Unsaturated Compound Synthesis Patents (Class 585/500)
  • Patent number: 5306855
    Abstract: This invention is a process for converting lower alkanes into their corresponding esters and optionally into various intermediates (such as alcohols) and other liquid hydrocarbons. The alkanes are oxidatively converted to oxy-esters at high selectivity and conversion and at practical reaction rates using at least catalytic amounts of certain class "B" metals and/or metal ions defined by the Pearson definition as "soft" or "borderline". Desirable catalysts comprise such metals as Pd, Tl, Pt, Hg, and Au. If so desired, the alkyl oxy-esters may be converted to alcohols or other intermediates such as alkyl halides. The oxy-esters, alcohols, and other intermediates may optionally be converted to liquid hydrocarbons such as gasoline.
    Type: Grant
    Filed: November 27, 1991
    Date of Patent: April 26, 1994
    Assignee: Catalytica, Inc.
    Inventors: Roy A. Periana, Douglas J. Taube, Henry Taube, Eric R. Evitt
  • Patent number: 5300715
    Abstract: An improved process for the production of linear olefinic hydrocarbons by paraffin dehydrogenation and adsorptive separation is disclosed. Aromatic by-products normally formed in paraffin dehydrogenation are selectively removed using at least one aromatics removal zone. Removal of these aromatic by-products significantly increases the purity of the olefinic hydrocarbon product and increases the capacity of the adsorptive separation zone. The improved process is believed to increase the life of the adsorbent in the adsorptive separation zone and the life of the catalyst in the dehydrogenation zone.
    Type: Grant
    Filed: October 9, 1992
    Date of Patent: April 5, 1994
    Assignee: UOP
    Inventor: Bipin V. Vora
  • Patent number: 5288935
    Abstract: The invention concerns a method of producing liquid hydrocarbons from natural gas, characterized in that:a) the natural gas is separated in (2) into at least two fractions, a first fraction of gas enriched with methane and a second fraction enriched with C2+ alkanesb) the methane is selectively oxidised in (7a) by molecular oxygen in the presence of a catalyst for oxidizing linkage of methanec) the fraction enriched with C2+ alkanes is at least partly mixed with the effluent from selective oxidation, when at least 80% of the molecular oxygen introduced at stage (b) has already been consumed at stage (b)d) the mixture resulting from stage (c) is pyrolysed in (7b)e) when the temperature of the mixture from stage (d) has been brought to a temperature from 300.degree. to 750.degree. C. and more particularly from 420.degree. to 550.degree. C.
    Type: Grant
    Filed: May 21, 1992
    Date of Patent: February 22, 1994
    Assignee: Institut Francais du Petrole
    Inventors: Fabio Alario, Charles Cameron, Jean-Francois Joly
  • Patent number: 5276237
    Abstract: A membrane of an oxidative conversion contact material of a mixed oxide of aluminum and at least one multivalent activator metal with the membrane permitting selective conveyance of a form of oxygen therethrough, as well as methods for the oxidative conversion of a gaseous hydrocarbon reactant using such membranes are provided.
    Type: Grant
    Filed: December 20, 1991
    Date of Patent: January 4, 1994
    Assignee: Amoco Corporation
    Inventor: Rodney L. Mieville
  • Patent number: 5268525
    Abstract: The invention relates to the conversion of saturated hydrocarbons.According to the invention a first gas containing chlorine and a second gas containing hydrogen are introduced into a chamber (3) so as to mix them. At the exit (4) of this chamber (3) the mixture of chlorine and hydrogen is ignited and the products originating from this flame are then mixed in a chamber (7) with a third gas containing the hydrocarbons to be converted, with a mean weight content of hydrogen element of at least 18%. The effluents from the chamber (7) are collected, quenched and fractionated. The hydrochloric acid is reformed into chlorine which is recycled in the first gas, the hydrogen is recycled in the second gas, and the alkanes in the third gas. The unsaturated hydrocarbons are recovered.The invention applies in particular to the conversion of natural gases into unsaturated hydrocarbons, such as ethylene.
    Type: Grant
    Filed: March 18, 1991
    Date of Patent: December 7, 1993
    Assignee: Gaz de France
    Inventor: Guy-Marie Come
  • Patent number: 5254778
    Abstract: An improved method for preparing a catalyst which is superior for converting methane to ethane and ethylene is described. The method involves mixing a solution of a magnesium alkoxide in alcohol with a solution of a lithium compound in alcohol. Preferably, chlorine is introduced into the mixture. A solution of an aluminum alkoxide in an alcohol may also be added to the mixture. The magnesium alkoxide is hydrolyzed to produce a gel, and the gel is then calcined to produce the catalyst. Catalysts prepared by this method are superior for converting methane to ethane and ethylene, and have superior selectivities for ethylene and ethane over conventional lithium carbonate/magnesium oxide catalysts.
    Type: Grant
    Filed: June 6, 1991
    Date of Patent: October 19, 1993
    Assignee: The Texas A & M University System
    Inventors: Jack H. Lunsford, Paul G. Hinson
  • Patent number: 5254779
    Abstract: A catalyst of the following formulaNi.sub.a MoO.sub.x (I)in which:a is a number from 0.6 to 1.3, andx is a number determined by the valency requirements of nickel and of molybdenum.The manufacture of this catalyst comprises the preparation of a solvated precursor and the thermal decomposition of the solvated precursor over a period of from 1 to 4 hours and at a temperature T.sub.1 of from 520.degree. to 600.degree. C. The catalyst is utilized in the oxidative dehydrogenation of propane at a temperature of from 400.degree. to 700.degree. C.
    Type: Grant
    Filed: October 1, 1991
    Date of Patent: October 19, 1993
    Inventors: Carlo Mazzocchia, Ezio Tempesti, Chafic Aboumrad
  • Patent number: 5254781
    Abstract: An olefins process is described which combines cracking of a hydrocarbon feedstock with the coupling of methane using an oxygen-affording gas such that the heat evolved in the exothermic methane coupling reaction is effectively transferred to the endothermic cracking process in a manner which does not allow the non-hydrocarbon products in the effluent of the methane coupling reaction to mix with the effluent of the cracking process. By combining the cryogenic requirements of the two processes, the refrigeration used in air liquifaction to separate oxygen for the methane coupling process can provide refrigerant nitrogen to liquify one or more of methane, ethylene and propylene which can be used in the cryogenic separation of the C.sub.2 + hydrocarbon products in the cracking process effluent.
    Type: Grant
    Filed: December 31, 1991
    Date of Patent: October 19, 1993
    Assignee: Amoco Corporation
    Inventors: Narasimhan Calamur, George A. Huff, Jr., Harold A. Lindahl
  • Patent number: 5245124
    Abstract: A catalyst having the composition A:Al.sub.2 O.sub.3 is used as a catalyst for producing ethylene from methane. A is an alkali metal, preferably lithium. The catalyst may be doped with an additive such as MgCl.sub.2. A weak oxidation catalyst such as MoO.sub.3 or ZrO.sub.2 may be added. The catalyst is heated to at least 750.degree. C. in a catalytic reactor and a mixture of air and methane is passed over the heated catalyst. Oxygen or air may be added part way along the catalytic reaction to oxidize H.sub.2 but not C.sub.2 H.sub.4.
    Type: Grant
    Filed: March 16, 1992
    Date of Patent: September 14, 1993
    Assignee: 410261 B.C. Ltd.
    Inventors: Bijan K. Miremadi, Stanley R. Morrison, Konrad Colbow
  • Patent number: 5245109
    Abstract: A contact material composition of an intimately mixed halogencontaining mixed oxide of at least one cationic species of a naturally occurring Group IIIB element, at least one cationic species of a Group IIA metal of magnesium, calcium, strontium and barium and at least one cationic species of germanium and gallium, as well as methods for hydrocarbon conversion using such contact material compositions are provided.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: September 14, 1993
    Assignee: Amoco Corporation
    Inventors: Mark P. Kaminsky, Mark S. Kleefisch, George A. Huff, Jr., Don M. Washecheck, Mark K. Barr
  • Patent number: 5235121
    Abstract: The present invention provides a method and apparatus for reforming a hydrocarbon feedstock in the presence of steam using a steam-active reforming catalyst The present invention can generally be used in conjunction with any steam-active reforming processes wherein the hydrocarbon reforming and catalyst regeneration operations are conducted simultaneously and the catalyst is regenerated using a steam-diluted oxygen (or air) regeneration medium. In the present invention, catalyst regeneration effluent gas is advantageously reused in the reforming operation to provide at least a portion of the steam environment required for reforming the hydrocarbon feedstock. Free oxygen is preferably removed from the regeneration effluent gas before the regeneration effluent gas is brought into contact with the hydrocarbon feedstock.
    Type: Grant
    Filed: August 2, 1991
    Date of Patent: August 10, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Francis M. Brinkmeyer, Warren M. Ewert, Homer M. Fox, D. F. Rohr, Jr.
  • Patent number: 5233113
    Abstract: This invention is a process for converting lower alkanes into their corresponding esters and optionally into various intermediates (such as methanol) and other liquid hydrocarbons. The alkanes are oxidatively converted to oxy-esters at high selectivity using catalytic amounts of a Group VIII noble metal. If so desired, the alkyl oxy-esters may be converted to alcohols or other intermediates such as alkyl halides. The oxy-esters, alcohols, and other intermediates may optionally be converted to liquid hydrocarbons such as gasoline.
    Type: Grant
    Filed: February 15, 1991
    Date of Patent: August 3, 1993
    Assignee: Catalytica, Inc.
    Inventors: Roy A. Periana, Eric R. Evitt, Henry Taube
  • Patent number: 5227560
    Abstract: Active methine compounds are chlorinated by contacting such compounds with a perchloroalkane and aqueous base in the presence of a phase transfer catalyst which is an tetraalkylonium hydroxide. Chlorinated products, preferably tertiary alkyl chloro compounds, are produced. The tertiary alkyl chloro compounds are useful in elimination reactions, preferably reactions with base, to form unsaturated compounds, particularly compounds having a vinylidene or exomethylene group.
    Type: Grant
    Filed: November 7, 1991
    Date of Patent: July 13, 1993
    Assignee: The Dow Chemical Company
    Inventors: Katherine S. Clement, W. Frank Richey, Marlin E. Walters
  • Patent number: 5214226
    Abstract: The present invention teaches an apparatus and method for commercial conversion of methane in the absence of a catalyst to higher hydrocarbons that are generally in short supply, e.g., butane, ethylene, propene, etc. The production of these higher molecular weight hydrocarbons aids in justifying the cost of the conversion process. The inventive conversion technique utilizes small amounts, generally 1% or less, of a low-cost initiator, plus air, which allows for the commercial viability of the process.
    Type: Grant
    Filed: March 13, 1992
    Date of Patent: May 25, 1993
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Simon H. Bauer, Huy-Zu Cheng
  • Patent number: 5210358
    Abstract: Solid solution catalyst in particulate form consisting of attrition resistant .alpha.-Al.sub.2 0.sub.3 particles with 0.5 to 10% by weight, expressed as the oxide, of iron cations substituted for aluminum cations in said catalyst support stabilized with 0.5 to 10% by weight, expressed as the oxide, of lanthanum and modified with at least two, preferably three, metal cations selected from the metals consisting of chromium, cobalt, magnesium, manganese, and barium; wherein one of said metal cations is barium and said catalyst has X-ray diffraction pattern with peak positions different than that of the .alpha.-Al.sub.2 0.sub.3 structure. A process is disclosed which produces ethylene from ethane while producing reduced amounts of vinyl chloride from said ethane to ethylene process.
    Type: Grant
    Filed: February 27, 1992
    Date of Patent: May 11, 1993
    Assignee: The B.F. Goodrich Company
    Inventor: Angelo J. Magistro
  • Patent number: 5210357
    Abstract: A solid composition of matter selected from the group consisting of:(a) a component comprising: (1) an oxide of lanthanum and a component comprising: (2) at least one material selected from the group consisting of halogen ions, compounds containing halogen ions, tin and compounds containing tin; and(b) a component comprising: (1) at least one material selected from the group consisting of Group IA metals and compounds containing said metals, a component comprising: (2) at least one metal selected from the group consisting of lanthanum and compounds containing lanthanum and, optionally, a component comprising: (3) at least one material selected from the group consisting of halogen ions, compounds containing halogen ions, tin and compounds containing tin,and a method for the oxidative conversion of organic compounds to other organic compounds, particularly in the presence of a free oxygen containing gas.
    Type: Grant
    Filed: June 7, 1985
    Date of Patent: May 11, 1993
    Assignees: Phillips Petroleum Company, Atlantic Richfield Company
    Inventors: John H. Kolts, James B. Kimble
  • Patent number: 5198596
    Abstract: A contact material composition containing an intimately mixed, mixed oxide of at least one cationic species of a naturally occurring Group 111B elment, at least one cationic species of a Group IIA metal of magnesium, calcium, strontium, and barium and at least one additional metal cationic species of zirconium and hafnium, as well as methods for hydrocarbon conversion using such contact material compositions are provided.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: March 30, 1993
    Assignee: Amoco Corporation
    Inventors: Mark P. Kaminsky, Mark S. Kleefisch, George A. Huff, Jr., Don M. Washecheck, Mark K. Barr
  • Patent number: 5196634
    Abstract: A contact material composition containing an intimately mixed, mixed oxide of at least one cationic species of a naturally occurring Group IIIB element, at least one cationic species of a Group IIA metal of magnesium, calcium, strontium, and barium and a cationic species of aluminum, as well as methods for hydrocarbon conversion using such contact material compositions are provided.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: March 23, 1993
    Assignee: Amoco Corporation
    Inventors: Don M. Washecheck, Mark K. Barr, George A. Huff, Jr., Mark P. Kaminsky, Mark S. Kleefisch, Victor K. Shum
  • Patent number: 5191138
    Abstract: There is provided a process for converting methane to hydrocarbons having at least two carbon atoms (i.e. higher hydrocarbons). The process involves oxidizing methane with a metal sulfide oxidizing agent. After this conversion of methane, the reduced metal sulfide may be regenerated by oxidation of the reduced metal sulfide.
    Type: Grant
    Filed: November 19, 1991
    Date of Patent: March 2, 1993
    Assignee: Mobil Oil Corp.
    Inventors: Scott Han, James N. Michaels, Robert E. Palermo, David L. Stern, Dennis E. Walsh
  • Patent number: 5191150
    Abstract: A method for separating conjunct polymers and sulfolane from a mixture containing conjunct polymers, sulfolane, and hydrofluoric acid is disclosed, which method comprises the sequential steps of separating hydrofluoric acid from said mixture to provide an intermediate stream containing less than about 30 percent hydrofluoric acid by weight and gravitationally separating said intermediate stream into a sulfolane-enriched stream and a conjunct polymer-enriched stream.
    Type: Grant
    Filed: February 11, 1992
    Date of Patent: March 2, 1993
    Assignee: Mobil Oil Corporation
    Inventors: Jonathan E. Child, Tomas R. Melli, Sergei Yurchak
  • Patent number: 5162599
    Abstract: In its simplest sense, the present invention is directed toward a process for the thermal conversion of methane into unsaturated gaseous hydrocarbons, especially olefins, comprising first compressing methane in the presence of an inert gas having a higher ratio of heat capacities, Cp/Cv, than methane. The inert gas used is present in an amount sufficient to provide a compressed gas mixture having a peak temperature of adiabatic compression in the range of about 900.degree. C. to about 2200.degree. C. Under these conditions, at least some of the methane is converted to unsaturated gaseous hydrocarbons. Immediately thereafter, the compressed gas mixture is expanded, thereby substantially preventing thermal conversion of the gaseous hydrocarbons. Importantly, the compression and expansion are achieved in a single cycle of less than about one second.
    Type: Grant
    Filed: September 19, 1991
    Date of Patent: November 10, 1992
    Assignee: Exxon Research and Engineering Co.
    Inventors: Michael G. Matturro, Harry W. Deckman, Frank Hershkowitz, Anthony M. Dean
  • Patent number: 5160501
    Abstract: Method and apparatus for thermal conversion of methane to hydrocarbons of higher molecular weight, comprising a reactor 1 of elongated shape, connected at a first end to means 5 for supplying gas mixture containing methane (process gas), and connected at the opposite end to discharge means 10, the reactor having a plurality of electric heating means 3 surrounded by sheaths 4 over a first part (towards the first end). The heating means, which are substantially parallel, are arranged in sheets which are substantially parallel and perpendicular to the axis of the reactor, so that spaces or passages for circulation of the process gas and/or effluent are defined between the sheaths and/or between the sheaths and the walls 22 separating two consecutive sheets. The heating means are adapted to heat the passages by successive independent cross sections substantially perpendicular to the axis of the reactor.
    Type: Grant
    Filed: May 16, 1991
    Date of Patent: November 3, 1992
    Assignee: Institut Francais du Petrole
    Inventors: Jacques Alagy, Paul Broutin, Christian Busson, Jerome Weill
  • Patent number: 5160502
    Abstract: A solid composition of matter comprising: (1) cobalt, (2) at least one metal selected from the group consisting of Group IA metals, (3) silicon and (4) oxygen, preferably containing at least two Group IA metals and optionally containing at least one material selected from the group consisting of halogen ions and compounds containing halogen ions, phosphorous and compounds containing phosphorous, sulfur and compounds containing sulfur. A method for the oxidative conversion of feed organic compounds to product organic compounds utilizing these solid compositions of matter as solid contact materials is described.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: November 3, 1992
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, John H. Kolts
  • Patent number: 5157179
    Abstract: A method for producing a cycloolefin which comprises partially hydrogenating an aromatic hydrocarbon with hydrogen in a liquid phase in the presence of water and a catalyst having as main component ruthenium supported on a carrier, to form the corresponding cycloolefin, wherein an oxide with the total pore volume of pores having radii of from 20 to 100,000 .ANG. being from 0.3 to 10 cc/g and with the volume of pores having radii of from 20 to 200 .ANG. constituting at most 15% of the total pore volume, is used as the carrier for the catalyst.
    Type: Grant
    Filed: July 5, 1991
    Date of Patent: October 20, 1992
    Assignee: Mitsubishi Kasei Corporation
    Inventors: Tohru Setoyama, Takahiko Takewaki, Takao Maki
  • Patent number: 5157188
    Abstract: A method for the oxidative conversion of methane, to higher hydrocarbons, particularly ethylene and ethane, in which a methane-containing gas, such as natural gas, and a free oxygen containing gas are contacted with a contact material selected from the group consisting of:(a) a component comprising: (1) at least one oxide of a metal selected from the group consisting of calcium, strontium and barium and, optionally, a component comprising: (2) at least one material selected from the group consisting of chloride ions, compounds containing chloride ions, tin and compounds containing tin;(b) a component comprising: (1) at least one metal selected from the group consisting of sodium, potassium and compounds containing said metals, a component comprising: (2) at least one metal selected from the group consisting of Group IIA metals and compounds containing said metals, and, optionally, a component comprising: (3) at least one material selected from the group consisting of chloride ions, compounds containing chlori
    Type: Grant
    Filed: March 19, 1985
    Date of Patent: October 20, 1992
    Assignees: Phillips Petroleum Company, Atlantic Richfield Company
    Inventors: John H. Kolts, James B. Kimble
  • Patent number: 5157189
    Abstract: A process is disclosed for catalytically converting light hydrocarbons, such as natural gas, to saturated or unsaturated higher molecular weight hydrocarbons, such as ethylene, propylene, ethyl benzene, and styrene. The process employs gaseous catalyst or a mixture of catalysts selected from hydrogen sulfide, hydrogen halides other then hydrogen fluoride, halogen other than fluorine, sulfur vapor, and/or sulfur containing hydrocarbons.
    Type: Grant
    Filed: November 21, 1990
    Date of Patent: October 20, 1992
    Inventor: Sankaram B. Karra
  • Patent number: 5146027
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700.degree. to 1200.degree. C. in the presence of a halogen promoter, the contacting being conducted in the substantial absence of alkali metals or compounds thereof.
    Type: Grant
    Filed: May 24, 1985
    Date of Patent: September 8, 1992
    Assignees: Atlantic Richfield Co., Phillips Petroleum Co.
    Inventor: Anne M. Gaffney
  • Patent number: 5132482
    Abstract: An improvement in the process for the oxidative coupling of methane is provided. Typically, the reaction takes place in a reactor that includes a catalyst zone. A primary CH.sub.4 /O.sub.2 stream is fed into the entrance of the reactor and reacted at a temperature of 600.degree. C.-1000.degree. C. and a pressure of between 101 kPa and 800 kPa. The improvement comprises introducing an auxiliary oxygen stream directly into the catalyst zone and one or more points to thereby selectively increase the yield of C.sub.2+ products.
    Type: Grant
    Filed: June 14, 1990
    Date of Patent: July 21, 1992
    Assignee: Alberta Research Council
    Inventors: Kevin J. Smith, Jan Z. Galuszka
  • Patent number: 5132481
    Abstract: The activation of catalysts which include carbonate compounds is brought about by exposing the catalyst to an atmosphere containing hydrogen. The invention is useful for activating Group IIA carbonates, such as strontium carbonate, for use in the oxidative coupling of methane.
    Type: Grant
    Filed: July 2, 1990
    Date of Patent: July 21, 1992
    Assignees: The Broken Hill Proprietary Company Limited, Commonwealth Scientific and Industrial Research Organisation
    Inventors: Khac T. Do, James H. Edwards, Ralph J. Tyler
  • Patent number: 5126499
    Abstract: A process for the production of hydrocarbons having 2 or more carbon atoms by oxidative coupling of methane includes a step of contacting a feed gas containing methane with an oxide of metals having the following composition:MCo.sub.1-x Fe.sub.x O.sub.ywherein M stands for at least one alkaline earth metal x is a number greater than 0 but not greater than 1 and y is a number in the range of 2.5-3.5, at a temperature of 500.degree.-1000.degree. C.
    Type: Grant
    Filed: March 20, 1991
    Date of Patent: June 30, 1992
    Assignee: Director-General of Agency of Industrial Science and Technology
    Inventors: Takashi Hayakawa, Katsuomi Takehira, Hideo Orita, Masao Shimizu, Yoshihito Watanabe
  • Patent number: 5118654
    Abstract: A process for preparation of an improved Li-promoted MgO catalyst useful for oxidative coupling of methane to ethane and ethylene, in presence of free oxygen, which comprises (i) mixing thoroughly powdered magnesium acetate and lithium acetate, which are catalyst precursors, with Li/Mg mole ratio of 0.01-1.0 with or without water, the H.sub.2 O/magnesium acetate weight ratio being in the range of 0-5.0, (ii) heating the mixture, while stirring, to dryness at a temperature of about 60.degree.-300.degree.C., (iii) powdering and calcining the dried mixture at a temperature of about 500.degree.-1000.degree.C. in presence of air, O.sub.2, CO.sub.2, inert gas (like N.sub.2, He, Ar, etc.) or their mixture or under vacuum for about 1-100 h and (iv) making by known methods the pellets, extrudates or granules of the catalyst of required size.
    Type: Grant
    Filed: August 22, 1991
    Date of Patent: June 2, 1992
    Assignee: Council of Scientific & Industrial Research
    Inventors: Vasant R. Choudhary, Meenakshi Y. Pandit, Sopan T. Chaudhari
  • Patent number: 5118899
    Abstract: Compositions of matter particularly useful for the oxidative conversion of feed organic compounds to produce organic compounds include combination of Group IIA, zinc, titanium and Lanthanum Series base materials and, optionally, Group IA and/or halogen promoters. A method for the oxidative conversion of feed organic compounds to produce organic compounds, particularly methane, to higher hydrocarbons and saturated C.sub.2 to C.sub.7 hydrocarbons to less saturated hydrocarbons in the presence of an oxygen-containing gas is disclosed utilizing base compositions of matter.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: June 2, 1992
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, John H. Kolts
  • Patent number: 5118901
    Abstract: Catalyst systems containing a catalyst and catalyst support are presented. The catalyst comprises elemental alkali metal and a metal oxide where the metal in the oxide comes from the lanthanide series. Optionally, a promoter is included in the catalyst. The catalyst support comprises an alkali metal carbonate with optionally a carbonaceous compound. This catalyst system can be used to reduce isomerization losses associated with the production of higher alpha-olefins from lower alpha-olefins.
    Type: Grant
    Filed: June 17, 1991
    Date of Patent: June 2, 1992
    Assignee: Phillips Petroleum Company
    Inventor: Charles A. Drake
  • Patent number: 5118898
    Abstract: A process for the production of ethylene from a methane rich gas stream and an ethane rich gas stream. The process comprises the steps of:(a) introducing the methane rich gas stream together with molecular oxygen into a lower zone of a fluidized-bed of particles which are catalytically active in promoting an exothermic oxidative coupling reaction to produce ethylene and other hydrocarbons,(b) mixing the ethane rich gas stream into the fluidized-bed above the level at which substantially all of the molecular oxygen has been consumed, and(c) subjecting the mixture resulting from step (b) to an endothermic pyrolysis reaction in an upper zone of the fluidized-bed to produce further ethylene and other olefinically unsaturated hydrocarbons.The process is characterized in that the pyrolysis step (c) is carried out substantially without the addition of heat to the reactor, other than the heat content of the methane rich and ethane rich gas streams and the heat generated by the exothermic oxidative coupling reaction.
    Type: Grant
    Filed: March 14, 1990
    Date of Patent: June 2, 1992
    Assignees: The Broken Hill Proprietary Company Limited, Commonwealth Scientific & Industrial Research Organization
    Inventors: Ralph J. Tyler, James H. Edwards, Peter J. Jackson
  • Patent number: 5113032
    Abstract: Process for producing olefins from natural gas, the natural gas (2) is mainly fractionated (1) into methane (3) and higher hydrocarbons (4), the latter being then mainly fractionated (17, 20) into propane (9) and ethane (7). The methane (3), admixed with oxygen (6), passes through an oxidation reactor (5), receives the ethane (7) and the obtained mixture passes through a pyrolysis reactor (8). The effluent coming out of reactor (8) receives the propane (9) and the obtained mixture passes through a pyrolysis reactor (10). A hydrocarbon flow comprising olefins (12), more particularly ethylene and propene, is recovered.
    Type: Grant
    Filed: January 8, 1990
    Date of Patent: May 12, 1992
    Assignee: Institut Francais du Petrole
    Inventors: Charles Cameron, Hubert Mimoun, Alain Robine, Serge Bonnaudet, Patrick Chaumette, Quang Dang Vu
  • Patent number: 5105046
    Abstract: A method for converting lower alkanes to a higher molecular weight hydrocarbon using a contact material of a fluorine-containing compound of at least one of Sr, Ba, Sc, Y or La, as well as such contact material compositions themselves is provided.
    Type: Grant
    Filed: December 12, 1990
    Date of Patent: April 14, 1992
    Assignee: Amoco Corporation
    Inventor: Don M. Washecheck
  • Patent number: 5105044
    Abstract: There is provided a catalyst and a process for the direct partial oxidation of methane with oxygen, whereby hydrocarbons having at least two carbon atoms are produced. The catalyst used in this reaction is a spinel oxide, such as MgMn.sub.2 O.sub.4 or CaMn.sub.2 O.sub.4, modified with an alkali metal, such as Li or Na.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: April 14, 1992
    Assignee: Mobil Oil Corp.
    Inventors: Scott Han, Lorenzo C. DeCaul, Robert E. Palermo, Dennis E. Walsh
  • Patent number: 5105045
    Abstract: A method for the oxidative conversion of feed organic compounds, such as methane and ethane, to product organic compounds, such as ethylene, in the presence of a free oxygen containing gas and a contact material comprising: (1) Group IA and/or Group IIA metals/O.sub.2 /halogen; (2) Group IA metals/La Series metals/O.sub.2 /halogen and, optionally, Group IIA metals; (3) Group IA metals/Zn/O.sub.2 /halogen and, optionally, Group IIA metals; (4) Group IA metals/Ti or Zr/O.sub.2 /halogen and, optionally, Group IIA metals; (5) Group IA and/or IIA metals/phosphate/halogen or (6) Co/Zr, Zn, Nb, In, Pb and/or Bi/P/O.sub.2 halogen, and, optionally, Group IA metals and/or S, in which a contact material containing no halogen or an ineffective amount are activated and/or regenerated by contacting them with a halogen and, when the contact material is contact material (6), with a reducing agent or both a reducing agent and a halogen.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: April 14, 1992
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, John H. Kolts
  • Patent number: 5098876
    Abstract: This present invention relates to a disproportionation catalyst and to a process for preparing a disproportionation catalyst comprising forming a calcined composite comprising at least one of molybdenum and rhenium supported on an inorganic oxide support and contacting the calcined composite with an organoborane compound. The invention further relates to a process for the disproportionation of olefinic hydrocarbons comprising contacting at least one olefinic hydrocarbon with a catalyst comprising at least one of molybdenum and rhenium supported on an inorganic oxide support promoted with an organoborane compound. More specifically, the invention relates to the uses of an organoborane compound promoted molybdenum and rhenium supported on an inorganic oxide support for the production of linear alpha olefins from a mixture of internal olefins and ethylene.
    Type: Grant
    Filed: August 27, 1990
    Date of Patent: March 24, 1992
    Assignee: Shell Oil Company
    Inventors: Jiang-Jen Lin, Randall T. DePue, Howard L. Fong
  • Patent number: 5095161
    Abstract: Methane is upgraded to higher molecular weight hydrocarbons in a process using a novel catalyst comprising oxides of boron, tin and zinc. The feed admixture also comprises oxygen. The novel catalyst may comprise one or more Group I-A or II-A elements, preferably potassium and is characterized by its method of manufacture.
    Type: Grant
    Filed: August 6, 1990
    Date of Patent: March 10, 1992
    Assignee: UOP
    Inventors: Hayim Abrevaya, Tamotsu Imai, Lisa M. Lane
  • Patent number: 5093542
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700.degree. to 1200.degree. C. in the presence of a halogen promoter, the contacting being conducted in the substantial absence of alkali metals or compounds thereof.
    Type: Grant
    Filed: October 25, 1990
    Date of Patent: March 3, 1992
    Assignee: Atlantic Richfield Company
    Inventor: Anne M. Gaffney
  • Patent number: 5087787
    Abstract: A method for the oxidative conversion of feed organic compounds to product organic compounds, particularly, the conversion of methane to higher hydrocarbons and the conversion of saturated C.sub.2 to C.sub.7 hydrocarbons to less saturated hydrocarbons, in which the feed compounds are contacted with a free oxygen-containing gas, water and a contact material, comprising at least one Group IIA metal or lanthanum and oxygen; at least two Group IIA metals, Lanthanum Series metals, zinc, or titanium and oxygen; at least one Group IA metal, at least one Group IIA metal, Lanthanum Series metals, zinc or titanium and oxygen; at least one Group IA metal or Group IIA metal, phosphorous and oxygen; cobalt, at least one of zirconium, zinc, nickel, indium, lead or bismuth, phosphorous, at least one Group IA metal and oxygen; or cobalt, at least one Group IA metal, silicon and oxygen.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: February 11, 1992
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, John H. Kolts
  • Patent number: 5087786
    Abstract: A process for the halogen-assisted conversion of lower alkanes to higher molecular weight hydrocarbons is provided. A first reaction mixture including lower alkanes, a hydrogen halide and an oxygen-containing gas are contacted with a catalytic composition of crystalline copper aluminum borate at appropriate reaction conditions to form an intermediate composition including halogenated alkanes. The halogenated alkanes are subsequently contacted with a catalytic composition of a pentasil molecular sieve material under appropriate reaction conditions to form a product mixture including hydrocarbons having molecular weights greater than the lower alkanes.
    Type: Grant
    Filed: April 25, 1990
    Date of Patent: February 11, 1992
    Assignee: Amoco Corporation
    Inventors: Philip O. Nubel, Larry C. Satek, Michael J. Spangler, Charles A. Lutman, Glenn O. Michaels
  • Patent number: 5087769
    Abstract: A method of forming 6-substituted-2-vinyl naphthalene from a 2-substituted naphthalene compound wherein the substituent in the 2-position is an ortho-para directing electron-donating group not reactive with hydrogen fluoride, comprises contacting the naphthalene compound and an acylating agent with substantially anhydrous hydrogen fluoride to acylate the naphthalene compound to a 6-substituted-2-acylnaphthalene compound, hydrogenating the 6-substituted-2-acylnaphthalene compound to convert the 2-acyl substituent to an alcohol substituent, dehydrating the product of hydrogenation in the presence of a free radical inhibitor to convert the alcohol substituent to an olefinic substituent, and isolating the formed 6-substituted-2-vinylnaphthalene subsequent to the dehydration.
    Type: Grant
    Filed: September 26, 1990
    Date of Patent: February 11, 1992
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Henry C. Linstid, III., Kenneth G. Davenport
  • Patent number: 5081324
    Abstract: A hydrocarbon conversion process using a catalytic composition effective in the catalytic conversion of a feedstock alkane, such as methane, to a higher molecular weight hydrocarbon is disclosed. The composition includes a first component comprising a Group IA metal, a second component comprising Group IIA metal, a third component, the precursor of which comprises a sol (an aqueous suspension of aluminum, silicon, titanium, zinc, zirconium, cadmium or tin) and a fourth component including a Group VIII metal, silver or a combination thereof, present in an amount effective to substantially increase the catalytic activity of the composition.In addition, methods of preparing such catalytic compositions and catalytic compositions prepared by such methods are disclosed.
    Type: Grant
    Filed: November 13, 1990
    Date of Patent: January 14, 1992
    Assignee: Amoco Corporation
    Inventors: Glenn O. Michaels, Michael J. Spangler
  • Patent number: 5077446
    Abstract: A method for the oxidative conversion of methane, at a high conversion and high selectivity to ethylene and ethane, in which a methane-containing gas, such as a natural gas, and an oxygen-containing gas are contacted with a contact material comprising lithium, in an effective amount, preferably 0.1 to 50 wt. % (expressed as the metal), and magnesium oxide, as by passing a mixture of the methane-containing gas and the oxygen-containing gas through a body of the contact material.
    Type: Grant
    Filed: March 19, 1985
    Date of Patent: December 31, 1991
    Assignee: Phillips Petroleum Company
    Inventors: John H. Kolts, Jack H. Lunsford
  • Patent number: 5073658
    Abstract: The present invention provides for a non-nickel-containing catalyst which is effective for use in the production of dimer products and higher olefin products from a butene starting material at relatively high conversion, good selectivity towards octene production and good activity maintenance over prolonged polymerization times. The catalyst is prepared by impregnating an amorphous trivalent metal oxide support selected from the group consisting of aluminum oxide, gallium oxide and indium oxide with a silicon-containing precursor compound which, after calcination, yields a substantial mono layer of SiO.sub.2 on the surface of the metal oxide support. A disperse layer of TiO.sub.2 is then deposited on the surface of the SiO.sub.2 monolayer by application of a solvent solution of a precursor compound containing titanium onto the SiO.sub.2 monolayer, followed by calcination to reduce the precursor titanium compound to TiO.sub.2.
    Type: Grant
    Filed: January 22, 1991
    Date of Patent: December 17, 1991
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Ramzi Y. Saleh, Stuart L. Soled, Nicholas C. Dispenziere
  • Patent number: 5073666
    Abstract: Upon a pressure vessel reactor, lower alkanes such as methane and propane subjected to temperatures of up to 800 K and pressures up to 70,000 psi (467 MPa), isomerize even in the absence of catalyst to produce a variety of alkanes, alkenes, cycloalkanes and aromatic hydrocarbons containing up to twelve carbon atoms.
    Type: Grant
    Filed: May 3, 1991
    Date of Patent: December 17, 1991
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Thomas S. Zemanian, Thomas Gold, William B. Streett, John A. Zollweg
  • Patent number: 5073657
    Abstract: Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.
    Type: Grant
    Filed: September 19, 1989
    Date of Patent: December 17, 1991
    Assignee: Union Carbide Chemicals and Plastics Company Inc.
    Inventor: Barbara K. Warren
  • Patent number: 5073656
    Abstract: Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.
    Type: Grant
    Filed: September 19, 1989
    Date of Patent: December 17, 1991
    Assignee: Union Carbide Chemicals and Plastics Company, Inc.
    Inventors: Richard B. Chafin, Barbara K. Warren