a second detector layer within the detector module and spaced apart from the first detector layer, wherein the second detector layer has an opening therethrough. The imaging detector also includes a collimator mounted to the detector module, wherein the collimator is one of a single pinhole collimator or a multi-pinhole collimator. Additionally, the second detector layer is mounted within the detector module closer to an opening of the collimator than the first detector layer.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Inventors: Floribertus P.M. Heukensfeldt Jansen, Yaron Hefetz
  • Publication number: 20130125951
    Abstract: Disclosed is a solar cell module that includes: a plurality of solar cells connected with one another in such a manner that electrodes formed on surfaces of neighboring solar cells are connected with each other through a wiring member. A portion of the wiring member bites the electrodes, and the solar cells and the wiring member are bonded to each other by a resin.
    Type: Application
    Filed: November 21, 2012
    Publication date: May 23, 2013
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: SANYO ELECTRIC CO., LTD.
  • Publication number: 20130127003
    Abstract: Disclosed herein is a solid-state imaging element including: a transfer section configured to transfer charge generated simultaneously by a photoelectric conversion section in all pixels to a memory section and have a metal gate; and a light-shielding section formed by filling a metal into a groove portion formed by digging an interlayer insulating film around the transfer section.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 23, 2013
    Applicant: SONY CORPORATION
    Inventor: SONY CORPORATION
  • Patent number: 8445310
    Abstract: The present invention provides a stacked-layered thin film solar cell and manufacturing method thereof The manufacturing method includes the steps of: providing a substrate, a first electrode layer and a first light-absorbing layer; providing a mask with a plurality of patterns above the first light-absorbing layer; forming an interlayer made of an opaque, highly reflective material by providing the mask on the first light-absorbing layer, wherein the interlayer has a plurality of light transmissive regions corresponding to the patterns, and the light transmissive regions are provided to divide the interlayer into a plurality of units; and then depositing a second light-absorbing layer on the units and a second electrode layer on the second light-absorbing layer.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 21, 2013
    Assignee: Nexpower Technology Corp.
    Inventors: Chien-Chung Bi, Chun-Hsiung Lu
  • Publication number: 20130122636
    Abstract: A method for forming an image sensing device is disclosed. An epitaxy layer having the first conductivity type is formed on a substrate, wherein the epitaxy layer comprises a first pixel area corresponding to a first incident light, a second pixel area corresponding to a second incident light, and a third pixel area corresponding to a third incident light. A first deep well is formed in a lower portion of the epitaxy layer for reducing pixel-to-pixel talk of the image sensing device. A second deep well is formed in a lower portion of the epitaxy layer.
    Type: Application
    Filed: January 3, 2013
    Publication date: May 16, 2013
    Applicant: HIMAX IMAGING, INC.
    Inventor: Himax Imaging, Inc.
  • Publication number: 20130122637
    Abstract: A backside illuminated imaging sensor with a seal ring support includes an epitaxial layer having an imaging array formed in a front side of the epitaxial layer. A metal stack is coupled to the front side of the epitaxial layer, wherein the metal stack includes a seal ring formed in an edge region of the imaging sensor. An opening is included that extends from the back side of the epitaxial layer to a metal pad of the seal ring to expose the metal pad. The seal ring support is disposed on the metal pad and within the opening to structurally support the seal ring.
    Type: Application
    Filed: January 7, 2013
    Publication date: May 16, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventor: OMNIVISION TECHNOLOGIES, INC.
  • Patent number: 8441029
    Abstract: To suppress adhesion of impurities to a semiconductor light emitting element, there is provided a nitride-based semiconductor light emitting element including: a laminated body having a first cladding layer, an active layer formed over the first cladding layer, and a second cladding layer formed over the active layer; and a dielectric film with a thickness of 3 ?m or more that is formed on the side surface of the laminated body on the side where light is emitted and that covers at least a first side surface of the active layer.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: May 14, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Chiaki Sasaoka
  • Patent number: 8440495
    Abstract: The present disclosure provides an image sensor semiconductor device. A semiconductor substrate having a first-type conductivity is provided. A plurality of sensor elements is formed in the semiconductor substrate. An isolation feature is formed between the plurality of sensor elements. An ion implantation process is performed to form a doped region having the first-type conductivity substantially underlying the isolation feature using at least two different implant energy.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: May 14, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Cheng Liu, Chin-Hong Cheng, Chien-Hsien Tseng, Alex Hsu, Feng-Jia Shiu, Shou-Gwo Wuu
  • Patent number: 8441090
    Abstract: A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 14, 2013
    Assignee: InVisage Technologies, Inc.
    Inventors: Hui Tian, Edward Sargent
  • Patent number: 8440471
    Abstract: A method of flash-RAM memory includes non-volatile random access memory (RAM) formed on a monolithic die and non-volatile page-mode memory formed on top of the non-volatile RAM, the non-volatile page-mode memory and the non-volatile RAM reside on the monolithic die. The non-volatile RAM is formed of stacks of magnetic memory cells arranged in three-dimensional form for higher density and lower costs.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: May 14, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Rajiv Yadav Ranjan, Parviz Keshtbod, Mahmud Assar
  • Patent number: 8440496
    Abstract: Conductive material grids or lines embedded or partially embedded in a transparent substrate of a solar cell. The grids or lines can have a higher conductivity than the anode or they can have the same conductivity. The grids or lines increase the volume of the anode and, thus decrease sheet resistance of the same.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: May 14, 2013
    Assignee: Solarmer Energy, Inc.
    Inventors: Casey Scott Irvin, Vishal Shrotriya, Yue Wu
  • Publication number: 20130111810
    Abstract: A photovoltaic module for an agricultural greenhouse includes a front plate, intended to be in contact with the sunlight, a back substrate and an assembly of photovoltaic cells arranged between the front plate and the back substrate. The photovoltaic module has a cell packing factor of substantially between 0.2 and 0.8, and includes at least one layer of a light-cascade doped material enhancing photosynthesis for absorbing the sunlight in at least one range of wavelengths for retransmitting same in at least a second range of wavelengths, enhancing the photosynthesis of at least one plant species.
    Type: Application
    Filed: February 11, 2011
    Publication date: May 9, 2013
    Applicants: CASCADE, LABORATOIRE DE PHYSIQUE DU RAYONNEMENT ET DE LA LUMIÈRE
    Inventors: Philippe Edouard Gravisse, François Le Poull
  • Patent number: 8435823
    Abstract: According to one embodiment, a method of manufacturing a back-illuminated solid-state imaging device including forming a mask with apertures corresponding to a pixel pattern on the surface of a semiconductor layer, implanting second-conductivity-type impurity ions into the semiconductor layer from the front side of the layer to form second-conductivity-type photoelectric conversion parts and forming a part where no ion has been implanted into a pixel separation region, forming at the surface of the semiconductor layer a signal scanning circuit for reading light signals obtained at the photoelectric conversion parts after removing the mask, and removing the semiconductor substrate and a buried insulating layer from the semiconductor layer after causing a support substrate to adhere to the front side of the semiconductor layer.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: May 7, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hirofumi Yamashita
  • Patent number: 8436440
    Abstract: A method for manufacturing a back-side illuminated image sensor, including the steps of: forming, inside and on top of an SOI-type silicon layer, components for trapping and transferring photogenerated carriers and isolation regions; forming a stack of interconnection levels on the silicon layer and attaching, on the interconnect stack, a semiconductor handle; removing the semiconductor support; forming, in the insulating layer and the silicon layer, trenches reaching the isolation regions; depositing a doped amorphous silicon layer, more heavily doped than the silicon layer, at least on the walls and the bottom of the trenches and having the amorphous silicon layer crystallize; and filling the trenches with a reflective material.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: May 7, 2013
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics S.A.
    Inventors: Michel Marty, François Leverd
  • Patent number: 8435825
    Abstract: A photovoltaic device that includes a substrate and a nanowall structure disposed on the substrate surface. The device also includes at least one layer conformally deposited over the nanowall structure. The conformal layer(s) is at least a portion of a photoactive junction. A method for making a photovoltaic device includes generating a nanowall structure on a substrate surface and conformally depositing at least one layer over the nanowall structure thereby forming at least one photoactive junction. A solar panel includes at least one photovoltaic device based on a nanowall structure. The solar panel isolates such devices from its surrounding atmospheric environment and permits the generation of electrical power. Optoelectronic device may also incorporate a photovoltaic device based on a nanowall structure.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 7, 2013
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, Loucas Tsakalakos, Joleyn Eileen Brewer
  • Publication number: 20130104957
    Abstract: A method for producing a photovoltaic module having backside-contacted semiconductor cells which have contact regions provided on a contact side includes: providing a foil-type, non-conducting substrate having an at least one-sided and at least sectionally electrically conductive substrate coating on a first substrate side; placing the contact sides of the semiconductor cells on a second substrate side; implementing a local perforation which penetrates the substrate and the substrate coating, to generate openings at the contact regions of the semiconductor cells; applying a contact element to fill the openings and to form a contact point between the substrate coating on the first substrate side and the semiconductor cells on the second substrate side.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 2, 2013
    Inventors: Metin Koyuncu, Ulrich Schaaf, Andreas Kugler, Patrick Zerrer, Martin Zippel, Patrick Stihler
  • Publication number: 20130109129
    Abstract: To provide a solid-state imaging device able to improve light transmittance of a transparent insulation film in a light incident side of a substrate, suppress the dark current, and prevent a quantum efficiently loss, wherein a pixel circuit is formed in a first surface of the substrate and light is received from a second surface, and having: a light receiving unit formed in the substrate and for generating a signal charge corresponding to an amount of incidence light and storing it; a transparent first insulation film formed on the second surface; and a transparent second insulation film formed on the first insulation film and for retaining a charge having the same polarity as the signal charge in an interface of the first insulation film or in inside, thicknesses of the first and second insulation film being determined to obtain a transmittance higher than when using only the first insulation film.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 2, 2013
    Applicant: SONY CORPORATION
    Inventor: Sony Corporation
  • Publication number: 20130108019
    Abstract: Detector modules for an imaging system and methods of manufacturing are provided. One detector module includes a substrate, a direct conversion sensor material coupled to the substrate and a flexible interconnect electrically coupled to the direct conversion sensor material and configured to provide readout of electrical signals generated by the direct conversion sensor material. The detector module also includes at least one illumination source for illuminating the direct conversion sensor material.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Applicant: General Electric Company
    Inventors: John Eric Tkaczyk, Kevin Matthew Durocher, James Rose, Haochuan Jiang, Abdelaziz Ikhlef, Vladimir Lobastov, Daniel David Harrison
  • Publication number: 20130104966
    Abstract: In an embodiment of the disclosure, there is provided a strain isolation layer assembly. The assembly has a rigid solar layer; a strain isolation layer having a discontinuous configuration, a vertical rigidity, and a horizontal shear flexibility; and an underlying substrate layer. The strain isolation layer is coupled between the rigid solar layer and the underlying substrate layer to form a strain isolation layer assembly, such that the strain isolation layer isolates the rigid solar layer to reduce one or more strains induced on the rigid solar layer.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: The Boeing Company
    Inventors: Robert Erik Grip, Blaine Knight Rawdon, Tab Hunter Crooks, Michael F. Stola
  • Publication number: 20130105925
    Abstract: An integrated die-level camera system and method of making the camera system include a first die-level camera formed at least partially in a die. A second die level camera is also formed at least partially in the die. Baffling is formed to block stray light between the first and second die-level cameras.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Inventors: Dennis Gallagher, Adam Greengard, Paulo E.X. Silveira, Chris Linnen, Vladislav Chumachenko, Jungwon Aldinger
  • Publication number: 20130105928
    Abstract: A structure and method of manufacture is disclosed for a backside thinned imager that incorporates a conformal, Al2O3, low thermal budget, surface passivation. This passivation approach facilitates fabrication of backside thinned, backside illuminated, silicon image sensors with thick silicon absorber layer patterned with vertical trenches that are formed by etching the exposed back surface of a backside-thinned image sensor to control photo-carrier diffusion and optical crosstalk. A method of manufacture employing conformal, Al2O3, surface passivation approach is shown to provide high quantum efficiency and low dark current while meeting the thermal budget constraints of a finished standard foundry-produced CMOS imager.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 2, 2013
    Applicant: INTEVAC, INC.
    Inventors: Kenneth A. COSTELLO, Edward YIN, Michael Wayne PELCZYNSKI, Verle W. AEBI
  • Publication number: 20130105870
    Abstract: A solid-state image device is provided which includes: a photoelectric conversion portion which obtains a signal charge by photoelectric conversion of incident light; a pixel transistor portion which outputs a signal charge generated by the photoelectric conversion portion; a peripheral circuit portion which is provided at the periphery of a pixel portion including the photoelectric conversion portion and the pixel transistor portion and which has an NMOS transistor and a PMOS transistor; a first stress liner film which has a compressive stress and which is provided on the PMOS transistor; and a second stress liner film which has a tensile stress and which is provided on the NMOS transistor. In the solid-state image device described above, the photoelectric conversion portion, the pixel transistor portion, and the peripheral circuit portion are provided in and/or on a semiconductor substrate.
    Type: Application
    Filed: December 17, 2012
    Publication date: May 2, 2013
    Applicant: SONY CORPORATION
    Inventor: Sony Corporation
  • Patent number: 8431429
    Abstract: A method of fabricating a backside illuminated imaging sensor that includes a device layer, a metal stack, and an opening is disclosed. The device layer has an imaging array formed in a front side of the device layer, where the imaging array is adapted to receive light from a back side of the device layer. The metal stack is coupled to the front side of the device layer and includes at least one metal interconnect layer having a metal pad. The opening extends from the back side of the device layer to the metal pad to expose the metal pad for wire bonding. The method includes depositing a film on the back side of the device layer and within the opening, then etching the film to form a frame within the opening to structurally reinforce the metal pad.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 30, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Howard E. Rhodes, Duli Mao, Vincent Venezia, Yin Qian
  • Patent number: 8420432
    Abstract: Provided is a method of forming a semiconductor device. The method includes forming an insulating film on a semiconductor substrate, a conductive film on the insulating film, and a first structure and a second structure on the conductive film. The semiconductor substrate has first and second regions. The first and second structures are formed on the first and second regions, respectively. An impurity diffused region is formed in the semiconductor substrate using the first structure as a mask. The impurity diffused region overlaps the first structure. A portion of the first structure, and the conductive film are etched to respectively form a gate structure and a capacitor structure on the first and second regions.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Won Choi, Jun-Seok Yang, Keon-Yong Cheon, Sung-Hyun Yoon
  • Patent number: 8422266
    Abstract: Various embodiment include optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit having an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused. Additional devices and methods are described.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 16, 2013
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Sargent, Jason Clifford, Gerasimos Konstantatos, Ian Howard, Ethan J. D. Klem, Larissa Levina
  • Publication number: 20130089945
    Abstract: A method of manufacturing a solid-state image sensor having photoelectric conversion elements and one or more MOS transistors are formed on a semiconductor substrate is provided. The method includes forming a resist pattern having an opening and a shielding portion over the substrate; and implanting ions in the substrate through the opening. When the substrate is viewed from a direction, an isolation region that is positioned between accumulation regions adjacent to one another is exposed in the opening, and when viewed from a different direction, a channel region of the MOS transistors is exposed in the opening, and the isolation region is shielded by the shielding portion. Ions irradiated in the direction are implanted in the isolation region, and ions irradiated in the different direction are implanted in the channel region.
    Type: Application
    Filed: September 7, 2012
    Publication date: April 11, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Mahito Shinohara, Junji Iwata